

ANDERSON JUNIOR COLLEGE

2017 JC 1 PROMOTIONAL EXAMINATION

NAME:	<u> </u>	PDG:/17
CHEMISTRY	•	9729/02
Higher 2		29 September 2017
Paper 2		2 hours
Candidates answer Se	ction A on the Question Paper.	
Additional Materials:	Answer Paper	
	Graph Paper	
	Data Booklet	

READ THESE INSTRUCTIONS FIRST

Write your name, PDG and register number on all the work you hand in. Write in dark blue or black pen. You may use a pencil for any diagrams or graphs. Do not use staples, paper clips, glue or correction fluid.

Section A

Answer all questions in the spaces provided on the Question Paper.

Section B

Answer one question.

The use of an approved scientific calculator is expected, where appropriate. A Data Booklet is provided.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

		For Examiner	s Use		
	1	/ 10	Donald	120	
	2	/ 10	Paper 1	/ 10 Paper 1	/ 30
2	3	/11	Total for	/ 400	
Paper	4	/11	Promo	/ 100	
Pa	5	/8		1 1 2 1 2 1 1 1	
	6/7*	/ 20			
	Total	/ 70	Grade		

^{*} circle accordingly

This document consists of 16 printed pages.

Scanned with

CS CamScanner

Section A

Answer all the questions in this section in the spaces provided.

1	Butan to eth	ol (C anol	$_4\mathrm{H}_{10}\mathrm{O})$ can be produced by fermentation of biomass. It is considered as an alternative as a biofuel for cars since it provides more energy for a given volume than ethanol.
	(a)	(i)	Write the equation which represents the standard enthalpy change of combustion of $C_4 H_{10} O. \\$
			[1]
		(ii)	In a calorimetric experiment, 1.00 g of $C_4H_{10}O$ was burned under a container of water. It was found that 100 g of water was heated from 25.0 °C to 76.7 °C. The process was known to be 60% efficient.
			Use these data and values from the <code>Data Booklet</code> to calculate the enthalpy change of combustion of $C_4H_{10}O$.
			. [2]
		(iii)	Use the bond energies given in the Data Booklet to calculate another value for the enthalpy change of combustion of $C_4H_{10}O$.
			[2]
		(iv)	Suggest a reason for the discrepancy between the enthalpy change of combustion of $C_4H_{10}O$ calculated in (ii) and that in (iii).
			[1]

AJC JC1 Promo 2017

Incomplete combustion of fuel results in the production of carbon monoxide. It can undergo
disproportionation into carbon and carbon dioxide.

$$2CO(g) \longrightarrow C(s) + CO_2(g)$$
 $\Delta S_r^{\circ} = -175.9 \text{ J K}^{-1} \text{ mol}^{-1}$

The standard free energy change of a reaction, ΔG_r^{\bullet} , in J mol⁻¹, can be determined from the equilibrium composition of the reaction mixture, using the following thermodynamic equation.

$$\Delta G_r^{\circ} = -RT \ln K_p$$

where R is the molar gas constant in J K⁻¹ mol⁻¹, T is the temperature in Kelvin and K_p is the equilibrium constant.

(i)	Calculate the standard free energy change, ΔG_r° , in J mol ⁻¹ , for the disproportion	ation
	of CO given that $K_p = 1.15 \times 10^{21}$ at 298 K.	

	[1]
(ii)	Hence calculate the standard enthalpy change, ΔH_t^{\bullet} , for the disproportionation of CO.
	: [1]
(iii)	Predict and explain the effect of decreasing temperature on the feasibility of the disproportionation of CO.
•	
	[2]

Scanned with

CS CamScanner

[Total: 10]

[Turn over

2 (a) Propanone, (CH₃)₂CO, reacts with acidified aqueous cyanide ion, CN⁻, to produce 2-hydroxy-2-methylpropanenitrile, (CH₃)₂C(OH)CN.

$$CH_3 - C - CH_3 + H^+ + CN^- - CH_3 - C - CN$$

$$CH_3 - C - CH_3 + CH_3 - C - CN$$

$$CH_3 - C - CN$$

propanone

2-hydroxy-2-methylpropanenitrile

In a series of experiments, the reaction was carried out with different concentrations of the three reagents, and the following relative initial rates were obtained.

Expt	[(CH ₃) ₂ CO] / mol dm ⁻³	[H ⁺] / mol dm ⁻³	[CN ⁻] / mol dm ⁻³	relative initial rate / mol dm ⁻³ s ⁻¹
1	0.020	0.060	0.060	1.00
2	0.020	0.050	0.050	0.833
3	0.020	0.050	0.060	1.00
4	0.025	0.040	0.040	0.833

hydrogen ions:	
cyanide ions:	
cyanide ions.	
nrananana:	
propanone:	

(b)	W ter ior	th the aid of a nperature on the	sketch of the rate of the r	e Boltzman eaction bet	nn distributio ween propar	on, explain none and a	the effect of cidified aque	of increasing eous cyanide
							•	
	•••		1 Apr. 1989	Other project	e de la composición dela composición de la composición dela composición de la compos	me since	orayiya c	1 16
		el casa (gara-peda)		CAM petro	orthogon unon		New year (PSE)	97 7 m
	••••	••••				, - 0		[3]
(c)	In	the reaction in	(a) the bond				atom in the	
. ,	pro	panone, differs	from that in the	e product, 2	hydroxy-2-	methylpropa	anenitrile.	reactant,
		11 7 4 10	x ** ** ** **			он і		
		CH₃∠	C → CH3		CH ₃ -	-C-C-CI	1	
		,	0			CH ₃		
		propa	anone		2-hydroxy-2	2-methylpro	panenitrile	
	(i)	Suggest the va	alues of the tw	o bond ang	les, x and y.			[1]
	•	x	•••••		•			
		y	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					
	(ii)		forence if an	u in the he	and analog b	v consideri	na the chan	nos in the
	(")	Explain the dif number, and ty						ges iii tiie
				••••••				
								[2]
						er i sal di prophibi		[Total: 10]
		•		0700/00#10			, ·	Turn over

Chromit pigment		is a hard and brittle	metal and its con	npounds are often	used as catalysts
(a) ((i)	State the full electronic			
(i	ii)	Draw the shapes of the of the chromium atom	ne types of electron a. Label the orbitals.	orbitals found in the	
(1	(iii)	⁵⁰ Cr and ⁵² Cr are two protons, neutrons and	naturally occurring is d electrons present in	otopes of chromium. 50Cr and 52Cr3+ respe	Deduce the numbers ctively.
				number of	
		50.0	protons	neutrons	electrons
		⁵⁰ Cr	protons	neutrons	electrons
		50Cr 52Cr³+	protons	neutrons	electrons
m	agr	The Thirty of	I set up, a beam of ⁵² c field.	² Cr³⁺ ions was deflect	ed through an angle
m	agr	52Cr3+ particular experimental itude 10° in an electric	I set up, a beam of ⁵² c field. Il set of experimental a beam of ³⁵ C <i>I</i> r ions.	Cr³+ ions was deflected conditions, determined	ed through an angle of the magnitude of the
m	agr	52Cr3+ particular experimental itude 10° in an electric	I set up, a beam of ⁵² c field. Il set of experimental a beam of ³⁵ C <i>I</i> r ions.	² Cr³⁺ ions was deflect	ed through an angle of the magnitude of the
m	agr	52Cr3+ particular experimental itude 10° in an electric	I set up, a beam of ⁵² c field. Il set of experimental a beam of ³⁵ C <i>I</i> ions.	² Cr ³⁺ ions was deflected conditions, determined	ed through an angle of the magnitude of the
m	agr	52Cr3+ particular experimental itude 10° in an electric	I set up, a beam of ⁵² c field. Il set of experimental a beam of ³⁵ C <i>I</i> ions.	Cr³+ ions was deflected conditions, determined	ed through an angle of the magnitude of the
m	agr	52Cr3+ particular experimental itude 10° in an electric	I set up, a beam of ⁵² c field. Il set of experimental a beam of ³⁵ C <i>I</i> ions.	² Cr ³⁺ ions was deflected conditions, determined	ed through an angle of the magnitude of the

	(11)	to their direction of each beam to the other.
		Source
(c)	(i)	State and explain the trend of the first ionisation energies down a group.
		[3]
	(ii)	State and explain the trend of the first ionisation energies across the second period.
		[7] [Total: 11]
		•

[Turn over

The ideal gas equation is the approximate equation of state of any gas. A gas that obeys the equation under all conditions is called an ideal gas. However, most real gases do not behave like ideal gases.

time of the kingtin thoons of asses

(i)	State two assumptions of the kinetic theory of gases.
	[2]
(ii)	Under what conditions of temperature and pressure do real gases behave like ideal gases? Give reasons for your answers.
	[3]

(b) The van der Waals' equation as shown below is often used to account for the discrepancies between experimental and theoretical behaviour of real gases.

$$(p + \frac{n^2a}{V^2})(V - nb) = nRT$$

p is the actual pressure, V the volume of the container, T the temperature, n the amount of substance (in moles), and R the gas constant. The van der Waals' constants a and b are characteristic of the substance and are independent of temperature.

(i) Given that the van der Waals' constants a and b for carbon dioxide, CO₂, are 0.364 Pa m⁶ mol⁻² and 4.27 x 10⁻⁵ m³ mol⁻¹ respectively, calculate the actual pressure, p, exerted by 1 mole of CO₂ in a 0.25 dm³ container at 25 °C.

[1]

(a)

(ii)	Calculate the law.	pressure	e exerted by	CO₂ as de	escribed i	n (b)(i) if	it obeys t	he ideal gas
	iuii.							
						*		
		a-						
								21
								[1]
(iii	i) Suggest a (b)(ii).	reason for	r the differe	nce betwee	en the two	values o	btained in	(b)(i) and
	***************************************	•••••••		••••••	••••••	•••••••	•••••	[1]
re	nderwent com 5.0 cm ³ . After s maining was 3 etermine the e	shaking the 35.0 cm ³ . (A	ese gases wi All volumes v	ith aqueous were measu	sodium hy red at roor	droxide the tempera	e final volu ture and p	ume of gas ressure.)
	eterrime the e	прпсагаг	id molecular	iorniulae or	Α.			
	<u>.</u>							
	•							
								[3]
								[Total: 11]

[Turn over

5 (a)	(a)	Washing soda, also known as soda ash, is hydrated sodium carbonate, $Na_2CO_3 \cdot xH_2O$, which can be used to remove stubborn stains from laundry. A student carried out a titration to determine the value of x .					
		250	g of washing soda crystals were dissolved in water and the solution was made ucm³ in a standard flask. 25.0 cm³ of this solution reacted exactly with 35.80 cm 0 mol dm⁻³ hydrochloric acid and carbon dioxide was produced.	up to			
		(i)	Write a balanced equation for the reaction between Na₂CO₃ and HC/.				
		(.,	Time a salahood equation for the reaction between 142503 and 1701.				
				.[1]			
		(ii)	Calculate the number of moles of Na ₂ CO ₃ in the 250 cm ³ of solution in the stand flask.	lard			
				[2]			
		(iii)	Calculate the mass of Na₂CO₃ present in 5.13 g of washing soda crystals.				
			The state of the s				
				[1]			
				• •			
		(iv)	Hence determine the value of x in Na ₂ CO ₃ · x H ₂ O.				
				[1]			

(b) (i) On the grid below, sketch a graph showing the variation in the pH of the solution obtained when the chlorides of Period 3 elements (sodium to silicon) are added to water.

[1]

(ii) Describe and explain the reaction, if any, when NaCI and MgCI₂ are added separately to water, writing a balanced equation for any reaction that takes place.

NaC <i>l</i> :				
	***************************************	•••••	 	
MgC/ ₂ :				
•••••		***************************************		[2]

Section B

Answer one question from this section on separate answer paper.

- 6 (a) Draw a 'dot-and-cross' diagram to illustrate the bonding in sodium chloride. [1]
 - (b) Sodium chloride has a positive enthalpy change of solution, ΔH_{sol} , but is highly soluble in water.

Some enthalpy changes are given in the table below.

enthalpy change of formation of solid sodium chloride	-414 kJ mol ⁻¹
enthalpy change of formation of aqueous sodium chloride	-409 kJ mol ⁻¹
enthalpy change of hydration of gaseous sodium ions	-390 kJ mol ⁻¹
enthalpy change of hydration of gaseous chloride ions	-384 kJ mol ⁻¹
enthalpy change of atomisation of sodium	+107 kJ mol ⁻¹

(i) Use the data above to show that the lattice energy of sodium chloride is -779 kJ mol⁻¹.

[2]

(ii) Using the given data and the value in (b)(i), together with relevant data from the *Data Booklet*, construct a labelled Born–Haber cycle for sodium chloride and use the cycle to calculate the electron affinity of chlorine.

[3]

(c) Explain how you would expect the numerical magnitudes of the lattice energies of the Group 1 chlorides to vary down the group.

[2]

(d) At 494 °C, 45.0% of nitrogen dioxide in a closed vessel is decomposed into nitrogen monoxide and oxygen.

$$2NO_2(g) \implies 2NO(g) + O_2(g)$$

The numerical value of the equilibrium constant when the partial pressures of the gases are measured in kPa is found to be 36.9.

(i) Write an expression for the equilibrium constant, K_{ρ_i} for the reaction.

[1]

(ii) Based on the information given above, calculate the partial pressure of NO₂ at equilibrium.

[2]

(iii) Predict, with reasoning, how the position of this equilibrium might change if the volume of the vessel is decreased at 494 °C.

[2]

- (iv) Given that the K_p for the reaction increases as the temperature rises, state and explain the sign of ΔH for the above reaction. [2]
- (e) Describe the reaction, if any, that occurs when separate samples of the following oxides are added to water.
 - · magnesium oxide, MgO
 - aluminium oxide, Al₂O₃
 - phosphorous(V) oxide, P₄O₁₀

Write equations where appropriate and suggest the pH of any aqueous solution formed.

[5]

[Total: 20]

7 (a) Bromine reacts with methanoic acid according to the following equation.

$$Br_2(aq) + HCO_2H(aq) \longrightarrow 2Br(aq) + 2H^*(aq) + CO_2(g)$$

In an experiment using 0.10 mol dm⁻³ methanoic acid, the rate of the reaction was monitored at regular time intervals by measuring the absorbance of the remaining bromine in the reaction mixture using a colorimeter. From the measured absorbance, the following values of concentrations of bromine at the different times were obtained.

Time / min	[Br ₂ (aq)] x 10 ⁻³ / mol dm ⁻³
0	10.0
2	6.50
4	4.40
6	2.85
8	1.90
10	1.25

(i) By plotting an appropriate graph, confirm that the reaction is first order with respect to bromine.

[3]

(ii) Further studies show that the reaction is also first order with respect to methanoic acid.

Using this data, derive the units for the rate constant, k.

[1]

(iii) The experiment in (i) was repeated using aqueous bromine of the same concentration and another methanoic acid sample of concentration 0.20 mol dm⁻³.

Deduce the time taken for the concentration of bromine to reduce to $5.00 \times 10^{-3} \, \text{mol dm}^{-3}$.

[2]

(b) (i) The standard enthalpy change of vaporisation, ΔH°_{vap}, is the enthalpy change when one mole of a liquid vaporises at its boiling point and a pressure of 1 bar.

The following table lists the standard enthalpy change of vaporisation of some organic compounds.

Formula	Structural formula	Mr	ΔH ^e vap / kJ mol⁻¹
CH₃CH₂CHO	O ∥ C CH₃CH₂∕ H	58.0	+29.7
CH₂(OH)CH₂OH	OH H H OH	62.0	+65.6
СН₃СООН	O = C CH₃∕ OH	60.0	+41.6

By reference to the type and extent of relevant intermolecular forces, explain as fully as you can the differences in ΔH^{*}_{vap} between

- I. CH₃CH₂CHO and CH₂(OH)CH₂OH
- II. CH₂(OH)CH₂OH and CH₃COOH

[3]

(ii) Aqueous CH₃COOH undergoes an acid-base reaction with aqueous NaOH to form a salt and water.

The melting point of CH₃COOH is 16 °C. Predict if the melting point of CH₃COO-Na⁺ is higher or lower than that of CH₃COOH. Explain your answer in terms of structure and bonding.

[2]

- (c) Some hydrogen halides are unstable to heat.
 - (i) Write an equation for the reaction undergone on heating a hydrogen halide. [1]
 - (ii) Describe and explain how the thermal stability of the hydrogen halides varies down Group 17 from HC/ to HI.

[2]

(d) The key stage in the manufacture of sulfuric acid is the reaction between sulfur dioxide and oxygen.

2SO₂(g) + O₂(g) = 2SO₃(g)

The reaction is carried out at 500 °C in a 10.0 dm³ vessel. At the start of the reaction, 4 moles of SO₂ and 2 moles of O₂ are introduced into the vessel. When equilibrium is established, it is found that 2% of SO₂ remains unconverted.

(i) Calculate the equilibrium concentrations of the three gases.

[3]

(ii) Hence determine the value of the equilibrium constant, K₂, for this reaction at 500 °C.[1]

. . ,

- (iii) Predict, with reasoning, how the percentage of unconverted SO₂ at equilibrium would change if
 - an excess of oxygen,
 - II. a catalyst

is added separately to the initial gas mixture.

[2]

[Total: 20]