

JC1 H2 Mathematics (9758) Term 4 Revision Topical Quick Check Chapter 7 Differentiation Chapter 8 Applications of Differentiation

SAJC Promo 9758/2022/Q3b / JPJC Promo 9758/2022/Q2aiii Differentiate the following with respect to *x*.

(i)
$$\ln\left(\frac{2x}{\sqrt{x^2+1}}\right)$$
 [2]

(ii)
$$\sec 3x \sin^{-1} 2x$$

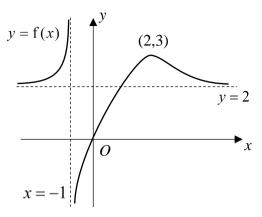
[3]

Solutions
(i)
$$\ln\left(\frac{2x}{\sqrt{x^2+1}}\right) = \ln 2 + \ln x - \ln \sqrt{x^2+1}$$

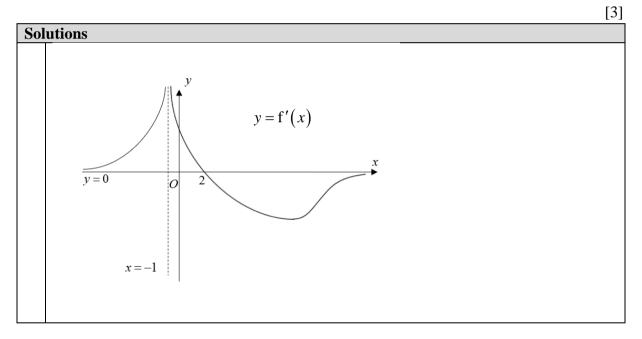
 $= \ln 2 + \ln x - \frac{1}{2}\ln(x^2+1)$
 $\frac{d}{dx}\left(\ln\left(\frac{2x}{\sqrt{x^2+1}}\right)\right) = \frac{d}{dx}\left(\ln 2 + \ln x - \frac{1}{2}\ln(x^2+1)\right)$
 $= \frac{1}{x} - \frac{1}{2(x^2+1)}(2x)$
 $= \frac{1}{x} - \frac{x}{x^2+1}$
(ii) $\frac{d}{dx} \sec 3x \sin^{-1} 2x$
 $= \sec 3x \frac{1}{\sqrt{1-(2x)^2}} 2 + \sin^{-1} 2x(3\sec 3x \tan 3x)$
 $= \sec 3x \left(\frac{2}{\sqrt{1-4x^2}} + 3\tan 3x \sin^{-1} 2x\right)$

2 DHS Promo 9758/2022/Q1b

The graph of y = f(x) has a maximum turning point at (2,3) and passes through the origin. The lines x = -1 and y = 2 are asymptotes to the graph, as shown in the diagram below.



Sketch the graph of y = f'(x), showing clearly the axial intercepts and the asymptotes.



Revision Guide Page 3

Tangents and NormalsThe equation of the tangent and normal at any point (x_0, y_0) on a curve y = f(x) is given by: $\boxed{\text{Tangent}}$ $y - y_0 = m(x - x_0)$ where $m = \frac{dy}{dx}$ is the gradient of tangent at the point (x_0, y_0) Normal $y - y_0 = -\frac{1}{m}(x - x_0)$ where $m = \frac{dy}{dx}$ is the gradient of tangent at the point (x_0, y_0) Note:•Tangent parallel to x-axis $\Rightarrow \frac{dy}{dx} = 0$ •Tangent parallel to y-axis $\Rightarrow \frac{dy}{dx}$ is undefined, i.e. DENOMINATOR of $\frac{dy}{dx}$ is ZERO.

Let's Try Now.

3 MI PU2 P1 Promo 9758/2022/Q7

A curve C has parametric equations

$$x = \cos 2\theta, \quad y = \sin \theta, \quad \text{for } 0 \le \theta \le \frac{1}{2}\pi.$$

(i) Show that $\frac{dy}{dx} = -\frac{1}{4\sin\theta}.$ [3]

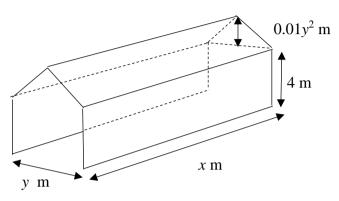
- (ii) Sketch *C*, showing clearly the features of the curve at the points where $\theta = 0$ and $\theta = \frac{1}{2}\pi$. [2]
- (iii) The tangent to the curve *C* at the point where $\theta = p$ is parallel to the line 2y + x = 0. Find the equation of this tangent. [4]
- (iv) The tangent from part (iii) meets the *x*-axis at *P* and the *y*-axis at *Q*. Find the area of the triangle *OPQ*.

Solu	olutions	
(i)	$x = \cos 2\theta \qquad \qquad y = \sin \theta$	
	$\frac{dx}{dx} = -2\sin 2\theta$ $\frac{dy}{dy} = \cos \theta$	
	$\frac{\mathrm{d}x}{\mathrm{d}\theta} = -2\sin 2\theta \qquad \qquad \frac{\mathrm{d}y}{\mathrm{d}\theta} = \cos\theta$	
	dy	
	$dy = \overline{d\theta}$	
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\frac{\mathrm{d}y}{\mathrm{d}\theta}}{\frac{\mathrm{d}x}{\mathrm{d}\theta}}$	
	$\mathrm{d} heta$	
	$\cos \theta$	
	$-2\sin 2\theta$	
	$-\cos\theta$	
	$-\frac{1}{-4\sin\theta\cos\theta}$	
	1	
	$-\frac{-}{4\sin\theta}$	
(ii)		
	$(-1,1)$ $y \uparrow$	
	$\theta = \frac{1}{2}\pi \qquad \qquad \theta = 0$	
	O (10) x	
	O $(1,0)$ x	
(iii)	ii) 1	
(111)		
	dy = 1	
	Tangent parallel to $2y + x = 0$ means $\frac{dy}{dx} = -\frac{1}{2}$ when $\theta = p$.	
	1 1	
	$-\frac{1}{4\sin p} = -\frac{1}{2}$	
	$\sin p = \frac{1}{2}$	
	π	
	$\therefore p = \frac{\pi}{6}$	
	When $p = \frac{\pi}{6}$, $x = \cos \frac{\pi}{3} = \frac{1}{2}$, $y = \sin \frac{\pi}{6} = \frac{1}{2}$	
	Equation of tangent:	
	$y - \frac{1}{2} = -\frac{1}{2}\left(x - \frac{1}{2}\right)$	
	$y = -\frac{1}{2}x + \frac{3}{4}$	

(iv)	When $x = 0, y = \frac{3}{4}$
	When $y = 0$, $\frac{1}{2}x = \frac{3}{4} \Longrightarrow x = \frac{3}{2}$
	$\therefore P\left(\frac{3}{2},0\right) \text{ and } Q\left(0,\frac{3}{4}\right)$
	Area of Triangle $OPQ = \frac{1}{2} \times \frac{3}{4} \times \frac{3}{2}$
	$=\frac{9}{16}$

4 RVHS Promo 9758/2022/Q11(i)-(iii)

To ease food security concerns, the government is building tents at the community garden plots to allow urban farming to take place more efficiently among residents. The organizing committee is building a tent consisting of two rectangular pieces on the roof and two rectangular vertical sides as shown in the diagram below. The base of the tent has sides *x* m by *y* m, and covers a total floor area of 40 m². The vertical sides of the tent are 4 m tall, and the roof adds another $0.01y^2$ m to the overall height of the tent.

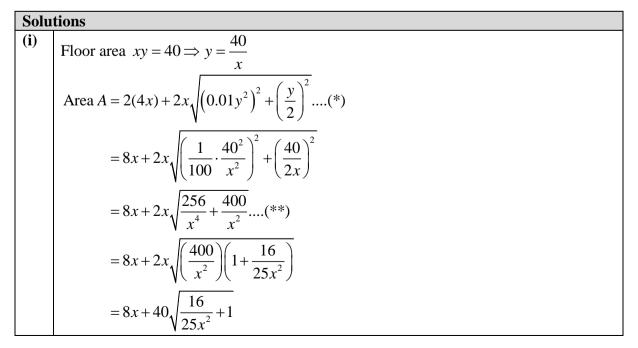


(Diagram not drawn to scale)

(i) The total external surface area of the tent is denoted by $A m^2$. Show that A is given by

$$A = 8x + 40\sqrt{\frac{16}{25x^2} + 1} \quad . \tag{3}$$

- (ii) Suppose that *A* has a stationary value at some *x*, show that *x* satisfies the equation $25x^6 + 16x^4 - 256 = 0.$ [3]
- (iii) The design team decides that the material for the tent costs \$3.10 per m², estimate the minimum total cost of the material for the whole tent. [3]



Term 4 Revision Topical	Quick Check: I	Differentiation an	ed its Applications
-------------------------	----------------	--------------------	---------------------

(ii)	$A = 8x + 40\sqrt{\frac{16}{25x^2} + 1}$
	$\frac{dA}{dx} = 8 + 40 \left(\frac{1}{2}\right) \left(\frac{16}{25x^2} + 1\right)^{-1/2} \left(-\frac{32}{25x^3}\right)$
	dA = 128
	$\frac{d1}{d} = 8 - \frac{120}{\sqrt{16}}$
	$\frac{dA}{dx} = 8 - \frac{128}{5x^3\sqrt{\frac{16}{25x^2} + 1}}$
	Let $\frac{dA}{dx} = 0$
	$8 - \frac{120}{16} = 0$
	$8 - \frac{128}{5x^3\sqrt{\frac{16}{25x^2} + 1}} = 0$
	$\sqrt{\frac{16}{25x^2} + 1} = \frac{16}{5x^3}$
	1
	$\frac{16}{25r^2} + 1 = \frac{256}{25r^6}$
	$25x^{6} + 16x^{4} - 256 = 0 $ (Shown)
(:::)	
(iii)	Solving $25x^6 + 16x^4 - 256 = 0$ using GC
	Rejecting all negative and complex roots.
	x = 1.4063
	-2 .
	Using GC, $\frac{d^2 A}{dx^2} = 15.67 > 0$ when $x = 1.4063$
	Hence A is minimum when $x = 1.4063$
	Minimum Cost = $(3.10) \times \left[8(1.4063) + 40\sqrt{\frac{16}{25(1.4063)^2} + 1} \right]$
	= \$177.53

Revision Guide Page 3

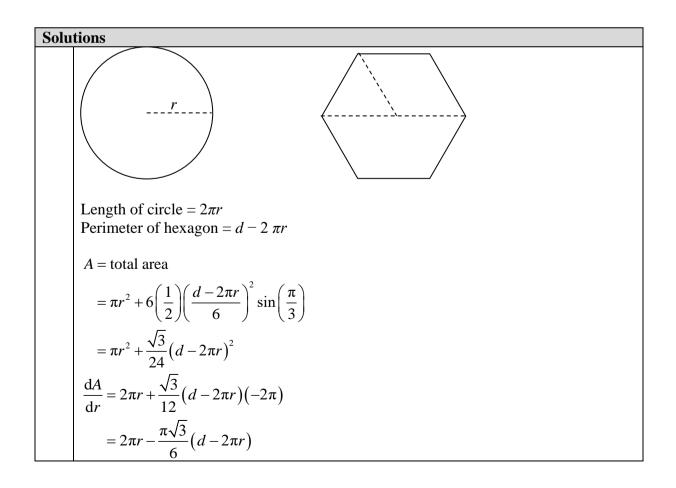
<u> Maxima / Minima</u>

- 1. Draw a clear diagram with all the given information included.
- 2. Denote each changing quantity (weight, volume, radius, length etc.) by a variable.
- 3. Construct the equation(s) relating the variables.
- 4. Express quantity to be maximised/minimised in terms of a single variable, say *x* (if there are 2 variables, express 1 in terms of another).
- 5. Using differentiation, find the **stationary point**(**s**).
- 6. Use 1st or 2nd derivative test to determine/prove nature of the stationary point.

Let's Try Now.

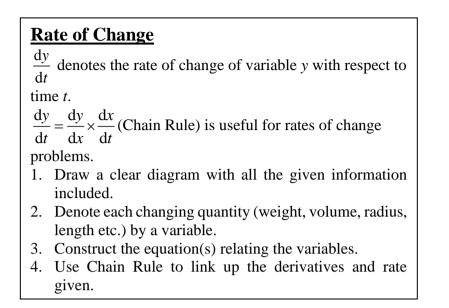
5 MJC Prelim 9740/2008/P1/Q13

A piece of wire of length d units is cut into two pieces. One piece is bent to form a circle of radius r units, and the other piece is bent to form a regular hexagon. Prove that, as r varies, the sum of the areas enclosed by the two shapes is a minimum when the radius of the circle is approximately 0.076d units. [7]



	nary point, $\frac{\mathrm{d}A}{\mathrm{d}r} = 0$			
$\Rightarrow 2\pi r -$	$\frac{\pi\sqrt{3}}{6}(d-2\pi r)=0$			
	$\left(\frac{\pi\sqrt{3}}{3}\right) = \frac{d\sqrt{3}}{6}$			
\Rightarrow r = $\frac{1}{2($	$\frac{\sqrt{3}d}{\left(6+\pi\sqrt{3}\right)}$			
$\frac{\mathrm{d}^2 A}{\mathrm{d}r^2} = 2t$	$\frac{d^2 A}{dr^2} = 2\pi + \frac{\pi^2 \sqrt{3}}{3} > 0$			
Alternat	lternative method (First Derivative)			
r	$\left(\frac{\sqrt{3}d}{2\left(6+\pi\sqrt{3}\right)}\right)^{-}$	$\left(\frac{\sqrt{3}d}{2\left(6+\pi\sqrt{3}\right)}\right)$	$\left(\frac{\sqrt{3}d}{2\left(6+\pi\sqrt{3}\right)}\right)^{-}$	
$\frac{\mathrm{d}A}{\mathrm{d}r}$	_	0	+	
Slope				
	Thus, the sum of the areas enclosed by the two shapes is a minimum when the radius of the circle is approximately $0.076d$ units.			num when the radius of

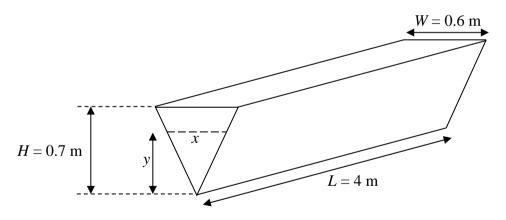
Revision Guide Page 3



Let's Try Now.

6 JPJC Promo 9758/2022/Q5

The diagram shows a V-shaped tank with dimensions L = 4 m, W = 0.6 m and H = 0.7 m. The tank is initially empty. Water is pumped into the tank at a rate of 0.0025 m³/s. At any instant from the start of water flowing into the tank, the water in the tank has a depth of *y* m and a surface width of *x* m.



- (i) Find the rate of change of the water depth when y = 0.4 m, leaving your answer to 4 decimal places. [4]
- (ii) Find, to the nearest second, the time taken to completely fill up the tank from the instant when y = 0.4 m. [2]

Solu	Solutions		
(i)	Using similar triangles,		
	$\frac{x}{y} = \frac{0.6}{0.7}$ 0.6		
	$\frac{1}{y} = \frac{1}{0.7} \qquad \qquad$		
	$\therefore x = \frac{6}{7}y$		
	$\begin{bmatrix} 7 \\ Let the volume of water in the tank be V. \end{bmatrix} \begin{bmatrix} 0.7 \\ y \end{bmatrix} \begin{bmatrix} x \\ x \end{bmatrix}$		
	$V = \frac{1}{2}xy(4) = 2y\left(\frac{6}{7}y\right) = \frac{12}{7}y^{2}$		
	dV = 24		
	$\frac{\mathrm{d}V}{\mathrm{d}y} = \frac{24}{7} y$		
	Since $\frac{\mathrm{d}V}{\mathrm{d}t} = \left(\frac{\mathrm{d}V}{\mathrm{d}y}\right) \left(\frac{\mathrm{d}y}{\mathrm{d}t}\right)$,		
	$\therefore 0.0025 = \frac{24}{7} (0.4) \left(\frac{\mathrm{d}y}{\mathrm{d}t}\right)$		
	$\frac{dy}{dt} = 0.0018 \text{ m/s} (4 \text{ d.p})$		
(ii)	Time taken = $\left[\frac{1}{2}(0.6)(0.7)(4) - \frac{12}{7}(0.4)^2\right] \div 0.0025 \approx 226$ (nearest second)		
	Or		
	Time taken = $\left[\frac{12}{7}(0.7)^2 - \frac{12}{7}(0.4)^2\right] \div 0.0025 \approx 226 \text{ (nearest second)}$		

Answer Key

No.	Year	JC	Answers
1	2022	SAJC	(i) $\frac{1}{x} - \frac{x}{x^2 + 1}$ (ii) $\sec 3x \left(\frac{2}{\sqrt{1 - 4x^2}} + 3\tan 3x \sin^{-1} 2x\right)$
2	2022	DHS	
3	2022	MI	(iii) $y = -\frac{1}{2}x + \frac{3}{4}$ (iv) $\frac{9}{16}$
4	2022	RVHS	(iii) \$177.53
6	2022	JPJC	(i) $\frac{dy}{dt} = 0.0018 \text{ m/s} (4 \text{ d.p})$ (ii) 226 seconds