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Mathematical Formulae 

 

1.  ALGEBRA 

 

Quadratic Equation 

 

 For the equation 02 =++ cbxax  
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2.  TRIGONOMETRY 

 

Identities 

1cossin 22 =+ AA  

AA 22 tan1sec +=  
2 2cosec 1 cotA A= +  

BABABA sincoscossin)sin( =  

BABABA sinsincoscos)cos( =  

BA

BA
BA

tantan1

tantan
)tan(




=  

AAA cossin22sin =  

AAAAA 2222 sin211cos2sincos2cos −=−=−=  

A

A
A

2tan1

tan2
2tan

−
=  

 

Formulae for ABC 

C

c

B

b

A

a

sinsinsin
==  

Abccba cos2222 −+=  

Abcsin
2

1
=  

 

 

 

 

 

 

 

 

 

 



3 

 

[Turn over 

 

 

1. (a)      Solve the simultaneous equations  

 2 4 0x y− + =  [3] 

 2 2 2 4x y x+ = +   

  

2 4x y= −              (1) 
2 2 2 4x y x+ = +     (2) 

 

Sub (1) into (2), 
2 2

2 2

2

2

2

(2 4) 2 4

4 16 16 4 8 4

5 20 20 0

4 4 0

( 2) 0

2

y y x

y y y y

y y

y y

y

y

− + = +

− + + = − +

− + =

− + =

− =

=

 

 

Sub y = 2 into (1), 
2(2) 4

0

x

x

= −

=
 

 
0, 2x y = =  

 

 

 

 

 

 

 

 

 (b) Explain the geometrical meaning of your answer in (a). [1] 

  

The line 2 4 0x y− + =  is a tangent to the circle at (0, 2). 
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2. (a) Express 23 8 2y x x= − − in the form 2( )y a x b c= + +  and hence state the 

maximum value of y. 

[3] 

   
2

2

2 2

2

2

2 8 3

2( 4 ) 3

2[( 2) 2 ] 3

2( 2) 8 3

2( 2) 11

y x x

y x x

y x

y x

y x

= − − +

= − + +

= − + − +

= − + + +

= − + +

 

 

Maximum value of y = 11 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 (b) Show that there are no values of p for which the curve 

( ) ( )23 2 1y p x px p= − + + +  is always positive.      

[3] 

  

 

 

 

 

 

 

 

 

Always positive,  

3 0p −   and 2 4 0b ac−   

 

3p   and 2(2 ) 4( 3)( 1) 0p p p− − +   

                  

2 2

2 2

4 4( 2 3) 0

4 4 8 12 0

8 12 0

3

2

p p p

p p p

p

p

− − − 

− + + 

+ 

 −

 

For the curve y to be always positive, 3p  and 

3

2
p  − . 

There are no values of p for which y is always 

positive. 
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 (c) A quadratic equation is given by hx2 – 2kx + 6k – 9h = 0, where h and k are 

constants and h ≠ 0. 

 

 

  (i)  Show that the equation has real roots for all values of h and k. [3] 

   

 
2

2

2 2

2 2

2

4

( 2 ) 4( )(6 9 )

4 24 36

4( 6 9 )

4( 3 ) 0

b ac

k h k h

k hk h

k hk h

k h

−

= − − −

= − +

= − +

= − 

 

for all values of h and k. 

 

Therefore, the roots are real (shown). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  (ii)  In the case where the equation has two real and equal roots,  

       express h in terms of k. 

[2] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
2

2

2

4 0

4( 3 ) 0

( 3 ) 0

3

3

b ac

k h

k h

k h

k
h

− =

− =

− =

=

=
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3. 
Given that cos A

2

11
=  where 180 360A  , find, without the use of a 

 calculator, the value of 

 

 (a) tan A ,  [2] 
  

A lies in the 4th quadrant. 
2 2 2( ) ( 11) ( 2)

3 3 ( )

opp

opp or rej

= −

= −
 

 

3 3 2
tan

22
A or= − −  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 (b) ( )sin 90A−   ,  [2] 

  

sin( 90 )

sin cos90 cos sin 90

sin (0) cos (1)

cos

2

11

A

A A

A A

A

− 

=  − 

= −

= −

= −

 

 

OR 

 

sin( 90 )

sin[ (90 )]

sin(90 )

cos

2

11

A

A

A

A

− 

= −  −

= −  −

= −

= −

 

 

 

 

 

 

 

 

 

 

  

A 

  
-3 
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(c) 1

sec2A
. [2] 

    
    

 1

sec2A
 

2

2

cos2

2cos 1

2
2 1

11

4
1

11

7

11

A

A

=

= −

 
= − 

 

= −

= −

 

 

 

 

 

 

 

 

 

 

   

4. (a) Factorise 
3

327
8

y
x −  completely. [2] 

  
3

327
8

y
x −  

3

3

2
2

(3 )
2

3
3 9

2 2 4

y
x

y xy y
x x

 
= −  

 

  
= − + +  
  

 

 

OR 

 

 
3

327
8

y
x −  

( )

( )( )

3 3

3 3

2 2

1
216

8

1
(6 )

8

1
6 36 6

8

x y

x y

x y x xy y

= −

 = − 

= − + +
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 (b) 
Express 

3 2

2

8 7 4 3

(2 )(2 1)

x x x

x x x

− + −

− −
 in partial fractions. [6] 

   
2 2(2 )(2 1) (2 1)x x x x x− − = −  

3 2 3 2

2

4 4 8 7 4 3x x x x x x− + − + −  

                    
3 2(8 8 2 )x x x− − +    

                        
2 2 3x x+ −  

                         
3 2 2

2 2

8 7 4 3 2 3
2

(2 )(2 1) (2 1)

x x x x x

x x x x x

− + − + −
= +

− − −
 

 
2

2 2

2 3

(2 1) 2 1 (2 1)

x x A B C

x x x x x

+ −
= + +

− − −
 

 
2 22 3 (2 1) (2 1)x x A x Bx x Cx+ − = − + − +  

 

When 
1

2
x = ,        

1 1
1 3

4 2
c+ − =  

                           

7 1

4 2

7

2

C

C

− =

= −

 

 

When 0x = ,        3A = −  

 

When 1x = ,                         

7
1 2 3 3

2

13
0

2

13

2

B

B

B

+ − = − + −

= − +

=

 

 

2

3 13 7
2

2(2 1) 2(2 1)x x x
− + −

− −
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5. A curve is such that  
2d 2

d 3

y x ax

x

−
= , where a is a constant.   

 (a) Given that the curve has a turning point at ( )3,7 , show that the value of 

a is 
2

3
. 

[1] 

  

 

 

At turning point, 
d

0
d

y

x
=  

22
0

3

x ax−
=  

22 0x ax− =  

 

When x = 3, 
22(3) (3) 0

6 9

a

a

− =

=
 

2

3
a =    (shown) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

 (b) Find the range of values of x for which y decreases as x increases. [3] 

   

y decreases as x increases, 
d

0
d

y

x
  

22
2

3 0
3

x x−

  

 

22
2 0

3
x x−   

 
26 2 0x x−   

 
2 (3 ) 0x x−   

 

 

 

 

 

 
0 3x or x   

 

 

 

 

 

 

 

 

 

0 3 
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 (c) Find the equation of the curve. [4] 

  

22
2

3

3

x x

y dx

−

=   

 

2

2 3

2 3

1 2
2

3 3

1 2 2

3 2 3(3)

2

3 27

y x x dx

x x
y c

x x
y c

 
= − 

 

 
= − + 

  

= − +



 

 

When x = 3, y = 7,  
2 33 2(3)

7
3 27

7 3 2

6

c

c

c

= − +

= − +

=

 

 
2 32

6
3 27

x x
y = − +  
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6.  (a) Prove the identity (cot x − cosecx) 2 1 cos

1 cos

x

x

−
=

+
. [4] 

 

 
  

 LHS  

(cot x= − cosecx)2  
2

cos 1

sin

x

x

− 
=  
 

 

2

2

(cos 1)

sin

x

x

−
=  

2

2

2

[ (1 cos )]

(1 cos )

(1 cos )

(1 cos )(1 cos )

x

x

x

x x

− −
=

−

−
=

+ −

 

1 cos

1 cos

x

x

−
=

+
 (proven) 

 

 

 

 (b) Hence, solve the equation 2(cot x − cosecx 2) 3cos x=  for 0 2x   . [3] 

  

2

2

1

1 cos
2 3cos

1 cos

2 2cos 3cos 3cos

3cos 5cos 2 0

(3cos 1)(cos 2) 0

1
cos cos 2( )

3

,

1
cos

3

1.230959

1.23 2 1.230959

1.23 5.05 (3 . .)

x
x

x

x x x

x x

x x

x or x no solution

basic angle

x or

x or s f





−

− 
= 

+ 

− = +

+ − =

− + =

= = −

 
=  

 

=

= −

=

 

 

 

 

   

 (c) State the number of solutions of the equation 

2(cot 2x − cosec2x 2) 3cos 2x= in the range 2 2 2x −   . 
[1] 

   

 Angle changes from x to 2x. 
2 1.23 2 1.230959 1.23 (2 1.230959)

2 1.23 5.05 1.23 5.05

0.615 2.52 1.23 2.52 (3 . .)

x or or or

x or or or

x or or or s f

 = − − − −

= − −

= − −

 

There are 4 solutions to the equation. 
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7 (a) The graph of logay x=  passes through the points with coordinates (125, 3) and 

(1, b). 
 

  (i)    Determine the values of a and b. [2] 

   

Sub 125, 3x y= =  

3

3 log 125

125

5

a

a

a

=

=

=

 

Sub 1,x y b= =  

5

0

log 1

5 1

5 5

0

b

b

b

b

=

=

=

=

 

 

 

 

 

 

 
 

  (ii)   Sketch the graph of 1log
a

y x−=  indicating clearly any intercept on the 

axes. 

[2] 

   

 

 

 
 

(b) Find the values of a and b such that 
8

lg 4lg lg( )y a by
y

 
+ = 

 
. 

 

[4] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

( )

( )

4

4

3

3

8
lg lg lg( )

8
lg lg( )

lg 8 lg( )

lg 2 lg( )

3, 2

a

a

a

a

y by
y

y by
y

y by

y by

a b

 
+ = 

 

 
 = 

 

=

=

 = =

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x 

 

y 

 

O 

 
1 
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8 Solutions to this question by accurate drawing will not be accepted. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In the diagram which is not drawn to scale, P, Q and R are points on the circle. 

   

 

 (a) Show that PR is the diameter of the circle and hence find the centre of the 

circle. 
[5] 

  

Gradient of PQ 

12 10

14 0

1

7

−
=
− −

= −

 

 

Gradient of QR 
4 10

2 0

7

− −
=
− −

=

 

 

Since gradient of PQ x gradient of QR 1= − , 

 

line PQ is perpendicular to line QR. 

 

Angle PQR is 90  (angle in a semicircle). 

 

PR is the diameter of the circle. (shown) 

 

Centre = 
14 2 12 4

,
2 2

− − − 
 
 

 

           = ( 8, 4)−  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R(–2 ,−4) 

y 

x 

Q (0, 10) 

P (–14, 12)  

O

y 
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 (b) Find the equation of the circle that passes through the points P, Q and R. [2] 

   

Radius 
2 2( 8 2) (4 4)

100

10units

= − + + +

=

=

 

 

Equation of circle: 
2 2( 8) ( 4) 100x y+ + − =  

 

 

 

 

 

 

 

 

 

 

 (c) Determine whether the point ( 14, 2)S − − lies inside or outside the circle. 

 

[2] 

   

 

 

 

 

 

 

Centre ( 8, 4)−  

 

Distance of S from centre 
2 2( 8 14) (4 2)

72

8.4852 10

= − + + +

=

= 

 

 

Since the distance of point S from centre 

C is less than the radius, S lies inside the 

circle. 

 

 

 

 

[M1] FT their centre to point S 

 

 

 

 

 

[A1] no FT 

 

 

  

   

9 The diagram shows part of the curve 5ln( 2)y x= − . 

 

 
 

 

 
(a) Find the exact value of  

5

0
x dy. [3] 

   

( )5ln 2y x= −  

( )

5

5

ln 2
5

2

2

y

y

y
x

e x

x e

= −

= −

= +

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

x 

 

y 

 

O 

 

3 

 

 

e + 2 

 

5 
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5
5

0
( 2)

y

e + dy 

5

5

0

5 2

(5 10) 5

5 5

y

e y

e

e

 
= + 
 

= + −

= +

 

 

 

 

 

 

 

 

 

   

 
 

(b) On the diagram above, shade the region whose area is 
5

0
x dy, showing your 

upper limit clearly. 
[1] 

  

 

Must see 5, correct shading and horizontal line on the above diagram.  

 

Need not see e + 2 

 

 

 

 

 

 
(c) Hence find 

2

3
5ln( 2)

e

x
+

− dx. [3] 

  

When 2x e= + , 

 

5

5

2 2

1
5

5

y

y

e e

e e

y

y

+ = +

=

=

=

 

 
2

3
5ln( 2)

e

x
+

− dx 

= rectangle (5 5)e− +  

5( 2) (5 5)

5 10 5 5

5

e e

e e

= + − +

= + − −

=
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4 

 

Water is being added at a constant rate of 4 cm3/s to an inverted right cone.  

The height of the cone is twice the radius of the cone. 

[The volume of a cone is 
21

3
r h .] 

 
 (a) Show that the height of the water level in the cone is 6 cm when the volume 

of water in the cone is 18 cm3. 

[2] 

  

2

2

3

3

2

2

1
18

3

1
18

3 2

18
12

216

h r

h
r

r h

h
h

h

h

 

=

=

=

 
= 

 

=

=

 

6h cm=  (shown) 

 

 

 

 

 

 

 

OR 

 

2

3

3

1
(2 ) 18

3

2
18

3

27

3

3(20

6

r r

r

r

r

h

h

 

 

=

=

=

=

=

=

 

 

 

 

 (b) Calculate the rate of change of height of the water level when the volume of 

water is 18 cm3. Leave your answer in its exact form. 

[3] 

  
2

3

2

2

2

2

2

1

3 2

12

(3)
12

4

4
4

4
4

16

(6)

4
/

9

h
V h

V h

dV

dh

h

h

dV dV dh

dt dh dt

dh
h

dt

dh h

dt

dh

dt

dh
cm s

dt

















 
=  

 

=

=

=

= 

= 

= 

=

=
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(a) Given that ( 5) 2 5y x x= + − , show that 
x

y

d

d
 can be written in the form 

2 5

kx

x −
, where k is a constant. 

[2] 

   

1 1

2 2

1 1

2 2

1

2

1
( 5) (2 5) (2) (2 5)

2

( 5)(2 5) (2 5)

(2 5) ( 5 2 5)

3

2 5

dy

dx

x x x

x x x

x x x

x

x

−

−

−

 
= + − + − 

 

= + − + −

= − + + −

=
−

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
(b) Hence, find 

4
 d

2 5

x
x

x

−

−
 . [4] 

    

4
 d

2 5

x
x

x

−

−
  

1

2

1

2

1
4

2 5 2 5

1 3
4 (2 5)

3 2 5

1 4(2 5)
( 5) 2 5

13
(2)

2

1
( 5) 2 5 4 2 5

3

x
dx dx

x x

x
dx x dx

x

x
x x c

x x x c

−

= −
− −

= − −
−

−
= + − − +

= + − − − +
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12 Solutions to this question by accurate drawing will not be accepted. 

 

 

 

 

 

 

 

The diagram (not drawn to scale) shows a quadrilateral ABCD such that AB = BC and 

angle 90BCD =  . Point A is ( )2,6−  and point C is ( )3, 6 . Given that the area of 

triangle ABC is 7.5 square units and point D lies on the line 2 0y x+ + = , 

 

 

 
(a) show that the coordinates of B is 

1
,9

2

 
 
 

. [2] 

  

Given that AB = BC, triangle ABC is an isosceles 

triangle. 

 

 

2 3

2

1

2

B

B

x

x

− +
=

=

 

 

Area of triangle ABC = 7.5 

1
(5)( ) 7.5

2

3

h

h

=

=

 

 

6 3

9

B

B

y

y

= +

=
 

1
,9

2
B
 
 
 

   (shown) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A(−2, 6) C(3, 6) 

B 

y 

x 
D 

O 
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 (b) Find the coordinates of D. [4] 

  

Gradient of BC 

9 6

1
3

2

6

5

−
=

−

= −

 

 

Gradient of CD 

6
1

5

5

6

 
= −  − 

 

=

 

 

Equation of CD: 

5
6 ( 3)

6

5 15
6

6 6

y x

y x

− = −

= − +

 

5 7

6 2
y x= +       (1) 

 

2 0y x+ + =      (2) 

 

Sub (1) into (2), 

5 7
2 0

6 2

11 11

6 2

3

5 7
( 3)

6 2

1

( 3,1)

x x

x

x

y

y

D

+ + + =

= −

= −

= − +

=

−
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 (c) Find the area of ABCD. [2] 

   

Area of ABCD 

 

2

1
3 2 3 31

2
2

6 9 6 1 6

1
(27 3 2 18) (3 18 18 3)

2

1
(40)

2

20units

− −
=

= + − − − − − +

=

=

 

 

 

 

 

 

 

 

 

 

  

 (d) If ABCT is a parallelogram, find the coordinates of T. [2] 

  Midpoint of AC = midpoint of BD 

1
2 3 6 6 92, ,
2 2 2 2

1 1 9
,6 ,

2 4 2 2

x
y

x y

 
+ − + + + 

=   
   

 

+   
= +   

   

 

 

1 1

4 2 2

1 2 2

2 1

1

2

x

x

x

x

+ =

+ =

=

=

           

9
6

2

9 12

3

y

y

y

+
=

+ =

=

 

 

1
,3

2
T
 
 
 

 

 

 

 

 

 

 

 

 

 

    

   

 

 

-End of paper- 


