TUTORIAL 11: TEMPERATURE & IDEAL GAS SOLUTIONS

Level 1 Solutions

1 (a)(i)	There is no net transfer of heat between the two bodies.	[1]
(ii)	There is a <u>net</u> transfer of heat from A (the one at the higher temp) to B.	[1]
(b)	The temperatures are quoted in degrees Celsius. In order to compare the	[1]
	temperature of the system, we need to use the absolute temperature scale, (i.e.	
	Kelvin scale). So in this case, it is not twice since (30 + 273.15) K is <i>not</i> twice that	
	of (15 + 273.15) K. Therefore, one <i>can</i> only say that "it is <u>hotter</u> today than	
	yesterday".	
2	T/ K = θ /°C + 273.15 K = 201.84 + 273.15 K = 474.99 K	[1]
_	1/ K - 0/ C + 2/3.13 K - 201.04 + 2/3.13 K - 4/4.99 K	ניו
3	Absolute zero is the temperature at which all substances have a minimum internal	[1]
	energy (NOT zero energy ²). On the thermodynamic scale, it is assigned a value of	
	0 K.	
4 (a)(i)	The Avogadro constant, N_A , is defined as the number of atoms in 0.012 kg of	[1]
	<u>carbon-12</u> . $(N_A = 6.02 \times 10^{23} \text{ mol}^{-1})$	
(ii)	An ideal gas is one that obeys the equation $p V = n R T$ for all values of	[1]
	pressure, volume and temperature,	F41
	where p: pressure (Pa), V: volume (m³), n: amount of gas (mol), R: molar gas	[1]
(iii)	constant (8.31 J K ⁻¹ mol ⁻¹), <i>T: thermodynamic</i> temperature (K). The absolute scale of temperature is a theoretical scale that is independent of the	[4]
(111)	properties of any particular substance.	[1]
(b)	Molecular mass is the mass of one molecule. The molar mass (kg mol ⁻¹) is the	[1]
(6)	mass per mole of a substance {NOT: mass of one mole}.	[1]
	,	
	The relative atomic mass (no units), Ar, of an atom is defined by the following	
	equation: $A_r = \underline{Mass of an atom}$	[1]
	$\frac{1}{12}x \text{ the mass of a carbon} - 12 \text{ atom}$	
	- x the mass of a carbon – 12 atom	
		
	NB: Students are not required to state the definition of relative atomic mass but are required	
	to know how to deduce the molar mass of a substance given its relative atomic mass.	
5	Using $pV = nRT \Rightarrow$ Initial pressure $p = \frac{nRT}{V}$	
	$V \longrightarrow Wer \rightarrow Wer \rightarrow Wer$	
	Final pressure, p'	
	n'RT' (1.02 n) R (1.01 T)	
	$= \frac{n'RT'}{V'} = \frac{(1.02n)R(1.01T)}{(1.002)V}$	
		[1]
	$=\frac{nRT(1.02)(1.01)}{V(1.002)}=1.028p$	
	V(1.002)	
		[41
	Therefore the percentage increase in <i>p</i> is 2.8 %.	[1]
11(a)	300 + 100 + 100 + 300 + 500 acc -1	[1]
	Mean speed = $\frac{300 + 100 + 300 + 300}{5} = 260 \mathrm{m s^{-1}}$	
(b)		[1]
` /	Mean-square-speed = $\frac{\left(-300\right)^2 + \left(-100\right)^2 + 100^2 + 300^2 + 500^2}{5} = 90000 \text{m}^2 \text{ s}^{-2}$	
	190000111 S	

-

² Originally, it was thought that all atomic motions would cease at absolute zero. The development of *quantum mechanics* (see chapter 18) showed that all motion does not cease; the atoms vibrate with the minimum possible motion.

Level 2 Solutions

6	From $pV = nRT \Rightarrow T = \frac{pV}{nR}$	
	Path $L \to M$: When V increases with $p \& n$ const, T increases proportionately, since $T \alpha V$. Hence ans is B.	[1]
	Path $\mathbf{M} \to \mathbf{N}$: $T \propto pV$, i.e. T does <u>not</u> vary linearly with V now since $p \neq$ constant. Comparing value of pV at M (2.0×10 ⁶ × 0.003) with pV at N(0.8×10 ⁶ × 0.005), ⇒ T _M > T _N	[1]
	{Confirms elimination of (C) & (D)}	
	T M N	
7	p /10 ⁵ Pa 3	[2]
	average kinetic energy of the system ∞ T Over the cycle ABCA, the system returns to the original state, So $\Delta T_{cycle} = 0$ so net increase in average kinetic energy of the system = 0	
	Net Increase in $U=0$ as it returns to its original state because $\Delta T_{cycle}=0$ & U \propto T.	[1]
8 (a)(i)	$pV = nRT$ ΔpV	[1]
	$\Rightarrow \Delta n = \frac{\Delta pV}{RT}$ (3.23 × 10 ⁵ - 2.62 × 10 ⁵)× 0.0120	[1]
	$= \frac{(3.23 \times 10^5 - 2.62 \times 10^5) \times 0.0120}{8.31 \times (25 + 273.15)}$ = 0.295 mol	[1]
		1

(ii)	To supply 4 tyres, amount of air to be pumped out from the portable supply, $\Delta n = 4 \text{ x Ans (a)(i)} = 1.18 \text{ mol.}$	[1]
	The subsequent decrease in pressure, ∆p, of this supply	
		[1]
	$= \frac{\Delta nRT}{V} = \frac{(1.18)(8.31)(25 + 273.15)}{0.0108} = 2.70 \times 10^5 \text{ Pa}$	
	Therefore, the pressure remaining in portable supply	
	$= p_i - \Delta p = 8.72 \times 10^5 - 2.70 \times 10^5 = 6.01 \times 10^5 \text{ Pa},$	[1]
(b)(i)	without falling below 3.23 x 10 ⁵ Pa.	[1]
(5)(1)	Average kinetic energy of one molecule of gas = $\frac{3}{2}$ kT	נייו
	= 6.17 x 10 ⁻²¹ J.	[1]
(ii)	Average kinetic energy of one mole of gas = N _A x Ans (b)(i) = 3710 J	[1]
(iii)	Increase in total kinetic energy = Ans (a)(i) x Ans (b)(ii) = 1100 J	[1]
	- 1100 J	[1]
9 (a)(i)	From the ideal gas equation,	
	$pV = nRT$ where $n = \frac{\text{mass}}{\text{molar mass}}$	
	molar mass	
	$1.0 \times 10^5 \times 0.064 = \frac{mass}{0.03} (8.31)(27 + 273.15)$	[2]
	0.03	[-]
/m	⇒ mass = 0.0770 kg	[1]
(ii)	From $p_f V_f = n_f R T_f$	[1]
	$(1.0 \times 10^5)(0.064) = n_f(8.31)(180 + 273.15)$	ניו
	Hence $n_f = 1.70 \text{ mol } = (1.70 \times 0.030) \text{ kg} = 0.051 \text{ kg} = m_f$	
	$\Delta m = m_i - m_f = 0.077 - 0.051 = 0.026 \text{ kg}$	[1]
10	PV = nRT n = PV/RT	
	Total amt of gas n _{tot}	
	$= n_1 + n_2$	
	$= PV_1/RT + PV_2/RT$	
	= 1.01 x 10 ⁵ x (400 x 10 ⁻⁶ + 200 x 10 ⁻⁶)/(8.31x293.15) = 0.02488 mol	[4]
	- 0.02700 III0I	[1]
	$n_{tot} = n_1 + n_2$	
	$n_{\text{tot}} = P_{\text{com}} V_1 / RT_1 + P_{\text{com}} V_2 / RT_2$	
	$0.02488 = P_{com} \times 400 \times 10^{-6} / (8.31 \times 373.15) + P_{com} \times 200 \times 10^{-6} / (8.31 \times 273.15) $ [1]	
	$0.02488 = 2.171 \times 10^{-7} \times P_{com}$	[1]
	P _{com} = 1.15 x 10 ⁵ Pa	
10	As the Assessment in the audit denting and the Co.	[4]
12	As the temperature in the cylinder increases, the average kinetic energy of the gas molecules increases.	[1]
	Thus the root-mean-square speed of the molecules also increases. With greater	[1]
	speed, when a particle collides against the wall, the momentum change per collision increased, exerting a greater force on the wall.	_
	moreaseu, exerting a greater force on the wall.	[1]
	As a result, the volume increases causing the collision frequency to decrease and the pressure to stay constant.	[1]
	{From examiner's report: Any explanation using $pV = nRT$ does not answer the	
	question, since there is no reference to the forces exerted by molecules.}	<u> </u>

13(a)	Thermal equilibrium means that X and Y are at the same temperature. Since translational kinetic energy is directly proportional to thermodynamic temperature, X has the same mean translational kinetic energy as Y, $6.0 \times 10^{-21} \text{J}$	[1]
(b)	$\frac{m_X < c_X^2 >}{2} = \frac{m_Y < c_Y^2 >}{2},$	[1]
	2 2 /	
	$\frac{\sqrt{\langle c_y^2 \rangle}}{\sqrt{\langle c_y^2 \rangle}} = \sqrt{\frac{m_x}{m_y}} = \sqrt{\frac{1}{2}} = 0.707$	[1]
	$\sqrt{\langle c_x^2 \rangle} \sqrt{m_y} \sqrt{2}$	[.,]
4.470		F.43
14(i)	For an ideal gas: $Nm < c^2$	[1]
	$P = \frac{Nm < c >}{2V}$	
	$P = \frac{Nm < c^2 >}{3V}$ $\Rightarrow P = \frac{1}{3}\rho < c^2 >$	
	$\Rightarrow 1 - \frac{1}{3}p < c$	
	Since $\frac{1}{2}m < c^2 > = \frac{3}{2}kT$, for the same temperature, $< c^2 >$ is constant.	
	$\Rightarrow P \propto \rho$	
	\Rightarrow F \bowtie p	
	Since p is proportional to density of gas for a fixed temperature, it behaves like an	
	ideal gas.	
	Alternatively, thinking from pV = nRT	
	$PV = \frac{Mass}{RT}$	
	Molar mass 1 DT	
	pV = $\frac{Mass}{Molar \ mass}$ RT p = $\frac{Mass}{V} \frac{1}{Molar \ mass}$ RT p = $\rho \frac{1}{Molar \ mass}$ RT	
	$p = \rho \frac{1}{Molar mass} R T$	
	$p \propto \rho$ at a fixed temperature	
(ii)	Pick a suitable point from the graph. E.g. ($P = 1.5 \times 10^5$ and $\rho = 1.75$ at 300 K)	[1]
()	$P = \frac{1}{3}\rho < c^2 >$	[1]
	$1.5 \times 10^5 = 1/3 \times 1.75 < c^2 >$	[1]
	rms speed = 507 ms ⁻¹	
(:::)	For the composition of the control o	F41
(iii)	For the same Pressure, the density value at T is at a lower value than at 300K, which means that the mean square speed is higher at T,	[1] [1]
	(P = $\frac{1}{3}\rho_1 < c_1^2 > = \frac{1}{3}\rho_2 < c_2^2 >$))	ניין
	so temperature T is higher.	
	so temperature i is nigher.	
	Or for the same density, the Pressure exerted at T is higher	[4]
	which implies that T is higher	[1] [1]
(iv.)	At density of 1 0 D = 1 5 and D = = 0.95	
(iv)	At density of 1.0, $P_T = 1.5$ and $P_{300} = 0.85$	[1] [1]
	Since $\frac{P_T}{P_{300}} = \frac{T}{300}$	
	P ₃₀₀ 300	
	T = 300 x 1.5/0.85 = 529 K	[1]
15.(a)	average force = $\Delta p/\Delta t = 6.0 \times 10^{-23}/1 \times 10^{-3} = 6 \times 10^{-20} \text{N}$	[1] [1]
. 5.(4)		[.,]
(b)	Average during the 1ms contact = 6 x 10 ⁻²⁰ N	
	Average force during the remaining 9 ms = 0	[4]
	Average force during the 10 ms = $6 \times 10^{-20}/(1+9) = 0.6 \times 10^{-20} \text{ N}$	[1]
	Value is obtained = Area under graph for 1 collision / 10 ms	
	- .	1

(c)	The value is (b) is used.	[1]
16. (a)	Since $\frac{1}{2} m < c^2 > \alpha$ T and they are at the same temperature,	
	$\frac{1}{2} m_N < c_N^2 > = \frac{1}{2} m_O < c_O^2 >$	
	$\frac{\left\langle c_N^2 \right\rangle}{\left\langle c_O^2 \right\rangle} = \frac{m_O}{m_N}$	[1]
	$Ratio = \frac{\sqrt{32}}{\sqrt{28}} = 1.07$	[1]
(b)	Since $\frac{1}{2} m < c^2 > \alpha$ T and they have the same mass,	
	$\frac{(1)}{(2)} : \frac{\left\langle c_{10}^{2} \right\rangle}{\left\langle c_{100}^{2} \right\rangle} = \frac{T_{10}}{T_{100}}$	
		[1]
	Ratio = $=\frac{\sqrt{283.15}}{\sqrt{373.15}} = 0.871$	[1]
17(a)(i)	$\Delta p = mv - mu = mu - (-mu) = 2mu$	[1]
(ii)	time taken = distance travelled between successive collisions / speed of	
	molecule = 2L / u	[1]
(iii)	$\Delta p/\Delta t = 2mu/(2L/u) = mu^2/L$ (shown)	[1]
(b) (i)	From ideal gas and given equation: pV = 1/3Nm <c²> = nRT (or NkT)</c²>	[1]
	Multiply both sides by $^3/_2$: $^{1/2}$ Nm< 2 = $^{3}/_2$ nRT (or $^{3}/_2$ NkT) where $^{1/2}$ m< 2 is the av. KE of a molecule	[1]
	Since n , N and R (or k) are constant, hence $\frac{1}{2}$ m< c^2 > \propto T	[1]

ASSIGNMENT

1(a)	pV = nRT	
	p = nRT/V	
	= (1.00)(8.31)(273.15 + 30.0) / (1.00) = 2.52 × 10 ³ Pa	[1] [1]
(b)	pV = NkT	r.1
	N = pV/kT	
	= $(1.01 \times 10^5)(2.00) / (1.38 \times 10^{-23}) (273.15 + 100)$ = 3.92×10^{25}	[1] [1]
2	Let the temperature at A be T _i	נין
	pV = nRT (1.00 × 10 ³)(4.50) = (1.50)(8.31) T _i	
	$T_i = 361 \text{ K}$	[1]
	Let the temperature at B be T _f	
	pV = nRT	
	$(5.00 \times 10^{3})(3.00) = (1.50)(8.31) \text{ T}_{c}$	
3	$T_f = 1.20 \times 10^3 \text{ K}$ $\Delta T = 1.20 \times 10^3 \text{ - } 361 = 839 \text{ K}$ $\frac{1}{2} \text{ m} < c^2 > = 3/2 \text{ kT}$	[1]
3	$\frac{72 \text{ III} \cdot \text{C}^{2}}{\text{C}^{2}} = 3 \text{ kT/ m}$	
	$c_{rms} = \sqrt{3 kT/m}$	
	$c_{ m rms} \propto \sqrt{T}$	
	C.,,,,O.c. 1777+273.15	
	$\frac{c_{177}o_C}{c_{50.0K}} = \sqrt{\frac{177 + 273.15}{50.0}}$	[1]
	$\frac{c_{177}o_{\mathcal{C}}}{800} = \sqrt{\frac{177 + 273.15}{50.0}}$	ניו
	$c_{177}^{\circ} c = 2.40 \times 10^{3} \mathrm{m s^{-1}}$	[1]
	1177°C - 2.40 ° 10 1113	
4	$\frac{1}{2}$ m <c<sup>2> = 3/2 kT</c<sup>	
4	$\frac{7}{2}$ m < c^2 > = 3/2 K I < c^2 > = 3 kT/ m	
	$c_{rms} = \sqrt{3 kT/m}$	[1]
	•	
	If the rms speeds are to be the same, (Crms)nitrogen = (Crms)hydrogen	
	$\frac{3kT_{nitrogen} - \text{Crms/nydrogen}}{3kT_{nitrogen}} = \frac{3kT_{nydrogen}}{3kT_{nydrogen}}$	
	$\sqrt{m_{nitrogen}}$ $\sqrt{m_{hydrogen}}$	
	$\frac{T_{nitrogen}}{T_{nitrogen}} = \frac{T_{hydrogen}}{T_{nitrogen}}$	
	$m_{nitrogen} \hspace{0.5cm} m_{ m hydrogen}$	
	Mass of 1 nitrogen molecule is $\frac{28.01}{N_A}$ g while mass of 1 hydrogen molecule is	
	$\frac{2.02}{N_A}$ g.	
	$\frac{T_{nitrogen}}{T_{nitrogen}} = \frac{T_{hydrogen}}{T_{nitrogen}}$	
	$\frac{mtrogen}{m_{nitrogen}} = \frac{nydrogen}{m_{hydrogen}}$	
	$T_{nitrogen}$ 27.0 + 273.15	
	$\frac{T_{nitrogen}}{28.01/N_A} = \frac{27.0 + 273.15}{2.02/N_A}$	
	$T_{nitrogen} = 4.16 \times 10^3 \mathrm{K}$	

- End of tutorial solutions -