4	
1	(1)
	$2x^2 - 3x - 2 \ge 0$
	$(2x+1)(x-2) \ge 0$
	Sketch the graph:
	$-\frac{1}{2}$
	$x \ge 2 \text{ or } x \le -\frac{1}{2}$
	(ii)
	$-\frac{1}{2} < e^x < 2$
	$x < \ln 2$
2	(a)
	Let $y = \left(3x^2 - \frac{2}{\sqrt{x}}\right)^2$
	$y = 9x^4 - 12x^{\frac{3}{2}} + \frac{4}{x}$
	$\frac{\mathrm{d}y}{\mathrm{d}x} = 36x^3 - 18\sqrt{x} - \frac{4}{x^2}$
	(b)
	$\int \frac{2}{\sqrt[3]{5-4x}} dx = 2 \int (5-4x)^{-\frac{1}{3}} dx$
	$=2\frac{(5-4x)^{\frac{2}{3}}}{\frac{2}{3}(-4)} + C = -\frac{3}{4}(5-4x)^{\frac{2}{3}} + C \text{ where } C \text{ is an arbitrary constant.}$

3	$dy = 8e^{1-4x}$							
	(a)	(a) $\frac{dx}{dx} = 8e^{-x^2}$						
		When $x =$: 1, y =	$8 - 2e^{-3}$				
		$\frac{dy}{dy} = 8e^{1-x}$	4(1) - 8c	-3				
		$\frac{1}{\mathrm{d}x}$ - $\mathrm{d}\varepsilon$	- 00					
		Equation	of tang	ent at the point $x = 1$	•			
			y – ($8 - 2e^{-3} = 8e^{-3}(x - 1)$.)			
			$\mathbf{v} = \mathbf{s}$	$8e^{-3}x - 8e^{-3} + 8 - 2e^{-3}$	3			
			v = 1	$8e^{-3}x - 10e^{-3} + 8$ wh	ere $m = 8e^{-3}a$	nd $c = 8 - 10e^{-3}$		
	(b)	$A = \int_{\frac{1}{4}}^{1} 8$	$-2e^{1-4}$	^{x}dx				
		= 82	$x + \frac{1}{2}e^{1}$	$-4x \begin{bmatrix} 1\\ 1\\ \frac{1}{4} \end{bmatrix}$				
		= 8	$+\frac{1}{2}e^{-3}$	$\left] - \left[\begin{array}{c} 2 + \frac{1}{2} \end{array} \right]$				
		-5-1	_ 1					
		$-3\frac{1}{2}$	$\overline{2e^3}$					
		$n = 5\frac{1}{2}$ a	nd $a =$	1				
		p = 32 a	nu y –	2				
		4	<u> </u>	- 2				
4	(i)	$y = x^4 - 10$	$0x^{3} + 3$	$6x^2 - 54x + 17$				
		$\frac{\mathrm{d}y}{\mathrm{d}x} = 4x^3$	$-30x^{2}$	+72x-54				
		dy_{-0}						
		$\frac{dx}{dx} = 0$						
		$4x^3 - 30x$	$x^2 + 72x$	x - 54 = 0				
		Using GC	C, <i>x</i> =1.	5 or $x = 3$				
		When $x =$	1.5, y	= - 11.6875				
		When $x =$	=3, y =	- 10				
		Coordinat	tes of s	tationary points are (1.5, -11.6875	b) and $(3, -10)$		
	(ii)							
	(11)	x		1.4	1.5	1.6		
		dv		- 1.0240044	0	0.7839964		
		$\frac{1}{dx}$	-					
		Slo	ope					
		(1.5, -11	.6875)	is a minimum point.				
		x		2.9	3	3.1		
		dy	,	0.0560016	0	0.0640024		
		$\frac{1}{dx}$	-					
		Slo	ope					

ASRJC H1 Math Prelims Solutions

ASRJC H1 Math Prelims Solutions

0	(1) The customers can be numbered from 1 to 10 000.
	Using a random number generator, 1000 numbers can be generated. The customers whose
	number matches the number generated, will be asked to do the survey.
	(ii) The advantage of random sampling is that everyone has equal chance of being
	selected.
	The disadvantage of random sampling is that it is time consuming.
7	(i) Number of committees that can be formed $= {}^{7}C_{2} = 21$
	(ii) Required Probability $=\frac{{}^{7}C_{3}}{{}^{9}C_{4}} + \frac{{}^{7}C_{3}}{{}^{9}C_{4}} = \frac{70}{126} = \frac{5}{9}$
	(iii)Number of ways = $4! - 3! \times 2 = 12$
8	(3) P(T = p) = 300 - 23 = 277
	(1) $P(F \cup B') = \frac{300}{300} = \frac{300}{300}$
	23 1
	(ii) $P(B M) = \frac{25}{22+80+25} = \frac{1}{6}$
	23+60+53=0
	(iii) $P(M \cap E) = \frac{80}{200} = \frac{4}{17}$
	300 15
	(iv) Since $P(M)P(E) = \frac{138}{300} \times \frac{137}{300} = 0.210 \neq P(M \cap E)$, <i>M</i> and <i>E</i> are not independent
	events.
	(v) Probability $=\frac{63}{300} \times \frac{62}{299} \times \frac{237}{298} \times 3 = 0.10389 \approx 0.104$
9	(i)
9	(i) $P(B A') = \frac{1}{2}$
9	(i) $P(B \mid A') = \frac{1}{2}$ $P(B \supseteq A') = 1$
9	(i) $P(B A') = \frac{1}{2}$ $\frac{P(B \cap A')}{P(A A')} = \frac{1}{2}$
9	(i) $P(B A') = \frac{1}{2}$ $\frac{P(B \cap A')}{P(A')} = \frac{1}{2}$
9	(i) $P(B A') = \frac{1}{2}$ $\frac{P(B \cap A')}{P(A')} = \frac{1}{2}$ $P(B \cap A') = \frac{1}{2} \times \left(1 - \frac{1}{2}\right) = 0.25$
9	(i) $P(B A') = \frac{1}{2}$ $\frac{P(B \cap A')}{P(A')} = \frac{1}{2}$ $P(B \cap A') = \frac{1}{2} \times \left(1 - \frac{1}{2}\right) = 0.25$ $P(A \cup B) = 0.5 + 0.25 = 0.75$
9	(i) $P(B A') = \frac{1}{2}$ $\frac{P(B \cap A')}{P(A')} = \frac{1}{2}$ $P(B \cap A') = \frac{1}{2} \times \left(1 - \frac{1}{2}\right) = 0.25$ $P(A \cup B) = 0.5 + 0.25 = 0.75$ (ii)
9	(i) $P(B A') = \frac{1}{2}$ $\frac{P(B \cap A')}{P(A')} = \frac{1}{2}$ $P(B \cap A') = \frac{1}{2} \times \left(1 - \frac{1}{2}\right) = 0.25$ $P(A \cup B) = 0.5 + 0.25 = 0.75$ (ii)
9	(i) $P(B A') = \frac{1}{2}$ $\frac{P(B \cap A')}{P(A')} = \frac{1}{2}$ $P(B \cap A') = \frac{1}{2} \times \left(1 - \frac{1}{2}\right) = 0.25$ $P(A \cup B) = 0.5 + 0.25 = 0.75$ (ii) $P(A B') = \frac{4}{9}$
9	(i) $P(B A') = \frac{1}{2}$ $\frac{P(B \cap A')}{P(A')} = \frac{1}{2}$ $P(B \cap A') = \frac{1}{2} \times \left(1 - \frac{1}{2}\right) = 0.25$ $P(A \cup B) = 0.5 + 0.25 = 0.75$ (ii) $P(A B') = \frac{4}{9}$ $P(A \cap B) = 4$
9	(i) $P(B A') = \frac{1}{2}$ $\frac{P(B \cap A')}{P(A')} = \frac{1}{2}$ $P(B \cap A') = \frac{1}{2} \times \left(1 - \frac{1}{2}\right) = 0.25$ $P(A \cup B) = 0.5 + 0.25 = 0.75$ (ii) $P(A B') = \frac{4}{9}$ $\frac{P(A \cap B')}{A = P(B')} = \frac{4}{9}$
9	(i) $P(B A') = \frac{1}{2}$ $\frac{P(B \cap A')}{P(A')} = \frac{1}{2}$ $P(B \cap A') = \frac{1}{2} \times \left(1 - \frac{1}{2}\right) = 0.25$ $P(A \cup B) = 0.5 + 0.25 = 0.75$ (ii) $P(A B') = \frac{4}{9}$ $\frac{P(A \cap B')}{1 - P(B)} = \frac{4}{9}$
9	(i) $P(B A') = \frac{1}{2}$ $\frac{P(B \cap A')}{P(A')} = \frac{1}{2}$ $P(B \cap A') = \frac{1}{2} \times \left(1 - \frac{1}{2}\right) = 0.25$ $P(A \cup B) = 0.5 + 0.25 = 0.75$ (ii) $P(A B') = \frac{4}{9}$ $\frac{P(A \cap B')}{1 - P(B)} = \frac{4}{9}$
9	(i) $P(B A') = \frac{1}{2}$ $\frac{P(B \cap A')}{P(A')} = \frac{1}{2}$ $P(B \cap A') = \frac{1}{2} \times \left(1 - \frac{1}{2}\right) = 0.25$ $P(A \cup B) = 0.5 + 0.25 = 0.75$ (ii) $P(A B') = \frac{4}{9}$ $\frac{P(A \cap B')}{1 - P(B)} = \frac{4}{9}$ Let $P(A \cap B) = x$
9	(i) $P(B A') = \frac{1}{2}$ $\frac{P(B \cap A')}{P(A')} = \frac{1}{2}$ $P(B \cap A') = \frac{1}{2} \times \left(1 - \frac{1}{2}\right) = 0.25$ $P(A \cup B) = 0.5 + 0.25 = 0.75$ (ii) $P(A B') = \frac{4}{9}$ $\frac{P(A \cap B')}{1 - P(B)} = \frac{4}{9}$ Let $P(A \cap B) = x$ $\frac{0.5 - x}{1 - 1} = \frac{4}{9}$
9	(i) $P(B A') = \frac{1}{2}$ $\frac{P(B \cap A')}{P(A')} = \frac{1}{2}$ $P(B \cap A') = \frac{1}{2} \times \left(1 - \frac{1}{2}\right) = 0.25$ $P(A \cup B) = 0.5 + 0.25 = 0.75$ (ii) $P(A B') = \frac{4}{9}$ $\frac{P(A \cap B')}{1 - P(B)} = \frac{4}{9}$ Let $P(A \cap B) = x$ $\frac{0.5 - x}{1 - (0.25 + x)} = \frac{4}{9}$
9	(i) $P(B A') = \frac{1}{2}$ $\frac{P(B \cap A')}{P(A')} = \frac{1}{2}$ $P(B \cap A') = \frac{1}{2} \times \left(1 - \frac{1}{2}\right) = 0.25$ $P(A \cup B) = 0.5 + 0.25 = 0.75$ (ii) $P(A B') = \frac{4}{9}$ $\frac{P(A \cap B')}{1 - P(B)} = \frac{4}{9}$ Let $P(A \cap B) = x$ $\frac{0.5 - x}{1 - (0.25 + x)} = \frac{4}{9}$ $9(0.5 - x) = 4 - 4(0.25 + x)$
9	(i) $P(B A') = \frac{1}{2}$ $\frac{P(B \cap A')}{P(A')} = \frac{1}{2}$ $P(B \cap A') = \frac{1}{2} \times \left(1 - \frac{1}{2}\right) = 0.25$ $P(A \cup B) = 0.5 + 0.25 = 0.75$ (ii) $P(A B') = \frac{4}{9}$ $\frac{P(A \cap B')}{1 - P(B)} = \frac{4}{9}$ Let $P(A \cap B) = x$ $\frac{0.5 - x}{1 - (0.25 + x)} = \frac{4}{9}$ $9(0.5 - x) = 4 - 4(0.25 + x)$ $x = 0.3$

ASRJC H1 Math Prelims Solutions

(ii) Product Moment Correlation Coefficient, <i>r</i> -value is 0.940. There is a strong positive linear correlation between the year and the total cards billing in Singapore in the 1^{st} Ouarter. The total cards billing increases year after year.
(iii) $y = 0.676071x - 1349.898929$
y = 0.6761x - 1349.8989 (4 dec places)
(iv) $y = 0.676071(2023) - 1349.898929 = 17.79 \approx 17.8$
The total cards billing is estimated to be \$17.8 thousand million in year 2023. Although the product moment correlation coefficient <i>r</i> -value = 0.940 is close to 1, x = 2023 is outside of data range of [2015 to 2022], the linear relationship between the total cards billing and year may not hold (extrapolation). Hence the estimate is unreliable

12	(i) Let <i>X</i> be the random variable denoting "the time in minutes taken by Tom to service a
	randomly chosen car". Let Y be the random variable denoting "the time in minutes taken by Tom to service a
	randomly chosen van".
	$X \sim N(90, 5^2), Y \sim N(130, 10^2)$
	(i) $P(Y \le t) = 0.95$
	$t = 146.45 \approx 146$
	(ii)
	$Y - 2X \sim N(130 - 2 \times 90, 10^2 + 2^2 \times 5^2)$
	$Y - 2X \sim N(-50, 200)$
	$P(-60 \le Y - 2X \le 60) = 0.76025 \approx 0.760$
	Let <i>V</i> be the random variable denoting "the time in minutes taken by Tom to take a
	break".
	$V \sim N(5.5, 1.4^2)$
	(111) $W = W = W = W(2 - 22 - 122) = 2 - 5 - 5 - 2 - 5^2 - 12^2 = 2 - 1 - 4^2)$
	$X_1 + X_2 + Y + V_1 + V_2 \sim N(2 \times 90 + 130 + 2 \times 5.5, 2 \times 5^2 + 10^2 + 2 \times 1.4^2)$
	$X_1 + X_2 + Y + V_1 + V_2 \sim N(321,153.92)$
	$P(X_1 + X_2 + Y + V_1 + V_2 < 5 \times 60) = 0.045259 \approx 0.0453$

(iv)
Let
$$C = \frac{50}{60} (X_1 + X_2) + \frac{90}{60} (Y)$$

 $C \sim N \left(\frac{5}{6} \times 2 \times 90 + \left(\frac{9}{6} \right) \times 130, \left(\frac{5}{6} \right)^2 \times 2 \times 5^2 + \left(\frac{9}{6} \right)^2 \times 10^2 \right)$
 $C \sim N(345, 259.722)$
 $P(C > 350) = 0.37818 \approx 0.378$

13	(i) Unbiased estimate of population mean $=\frac{303.4}{64}=4.740625$ (exact)
	04 Unbiased estimate of population variance
	$1\left(161506 303.4^{2}\right)$
	$=\frac{1615.96-1615.96}{64}$
	= 2.8199 (to 5sf)
	= 2.82 (to 3sf $)$
	(ii) Let X be the random variable denoting "the crop weight per plant" and μ be "the
	population mean crop weight per plant"
	To test $H_0: \mu = 5$
	against H ₁ : $\mu < 5$ (horticulturist's claim)
	(111) 2 8199
	Under H ₀ , $X \sim N(5, \frac{2.0177}{64})$ approximately by Central Limit Theorem since $n = 64$ is
	large,
	Using GC, the test statistics $\overline{x} = 4.740625$ gives $z_{calc} = -1.2357$ and <i>p</i> -value =
	0.10829 = 0.108(to 3 sig fig)
	Since <i>p</i> -value = $0.108 > 0.1$, we do not reject H ₀ and there is insufficient evidence
	to conclude that the mean crop weight per plant is less than 5kg at 10% level of significance. The horticulturist's claim is not supported by the data
	significance. The northeunturist's chann is not supported by the data.
	(iv) Reject H_0 when p-value < level of significance
	$\frac{\alpha}{100} > 0.10829$
	$\alpha > 10.8\%$
	(v) Level of significance is the probability of concluding the mean crop weight per plant
	is less than 5 kg when in fact it is not.
	To test H_0 : $\mu = 5$
	$H_1: \mu \neq 5$
	Two tail-tailed test at 1% level of significance
	Under H ₀ , $\overline{Y} \sim N(5, \frac{1.5^2}{20})$
	H_0 is not rejected \overline{y} lies outside the critical region.
	\frown
	4.14 < m < 5.86
	(vi) The crop weight per plant in region <i>B</i> follows a normal distribution.