Name:	Register Number:	Class:	

4E 5N

BEDOK GREEN SECONDARY SCHOOL

Preliminary Examination 2020

5 N

MATHEMATICS

4048/02

Paper 2

31 August 2020

2 hours 30 minutes

Candidates answer on the Question Paper.

READ THESE INSTRUCTIONS FIRST

Write your name, class and register number on all the work you hand in.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

Answer **all** questions.

If working is needed for any question it must be shown with the answer.

Omission of essential working will result in loss of marks.

The use of an approved scientific calculator is expected, where appropriate.

If the degree of accuracy is not specified in the question and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place. For π , use either your calculator value or 3.142, unless the question requires the answer in terms of π .

The number of marks is given in brackets [] at the end of each question or part question. The total number of marks for this paper is 100.

This document consists of **25** printed pages including the cover page. © BGSS 2020

No part of this document may be reproduced in any form or transmitted in any form or by any means without the prior permission of Bedok Green Secondary School

[Turn over

Mathematical Formulae

Compound interest

Total amount =
$$P \left(1 + \frac{r}{100} \right)^n$$

Mensuration

Curved surface area of a cone = πrl

Surface area of a sphere = $4\pi r^2$

Volume of a cone =
$$\frac{1}{3}\pi r^2 h$$

Volume of a sphere =
$$\frac{4}{3}\pi r^3$$

Area of triangle
$$ABC = \frac{1}{2}ab\sin C$$

Arc length = $r\theta$, where θ is in radians

Sector area = $\frac{1}{2}r^2\theta$, where θ is in radians

Trigonometry

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

$$a^2 = b^2 + c^2 - 2bc\cos A$$

Statistics

$$Mean = \frac{\sum fx}{\sum f}$$

Standard deviation =
$$\sqrt{\frac{\sum fx^2}{\sum f} - \left(\frac{\sum fx}{\sum f}\right)^2}$$

1	(a)	The cash price of a camera is \$1 880. Amelia bought the camera on hire purchase. She paid a deposit of one fourth of the cash price and paid the rest by 24 equal monthly instalments of \$65.			
		(i) Find the total amount that Amelia paid for the camera.			
		Answer \$			
	(b)	Answer			
		In order for her to pay for the camera, she borrowed a sum of \$1 880 for 3 years at a compound interest rate of 4% per year. Calculate the interest that Alyssa had to pay.			
		<i>Answer</i> \$[2]			
	(c)	On selling a camera at \$1 880, the merchant made a profit of 113% of the cost which he paid for the camera.			
		Find the cost price of the camera.			
		Answer \$[2]			

© BGSS 2020 [Turn over

2	(a)	Microspheres are small spherical particles which transport drugs in the human body. The surface area of one microsphere is 1.54×10^{-10} m ² .			
		Find the radius of the microsphere. Give your answer in standard form.			
		Answerm [1]			
	(b)	Simplify $\frac{20m^4}{3n} \div \frac{12m}{5n^2}$.			
		Answer[1]			
	(c)	$y = \frac{1}{2p} \sqrt{q - r}$			
		(i) Evaluate y when $p = \frac{1}{2}$, $q = 12$ and $r = -4$.			
		$Answer\ y = \dots [1]$			
		(ii) Express r in terms of p , q and y .			

2	(d)		lindrical water dispenser, with uniform cross section, has a capacity litres.
		(i)	Water from Tap A fills the empty dispenser at a constant rate of x litres per second.
			Write down, in terms of x , the time taken by Tap A to fill up the empty water dispenser.
			<i>Answer</i> s [1]
		(ii)	Water from Tap B fills the same dispenser at a constant rate of $(x + 2)$ litres per second.
			Write down, in terms of x , the time taken by Tap B to fill up the empty water dispenser.
			<i>Answer</i> s [1]
		(iii)	Tap B takes 25 seconds less than Tap A to fill up the empty dispenser.
			Write down an equation in x and show that it can be simplified to $5x^2 + 10x - 12 = 0$.
			Answer

2 (d) (iv) Solve the equation $5x^2 + 10x - 12 = 0$.

Answer x = [3]

Hence find the amount of time taken by Tap *A* to fill up the water dispenser.

Answers [1]

(vi) The cylindrical water dispenser has a height of 40 cm.

Sketch a graph showing how the depth of water varies with time as the empty water dispenser is filled up with water from Tap A.

3 Points A(-8, -1), B(1, -1) and C(4, 3) form a triangle as shown in the diagram.

(a)	Given that the points A, B, C and D are vertices of a parallelogram,	find the
	coordinates of all three possible positions of D.	

Answer (.....), (...., or (...., [3]

(b) Find the length of BC.

Answerunits [1]

(c) Find, as a fraction in its simplest form, the value of $\cos A\hat{B}C$.

(d) Calculate the area of triangle *ABC*.

Answerunit² [1]

(e) Point E(m, n) lies on AC such that AE : AC = 1 : 4.

Find the values of m and n.

 $n = \dots [2]$

4 (a) The cumulative frequency graph represents the masses of 200 eggs from Sunny Farm.

The eggs are grouped according to their masses.

 $\begin{array}{ll} \text{Grade 1} & : 62 \text{ g} < \text{mass} \leq 75 \text{ g} \\ \text{Grade 2} & : 51 \text{ g} < \text{mass} \leq 62 \text{ g} \\ \text{Grade 3} & : 40 \text{ g} < \text{mass} \leq 51 \text{ g} \end{array}$

4	(a)	Use the graph to find
		(i) the median mass,
		Answerg [1] (ii) the percentage of eggs which are in Grade 2 category,
		Answer
		Answerg [1]
	(b)	The box and whisker plot shows the masses of 200 eggs from Happy Farm.
		40 50 60 70 80 Mass (g)
		Fiego made two comparisons between the masses of eggs from Happy Farm and Sunny Farm.
		State whether you agree with Fiego's statements. Provide statistical evidence to support your answer.
		(i) Statement 1: Generally, eggs from Sunny Farm have more consistent masses than eggs from Happy Farm.
		[1]

4	(b)		nent 2: Happy Farm has a ory than Sunny Farm.	higher percentage of eggs	in Grade 1
					[1]
	(c)		yees in Happy Farm work nd Outdoors Department.	in either Administrative D	epartment
		The table sho departments.	ws the breakdown of male	es and females employees i	n the
			Administrative	Forming and Outdoors	1
		3.4.1		Farming and Outdoors	_
		Males	1 2	20	_
		Females	3	6]
		the C Com	ndomly from the 30 employ airperson of the Staff Wellst form, the probability that		
		(a)	-	ne Administrative Departme	ent,
	Answer (b) at least one of them is from the Administ			om the Administrative Dep	
		(c)	eswer nployee from Farming and er person is a female emplo Department.	Outdoors	
			An	ıswer	[2]

5 (a) Complete Row 5 of the number pattern.

Row	Number series	Number of terms	Sum of terms	Pattern
1	1	1	1	$2^{1}-1$
2	1 + 2	2	3	$2^2 - 1$
3	1 + 2 + 4	3	7	$2^3 - 1$
4	1 + 2 + 4 + 8	4	15	$2^4 - 1$
5				

[1]

(b) Find the sum of $2^0 + 2^1 + 2^2 + 2^3 + ... + 2^{10}$.

Answer[1]

(c) (i) Find, in terms of n, the value of $2^0 + 2^1 + 2^2 + 2^3 + ... + 2^n$.

Answer[1]

(ii) Hence find the sum of $1 + 3 + 7 + ... + (2^{200} - 1)$. Leave your answer in the form $2^k + h$ where k and h are integers, $1 \le k \le 500$ and $-500 \le h \le 500$.

6 A, B, and C are three points on level ground. The bearing of B from C is 052° . Angle $ABC = 134^{\circ}$, BC = 5.1 km and AB = 4.7 km.

(a) Calculate the distance between A and C.

Answer	r	km	[3]
--------	---	----	-----

(b) Find the bearing of A from B.

Answer° [2]

6 (c) A building of height 70 m stands vertically at <i>B</i> . Damien walks along <i>AC</i> and stops at a point <i>D</i> where the angle of elevathe top of the building from <i>D</i> is the greatest.					
		Find the angle of elevation of the top of the building from D .			
		<i>Answer</i> ° [4]			
	(d)	Sufi stands at a point due North of C such that he is equidistant from both points B and C .			
		Find the distance from point C to Sufi.			
		Answerkm [3]			

© BGSS 2020 [Turn over

7 The graph shows part of the speed-time graph of Selina's cycling journey.

(a)	Describe	the cycling	iourney	between t	t = 30 and	t = 70.

		[1]

(b) Find the acceleration for the first 30 seconds of Selina's journey.

Answer m/s^2 [

(c) After 90 seconds, Selina slowed to a stop with constant deceleration. She travelled a further 192 m before stopping at t = p.

Find the value of p.

7 (d) The distance-time graph shows the graph for the first 30 seconds of Selina's cycling journey.

Draw the graph from t = 30 to t = 70 of the journey. Indicate clearly on the graph the distance travelled in the first 70 seconds.

[2]

(~)	Exemples le	in tampa a	£					
(a)	Express n	in terms of	17.					
				Ans	wer h =			
(b)		the total e		face area,	$A \text{ cm}^2$, of	the cylind	rical can is	S
	given by	$A = 2\pi r^2 +$	$\frac{300\pi}{r}$.					
	Answer							
(c)		shows som					g values of	fA,
	correct to	the nearest	integer, w	where $A = 2$	$2\pi r^2 + \frac{300}{r}$	$\frac{m}{m}$.		
	r	2	3	4	5	6	7	1
		_	_					4
	A	p	580	493	471	488	532	
		p nd the valu	1	493	471	488	532	
		1 1	1				532	
	(i) Fin	nd the valu	e of <i>p</i> .	An	eswer p = .			
	(i) Fin	nd the valu	e of <i>p</i> .	An	eswer p = .			$+\frac{500r}{r}$
	(i) Fin	nd the valu	e of <i>p</i> .	An	eswer p = .			+ 5002
(d)	(i) Find the form of the form	nd the valu	e of <i>p</i> .	An e next pag	eswer $p =$ e, draw the	e graph of		$+\frac{500r}{r}$
(d)	(i) Find the form of the form	and the value of the axes g of $2 \le r \le 7$.	e of <i>p</i> .	An e next pag	eswer $p =$ e, draw the	e graph of		$+\frac{500r}{r}$
(d)	(i) Find the form of the form	and the value of the axes g of $2 \le r \le 7$.	e of <i>p</i> .	An e next pag	eswer $p =$ e, draw the	e graph of		$+\frac{500r}{r}$
(d)	(i) Find the form of the form	and the value of the axes g of $2 \le r \le 7$.	e of <i>p</i> .	An e next pag gradient of	eswer $p =$ e, draw the	e graph of $r = 6$.	$A = 2\pi r^2$	$+\frac{500r}{r}$
	(ii) Find the form of the form	and the value of the axes going $2 \le r \le 7$.	e of <i>p</i> . given on the	Ans	eswer $p =$ e, draw the factor of the curve wer	e graph of at $r = 6$.	$A = 2\pi r^2$	$+\frac{500r}{r}$
(d) (e)	(ii) Find the form of the form	In the axes go at $2 \le r \le 7$. In a tangent to the can be at the can b	e of <i>p</i> . given on the	Ans	eswer $p =$ e, draw the factor of the curve wer	e graph of at $r = 6$.	$A = 2\pi r^2$	$+\frac{500r}{r}$
	(ii) Find the form of the form	In the axes go at $2 \le r \le 7$. In a tangent to the can be at the can b	e of <i>p</i> . given on the	Ans	eswer $p =$ e, draw the factor of the curve wer	e graph of at $r = 6$.	$A = 2\pi r^2$	$+\frac{500r}{r}$
	(ii) Find the form of the form	In the axes go at $2 \le r \le 7$. In a tangent to the can be at the can b	e of <i>p</i> . given on the	Ans surface ar	e, draw the f the curve wer	e graph of $r = 6$.	$A = 2\pi r^2$	+ \frac{500a}{r}

8 (c) (ii)

9 (a) ABCDE is a uniform cross section of a warehouse model. ABCE is a rectangle. EDC is an arc of a circle with centre M. M lies on AB. AM = MB = 4 cm, BC = 6 cm and BP = 10 cm.

(i) Find angle *CME*.

Answer	°	2

(ii) Calculate the area of the cross section *ABCDE*.

Answer														,	าก	2	Γ	1	1
Answei				 •				٠	 					٠,	ш	ш	- 11	+	ı

(iii) A second geometrically similar warehouse model has a height which is half the height of the original warehouse model.

Find the volume of the second warehouse model.

9	(b)	The diagram	shows a	broken	piece	of a round	d plate
---	------------	-------------	---------	--------	-------	------------	---------

(i)	State the property	of circles you	use in finding	the centre of the plate
\ I /	Diate the broberty	or cheres you	use in imama	the centre of the blate

Answer (i) _			
, ,			
			ſ11

(ii) Find, by constructing perpendicular bisectors, the centre of the plate. Label the centre of the plate C.

Answer (ii)

(a)	Find the equation of the line AB .	
	Answer	[2
(b)	The equation of the line l is $4x + 5y = 10$.	
	(i) Explain whether the line l intersects the line AB .	
	Answer	
		[2]
	(ii) Explain whether the point $C(10, -10)$ lies on the line l .	
	Answer	

10 **(b)** (iii) Line *l* intersects the curve $y = \frac{x^3}{5} - x^2 - 2$ at point *D*.

The x-ccordinate of point D is a real solution of the equation $x^3 + px^2 + qx - 20 = 0$ where p and q are constants.

Find the values of p and q.

Answer	<i>p</i> =	• • • •	• • •	 	• • •	•••	 • •	 	 	 •	
	<i>a</i> =			 			 	 	 		[2]

BLANK PAGE

11 (a) Mr Tan has a medical condition which requires him to be on long-term prescribed medication.

On a particular day, he took a 200 mg dose of the prescribed drug at 8 o'clock in the morning. His body gradually broke down the drug so that one hour after taking the drug, only 80% of the drug would remain active.

This pattern continues: at the end of each hour, only 80% of the drug that was present at the end of the previous hour remains active.

To combat Mr Tan's illness effectively, the amount of the drug in the body should not fall below 30 mg.

There should not be more than 300 mg of the drug in the body, beyond which the drug becomes toxic.

The table shows the amount, x mg, of the drug present in Mr Tan's body t hours after taking the drug.

t (hours)	0	2	4	6	10
x (mg)	200	128	82	53	22

(i) Estimate the amount of the drug in Mr Tan's body 8 hours after he has taken it.

Answer		mg [1]
Answer	• • • • • • • • • • • • • • • • • • • •	mg [1]

(ii) Explain why the recommended dosage for the drug is 3 times a day. Show your calculations clearly.

11 (b) In Singapore, Ministry of Health provides subsidies for drugs at public specialist outpatient clinics (SOCs) and polyclinics to support Singapore citizens with healthcare costs.

The table below shows the per-capita household income (PCHI) criteria for subsidies at public SOCs and polyclinics.

(Source: https://www.moh.gov.sg/docs/librariesprovider5/default-document-library/annex-a---revision-to-pchicriteria99abfc1511b54b6f87ddadb9114092f2.pdf)

Monthly PCHI* to qualify for subsidy (Singapore	(Si	Subsidy tier** ngapore Citize					
Citizens)	Subsidised SOC	bsidised Subsidised					
	services	Soc drugs	polyclinic drugs for adults				
PCHI ≤ \$1 200	70%	75%	75%				
\$1 200 < PCHI \le \$2 000	60%	7.570	7370				
PCHI > \$2 000	50%	50%	50%				

^{*}Monthly PCHI is computed as the total gross household monthly income divided by the total number of family members living in the household.

Mr Tan, his wife and two children are Singapore Citizens. They live together in a 4-room HDB flat.

Member	Age	Gross Monthly Salary
Mr Tan	34	\$3 500
Mrs Tan	32	\$2 000
First Child	5	Nil
Second Child	3	Nil

Mr Tan's medication costs \$1.90 per dose. Every 6 months, he receives outpatient services at a public SOC. Each visit at the public SOC costs \$245.

Mr Tan decides to apply for both polyclinic drug subsidies and public SOCs service and drug subsidies.

Find, after Mr Tan is granted the subsidies, the amount he will save on the cost of drugs and outpatient treatment each year as a percentage of his annual gross salary.

^{**} Subsidy tier shows the subsidy rate the Singapore Citizen is entitled to

11 (b) Answer space

[5]