

## Year 4 Mathematics 2 Applications of Integration Area of a Region Supplementary Worksheet

 Name :
 \_\_\_\_\_\_(
 )
 Class :
 \_\_\_\_\_\_
 Date :

- 1 (a) Evaluate  $\int_{0.1}^{0.6} 4\cos^2 2x \, dx$ , giving your answer correct to 2 decimal places.
  - (b) The diagram shows part of the graphs of  $y = x^2 + 1$  and  $y = \cos 2x$ .



Find

- (i) the coordinates of A, B and C,
- (ii) the area of the shaded region giving your answer correct to 2 decimal places.

[2008 CHIJ Toa Payoh Sec AMaths P2]

**2(a)** The diagram shows part of the curve y = g(x).



Copy this diagram and use it to explain why  $4 < \int_{1}^{3} g(x) dx < 6$ .

**(b)** Given that  $\int_{1}^{3} f(x) dx = 5$ , evaluate  $\int_{2}^{1} \left(\frac{1}{x} - f(x)\right) dx + \int_{2}^{3} f(x) dx$ .

[2008 Commonwealth Sec AMaths P1]

3 The diagram shows part of the graph of  $y = e^{2x}$  and of  $y = 1 - \sec^2 x$ . *OABC* is a rectangle where *A* is on the *y*-axis, *B* is on the curve  $y = e^{2x}$  and *C* is (ln 2, 0).



- (i) Find the area of the shaded region, which is bounded by the two curves, the *y*-axis and the line  $x = \ln 2$ .
- (ii) Region *P* is bounded by the curve  $y = e^{2x}$ , the line *AB* and the *y*-axis. Given that the area of region *P* may be expressed as  $\int_{1}^{k} f(y) dy$ , find the value of *k* and function f(y).

[2008 Commonwealth Sec AMaths P2 (modified)]

4(i) The diagram below shows part of the curve  $y = \sin 2x$  and the line  $y = \frac{1}{2}$ . Find the area of the shaded region.



(ii) The diagram below shows part of the graph  $y = \ln x^2$ , cutting the *x*-axis at (1, 0). The line y = 2 intersects the curve at *P*. A line is drawn from *P*, parallel to the *y*-axis, to meet the *x*-axis at *Q*.



- (a) Find the *x*-coordinate of *Q*.
- (b) Differentiate  $2x \ln x$  with respect to x.
- (c) Hence find the area of the shaded region.

[2008 Crescent Girls' AMaths P2 (modified)]



The diagram above shows part of the curve  $y = x + \frac{4}{x}$  passing through the points

P, Q and R.

5

- (i) The curve has a minimum point at *P*. Find the coordinates of *P*.
- (ii) Given that the gradient of the line PQ is -1, find the coordinates of Q.
- (iii) Calculate the area of the shaded region.

[2008 Holy Innocents High AMaths P2]

6 The diagram shows part of the curve  $y = \left(\frac{x}{2} + 2\right)\sqrt{\frac{x}{2} + 2}$  and the straight line *BC* is the normal to the curve at the point *C*(-2, 1).



- (i) Find the equation of the line *BC*.
- (ii) Show that  $OA = \frac{8\sqrt{2}}{5}BC$ .
- (iii) Find the area of the shaded region.

[2008 Singapore Chinese Girls' AMaths P2]

7(a) Given that 
$$y = x^2 \sqrt{x+1}$$
, show that  $\frac{dy}{dx} = \frac{5x^2 + 4x}{2\sqrt{x+1}}$ .  
Hence, evaluate  $\int_{0}^{3} \frac{15x^2 + 12x}{\sqrt{x+1}} dx$ .

(b) The diagram shows part of the curve  $y = \sin 2x$ . The line *OA* intersects the curve at *A* where the  $\sqrt{3}$ 

y-coordinate is  $\frac{\sqrt{3}}{2}$ .

- (i) Find the *x*-coordinate of *A* in terms of  $\pi$ .
- (ii) Find the area of the shaded region.



[1]

[4]

<sup>[2008</sup> Tanjong Katong Sec AMaths P2]

8 In the diagram, the curve  $y^2 = 2x - 3$  and the straight line x + y = 3 intersect at two points *A* and *B*.



Find

- (a) the coordinates of A and of B,
- (b) the area of the shaded region.

[2008 Temasek Sec AMaths P2]

9 The figure below shows parts of the curve  $2y = 4 - x^2$  and  $2x = (y+2)^2$ .



Calculate

- (i) the coordinates of A, B and C,
- (ii) the shaded area enclosed by the curves and the *y*-axis.

[2008 Unity Sec AMaths P2]

10 The diagram shows part of the curve of  $y = 3e^{-\frac{1}{2}x} + e^{\frac{1}{2}x}$ .



- (i) Show that the exact value of the *y*-coordinate of the stationary point of the curve is  $2\sqrt{3}$ .
- (ii) Calculate the area enclosed by the curve, the *x*-axis and the lines x = 0 and x = 1. [2008 Zhonghua Sec AMaths P1 (modified)]
- 11 The diagram shows part of the curve  $y = 10 \frac{32}{x^2}$  and two parallel lines *OR* and *PQ*. The line *OR* intersects the curve at the point *R*(2, 2) and the line *PQ* is a tangent to the curve at the point *Q*.



Find

- (a) the gradient of *OR*,
- (b) the coordinates of Q,
- (c) the area of the shaded region *OPQR*.

[2008 Zhonghua Sec AMaths P2 (modified)]

**Answers** 

| <b>1(a)</b>   | 1.14                    | (b)(i)           | $A(0,1), B(\frac{\pi}{4},0)$ | $\Big), C\Big($   | $\left(\frac{\pi}{4}, \frac{\pi^2}{16} + 1\right)$ | ( <b>ii</b> ) | 0.45 unit <sup>2</sup> |
|---------------|-------------------------|------------------|------------------------------|-------------------|----------------------------------------------------|---------------|------------------------|
| 2(b)          | 4.31                    |                  |                              | 11                |                                                    |               |                        |
| 3(1)          | 1.64 units <sup>2</sup> | (11              | k = 4; f(y)                  | $=\frac{1}{2}\ln$ | у                                                  |               |                        |
| <b>4(i)</b>   | $0.342 \text{ units}^2$ | ( <b>ii</b> )(a) | e                            | <b>(b)</b>        | $2(\ln x+1)$                                       | (c)           | 2 units <sup>2</sup>   |
| 5(i)          | (2,4)                   | ( <b>ii</b> )    | (1,5)                        | ( <b>iii</b> )    | $42.3 \text{ units}^2$                             |               |                        |
| 6(i)          | 3y + 4x + 5 = 0         | ( <b>iii</b> )   | $3.35 \text{ units}^2$       |                   |                                                    |               |                        |
| 7(a)          | 108                     | (b)(i)           | $\frac{1}{6}\pi$             | ( <b>ii</b> )     | 0.0232 units <sup>2</sup>                          |               |                        |
| <b>8</b> (a)  | A(2, 1); B(6, -3)       |                  |                              | <b>(b)</b>        | $5\frac{1}{3}$ units <sup>2</sup>                  |               |                        |
| 9(i)          | A(0, 2); B(2, 0);       | C(0, -2)         | )                            | ( <b>ii</b> )     | 4 units <sup>2</sup>                               |               |                        |
| <b>10(ii)</b> | 3.66 units <sup>2</sup> |                  |                              |                   |                                                    |               |                        |
| <b>11(a)</b>  | 1                       | <b>(b)</b>       | (4, 8)                       | (c)               | 10 units <sup>2</sup>                              |               |                        |
|               |                         |                  |                              |                   |                                                    |               |                        |