1
Let sequence,
$$T_r = ar^3 + br^2 + cr + d$$

then $a+b+c+d=1$
 $8a+4b+2c+d=2$
 $27a+9b+3c+d=4$
 $64a+16b+4c+d=8$
Using GC: $a = \frac{1}{6}, b = -\frac{1}{2}, c = \frac{4}{3}, d = 0$
 $T_r = \frac{1}{6}r^3 - \frac{1}{2}r^2 + \frac{4}{3}r$
2(i)
Let $\lim_{n \to \infty} X_n = \alpha$ i.e as $n \to \infty, X_n \to \alpha$ and $X_{n+1} \to \alpha$
then $\alpha = \sqrt{3+\alpha}$
 $\alpha^2 - \alpha - 3 = 0$
 $\alpha = \frac{1\pm\sqrt{1+12}}{2}$
 $= \frac{1\pm\sqrt{1+12}}{2}$ or $\frac{1-\sqrt{13}}{2}$ (NA since $x_n > 0$)
from graph of $y = x - \sqrt{3+x}$
for $0 < x < \alpha, y < 0$
 $x_n - \sqrt{3+x_n} < 0$
 $x_n - x_{n+1} < 0$
 $x_{n+1} > x_n$
3
 $\frac{2x-1}{x+4} \le 1$
 $\frac{2x-1}{x+4} - 1 \le 0$

$$\frac{x-5}{x+4} \le 0 + + -4 < x \le 5 - \dots$$
(1)
$$\frac{(2-e^{x}) \div e^{x}}{(1+4e^{x}) \div e^{x}} \le 1$$

$$\frac{2e^{-x}-1}{e^{-x}+4} \le 1$$

+

+ 5

-4

Replace x in (1) with e^{-x} then $-4 < e^{-x} \le 5$ since $e^{-x} > 0$ for all x $0 < e^{-x} \le 5$ $-x \le \ln 5 \rightarrow x \ge -\ln 5$

4(i)

$$\overrightarrow{OL} = \frac{1}{2} \left(\overrightarrow{OC} + \overrightarrow{OD} \right) = \frac{1}{2} \begin{bmatrix} 0 \\ 4 \\ 0 \end{bmatrix} + \begin{pmatrix} 4 \\ 2 \\ 6 \end{bmatrix} = \begin{pmatrix} 2 \\ 3 \\ 3 \end{bmatrix}$$

area
$$\triangle OAL = \frac{1}{2}(OL)(OA)\sin \Box AOL = \frac{1}{2}|\overrightarrow{OL} \times \overrightarrow{OA}|$$

$$= \frac{1}{2}\begin{vmatrix} 2\\3\\3 \end{vmatrix} \times \begin{vmatrix} 4\\0\\0 \end{vmatrix}$$

$$= \frac{1}{2}\begin{vmatrix} 0\\12\\-12 \end{vmatrix}$$

$$= \frac{1}{2}\sqrt{288} = 6\sqrt{2}$$

4(iii)

using \overrightarrow{ML} dot \overrightarrow{OD}

$$\begin{pmatrix} -2\\1\\3 \end{pmatrix} \bullet \begin{pmatrix} 2\\1\\3 \end{pmatrix} = \sqrt{14}\sqrt{14}\cos\theta$$
$$\cos\theta = \frac{6}{14}$$
$$\theta = 64.6^{\circ}$$

5(i)

$$x \left[\frac{1}{2} \frac{-2x}{\sqrt{4 - x^2}} \right] + \sqrt{4 - x^2} + 4 \left(\frac{1}{2} \right) \frac{1}{\sqrt{1 - \left(\frac{x}{2} \right)^2}}$$
$$= \frac{-x^2 + 4 - x^2}{\sqrt{4 - x^2}} + \frac{4}{\sqrt{4 - x^2}}$$
$$= 2\sqrt{4 - x^2}$$

©PJC2011 [Turn Over]

5(ii)

$$\frac{1}{2}\int_{0}^{k}\sqrt{4-x^{2}} dx = \frac{1}{2}\left[\frac{1}{2}\left(x\sqrt{4-x^{2}}+4\sin^{-1}\left(\frac{x}{2}\right)\right)\right]_{0}^{k}$$

$$=\frac{1}{4}\left[k\sqrt{4-k^{2}}+4\sin^{-1}\left(\frac{k}{2}\right)\right] \implies a = \frac{k}{4}$$

5(iii)

$$4y^{2} + x^{2} = 4$$
$$y^{2} + \frac{x^{2}}{2^{2}} = 1$$
$$R = \frac{1}{2} \int_{0}^{k} \sqrt{4 - x^{2}} dx$$

5(iv)

Required area = 4R with k = 1

$$= \sqrt{3} + 4\sin^{-1}\left(\frac{1}{2}\right)$$
$$= \sqrt{3} + 4\left(\frac{\pi}{6}\right)$$
$$= \sqrt{3} + \frac{2\pi}{3}$$

6(i)
$$|z-3| \ge |z+1|$$

6(ii)

$$-\frac{\pi}{6} \le \arg\left(\sqrt{3} + i\right) - \arg z \le \frac{\pi}{6}$$
$$-\frac{\pi}{6} \le \frac{\pi}{6} - \arg z \le \frac{\pi}{6}$$
$$-\frac{\pi}{3} \le -\arg z \le 0$$
$$0 \le \arg z \le \frac{\pi}{3}$$
$$|z-3| \ge |z+1|$$
$$z \text{ lies on } OAC \text{ excluding point '}O'$$

6(iv)

$$AB = 2\sqrt{3} - \sqrt{3} = \sqrt{3}$$

$$\tan \theta = \frac{AB}{1} = \sqrt{3}$$

$$\theta = \frac{\pi}{3}$$
Hence $-\frac{\pi}{2} < \arg(z - 2\sqrt{3}i) \le -\frac{\pi}{3}$

©PJC2011 [Turn Over]

- 7(i) N = 90, n = 10, so k = 9. List all the faculty staff by their names in alphabetical order and choose a random number from 1 to 9. Say we have chosen the number 4, then we select the 4th, 13th, 22nd, 31st, 40th, 49th, 58th, 67th, 76th, 85th names from the list to form the sample of 10.
- 7(ii) Choose the number of Professor, Senior Lecturers and Lecturers in the following:

	Professor	Senior Lecturer	Lecturer	Total
Population	9	18	63	90
Sample	1	2	7	10

Compile 3 lists of names – Professor, Senior Lecturers and Lecturers. Perform simple random sampling from the separate lists of Professor, Senior Lecturers and Lecturers to select 1 Professor, 2 Senior Lecturers and 7 lecturers to form a sample of 10.

Stratified sampling is preferred as the sample selected is more representative of the faculty.

- **8(ii)** r = 0.9785 indicates that there is a strong positive linear correlation but from the scatter diagram, there is non-linear relation between x and y. So a linear model may not be appropriate.
- 8(iii) From GC, $\ln y = 1.35553 + 0.132498 x$
- **8(iv)** From the description, x is the controlled variable while y is the response. So we will use ln y on x to estimate the amount: $\ln 15 = 1.35553 + 0.132498x$, so x = 10.2 mg

9(i)

Let $A \sim$ students own IPod $B \sim$ students own IPhone Given n(A) = 25, n(B) = 40 and $n(A \cup B) - n(A \cap B) = 35$

$$n(A \cup B) = n(A) + n(B) - n(A \cap B)$$

35 + n(A \cap B) = 25 + 40 - n(A \cap B), so n(A \cap B) = 15
$$P(A \cap B) = \frac{15}{100} = \frac{3}{20}$$

OR

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

$$\frac{35}{100} + P(A \cap B) = \frac{25}{100} + \frac{40}{100} - P(A \cap B)$$

$$P(A \cap B) = \frac{15}{100} = \frac{3}{20}$$

9(ii) From (i)
$$n(A \cup B) = 50$$

So the prob required $= 1 - \frac{50}{100} = \frac{1}{2}$

9(iii)
$$P(A | B) = \frac{P(A \cap B)}{P(B)} = \frac{15}{40} = \frac{3}{8}$$

Alternative: Use venn diagram to consider the numbers:

- **10(i)** Number of way required = $10^4 = 100\ 00$
- **10(ii)** Number of ways for last digit = 5 Number of ways required = $9 \times 8 \times 7 \times 6 \times 5 \times 5 = 75600$
- **10(iii)** Number of ways for 3 odd digits = ${}^{5}C_{3} = 10$ Number of ways for 3 even digits = ${}^{5}C_{3} = 10$ Number of ways required = $10 \times 10 \times 6! = 72000$
- 11(i) $X \sim$ number of defective pen, out of 10 $X \sim B(10, 0.01)$ $P(X > 1) = 1 - P(X \le 1) = 0.0042662 \approx 0.00427$
- **11(ii)** $Y \sim$ number of boxes being rejected, out of 1000 $Y \sim B(1000, 0.0042662)$ Since *n* is large, np = 4.2662 < 5, $Y \sim Po(4.2662)$ At least 990 boxes being accepted is the same as at most 10 boxes being rejected $P(Y \le 10) = 0.995$

11(iii) W~ number of boxes being rejected out of 2000 W~B(2000, 0.0042662) Since *n* is large, np = 8.5324 > 5 and n(1 - p) = 1991.4676 > 5W~N(8.5324, 8.495999) approx $P(W \le 12) = P(W < 12.5) = 0.913$

12(i)

Unbiased estimate for mean $= \overline{x} = \frac{\sum (x-30)}{24} + 30 = \frac{1266}{24} + 30 = 82.75$ Unbiased estimate for variance $= s^2 =$

$$\frac{1}{23} \left(\sum (x-30)^2 - \frac{\left(\sum (x-30)\right)^2}{24} \right) = \frac{1}{23} \left(78060.5 - \frac{1266^2}{24} \right) = 490.391$$

12(ii)

H₀: $\mu = 80$ vs H₁: $\mu > 80$ Level of Sig = 3% Test statistics $t = \frac{82.75 - 80}{\sqrt{490.391/24}} = 0.60837$

p-value = 0.27445 > 0.03

Since p-value is more than level of significance, do not reject H_0 and conclude that there is insufficient evidence to suggest that the mean speed is greater than 80 km/h at 3% level of significance.

The unbiased estimate of mean remains unchanged as 82.75

The unbiased estimate of pop variance

$$=\frac{1}{239}\left(\sum (x-30)^2 - \frac{\left(\sum (x-30)\right)^2}{240}\right) = \frac{1}{239}\left(780605 - \frac{12660^2}{240}\right) = 471.925$$

but the distribution $\overline{X} \sim N(80, \frac{471.925}{240})$ approximately under CLT

test statistics
$$z = \frac{82.75 - 80}{\sqrt{471.925/240}} = 1.9611$$

p-value is 0.02493 < 0.03

Since p-value is less than the level of significance, we reject H_0 and conclude that there is sufficient evidence that the mean speed is greater than 80 km/h, so there is a change in conclusion.

- **13(i)** $X \sim$ time taken by route A $X \sim N(14, 2.5^2)$ P(X > 12) = 0.788
- **13(ii)** $Y \sim$ time taken by route B $Y \sim N(12, 7.3)$

 $X - Y \sim N(2, 2.5^{2} + 7.3)$ $X - Y \sim N(2, 13.55)$ $P(|X - Y| \ge 3) = 1 - P(-3 \le X - Y \le 3) = 0.480$

Let $T = X_1 + X_2 + X_3 + Y_1 + Y_2 \sim N(42 + 24, 3(2.5^2) + 2(7.3)) = N(66,33.35)$ $T \sim N(66,33.35)$ P(T < 70) = 0.756

- 14 $X \sim \text{no of fish caught by angler in 1 hour}$ $X \sim \text{Po}(1.5)$ P(X = 3) = 0.126
- 14(i) $Y \sim \text{no of fish caught by angler's son in 1 hour}$ $Y \sim Po(1)$ $X + Y \sim Po(2.5)$ $P(X + Y \ge 2) = 1 - P(X + Y \le 1) = 0.713$
- 14(ii) U~no of fish caught by angler in 2 hours V~ no of fish caught by his son in 2 hours U~Po(3) V~Po(2) U + V~Po(5) Prob required $= P(U > V | U + V = 4) = \frac{P(U = 4)P(V = 0) + P(U = 3)P(V = 1)}{P(U + V = 4)}$ = 0.475

Let *F* and *S* be the number of fish caught by angler and his son in *n* minutes respectively.

 $F + S \sim Po(\frac{2.5n}{60})$ $P(F + S \ge 1) > 0.9$ P(F + S = 0) < 0.1From the GC, n = 55: P(F + S = 0) = 0.1011 > 0.01 n = 56: P(F + S = 0) = 0.09697 < 0.01so least n = 56

Since n = 50 is large, By Central Limit Theorem $\overline{X} \sim N(1.5, \frac{1.5}{50})$ approx $P(\overline{X} > 2) = 0.00195$