# Nov 2014 H2 Bio Paper 3

| N14P | 3Q1              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|------|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1(a) | (i)              | Name one genetic disease which has been treated with stem cell transplantation. [1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|      |                  | Bone marrow haematopoietic stem cells transplants from normal healthy bone marrow donors to <u>leukaemia</u> patients<br>Or<br>Neural stem cell transplant for <u>Parkinson's disease/multiple sclerosis</u> by introducing adult neural stem cells into damaged tissue.                                                                                                                                                                                                                                                                                                                |
|      | (ii)             | Explain why stem cell is suitable for this purpose. [3]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|      |                  | <ol> <li>Adult stem cell is <u>multipotent</u> that <u>differentiates</u>* into the respective <u>specialized*</u> cell type, thus restoring function of damaged or diseased tissue.</li> <li><u>Self-renewing*</u> nature of stem cells ensures that transplanted stem cells constantly <u>replicate*</u> in the patient to <u>maintain a constant pool</u> of stem cells</li> <li>As the 'healthy' stem cell carries the <u>normal and functional allele</u> thus they can produce <u>normal levels of functional protein</u> and be used to <u>treat genetic diseases</u></li> </ol> |
|      | b(i)             | Using the letter <b>R</b> , label Fig. 1.1 to identify a feature that allows the virus to bind to cells.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|      | ()               | [1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|      |                  | Note: R can be any one of the 2 types of glycoproteins, one arrow is sufficient.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|      | (ii)             | With reference to your knowledge of retroviruses, explain how expression of an inserted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|      |                  | <ul> <li>gene (transgene) is brought about following infection of host cells with the lentiviral vector. [3]</li> <li>1. Once inside the host cell, retroviruses create <u>double stranded DNA</u> copies of their <u>RNA genomes</u> via <u>reverse transcriptase*</u>.</li> <li>2. Viral genome together with the transgene are <u>integrated</u> randomly into <u>host chromosomes</u> via <u>integrase.</u></li> <li>3. Transgene will undergo <u>transcription and translation</u> by host enzymes to produce <u>normal, functional</u> protein.</li> </ul>                        |
|      | (iii)            | (OUT OF SYLLABUS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| (c)  | <mark>(0U</mark> | <mark>T OF SYLLABUS)</mark><br>[Total : 12]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

2017

N14P3Q2 (OUT OF SYLLABUS)

#### N14P3Q3 (a) Desc

| Feature                                                                                            | Limitations                                                                                                                                                                                                                                                                                                                                                         |
|----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <i>Taq</i> polymerase <b>lacks 3' to</b><br><b>5' proofreading ability</b>                         | <b>Errors</b> occurring early in the PCR reaction will get compounded with each replication cycle and all daughter molecules resulting from this early error will be exponentially affected.                                                                                                                                                                        |
| Synthesis of PCR primers<br>depends on <b>sequence</b><br><b>information</b> from target<br>region | Success of PCR <b>requires knowledge of</b><br><b>sequences</b> flanking target region to be amplified.<br>If the flanking sequences of a gene of interest are<br>unknown, no proper primers can be synthesised to<br>amplify the target DNA sequence. If primers are<br>designed incorrectly, no amplification occurs / wrong<br>DNA fragment(s) may be amplified. |
| Limit to size of DNA fragment to be amplified                                                      | DNA fragments to be amplified are <b>limited to about</b><br><b>3 kb<sup>1</sup>.</b> Further increase in length of target sequence<br>decreases efficiency of amplification. This is because<br>the polymerase tends to 'fall off' DNA template<br>before chain extension is complete.                                                                             |
| Exponential amplification of contaminant DNA                                                       | It is possible to contaminate a fresh PCR reaction<br>with <b>minute amounts</b> of contaminant DNA due to<br>poor laboratory skills. Such unwanted DNA<br>sequences may be amplified to significant amounts,<br>alongside the target DNA sequences.                                                                                                                |

#### (b) (i) Describe the role of the buffer solution in the gel electrophoresis protocol. [2]

- 1. Buffers contain ions which allows conduction of electric current
- 2. Thus allowing the <u>negatively charged DNA molecules</u> to move from the <u>negative</u> <u>electrode</u> to the <u>positive electrode</u>

#### (b) (ii) Describe the role of the loading or tracking dye in the gel electrophoresis protocol. [3]

- 1. Contains glycerol which makes the <u>DNA sample denser</u> than buffer so that DNA sample can <u>sink to the bottom of the well</u>.
- 2. <u>DNA is invisible</u>, so the dyes <u>colour the DNA sample</u> showing if it has been <u>loaded</u> <u>correctly into well</u>.
- 3. <u>2 coloured dyes</u> act as <u>visual markers</u> to show the progress of <u>migration</u> of DNA fragments in the gel.
- 4. One <u>dye</u> typically (moves at speed corresponding to 100bp DNA fragment which) runs <u>ahead of sample</u> and another (moves at speed of 1100bp DNA fragment which) runs <u>after sample</u>.

- (c) (i) Outline the process of genetic fingerprinting using RFLP that could be used to test this seized ivory. [4]
  - 1. <u>Genomic DNA is extracted</u> from the <u>soft tissue/dried blood</u> and <u>cut</u> with <u>same</u> <u>restriction enzyme</u>\* to obtain different-sized DNA fragments.
  - DNA is <u>separated according to size</u> in <u>gel electrophoresis</u> where <u>negatively-</u> <u>charged DNA</u>\* migrates towards the <u>positive electrode/anode</u> when subjected to an <u>electric field / current</u>;
  - 3. Meshwork of agarose fibres impedes movement of longer fragments more than shorter fragments resulting in smallest fragments moving furthest/largest fragments least far from well
  - 4. ds DNA is denatured / made single-stranded and by alkaline / NaOH solution and transferred to a <u>nitrocellulose membrane</u>
  - 5. Carry out <u>Southern blotting/nucleic acid hybridisation</u> by incubating membrane with <u>single strand</u> <u>radioactive probe</u>\* which will hybridise with DNA fragment through <u>complementary base pairing</u>
  - 6. Using *autoradiography/X-ray film*\* over the membrane, the <u>banding pattern can be</u> <u>visualised.</u>
  - (ii) Explain how the genetic fingerprints of the seized ivory could be used to confirm that it originated from elephants in Malawi. [4]
    - 1. Genetic fingerprint is due to <u>different alleles/markers</u> producing <u>different bands</u> in gel resulting in the <u>unique banding pattern</u> in individuals
    - 2. Different bands arise due to <u>polymorphic</u> nature of DNA in different individuals, there will be <u>variations in number and location of restriction sites</u> and <u>number of tandemly repeated nucleotide sequence</u> among individuals.
    - 3. Genetic <u>fingerprint</u> of <u>animals that provided ivory</u> can be <u>compared against</u> <u>fingerprint of elephants from Malawi</u> to see <u>how closely related</u> they are.
    - 4. If fingerprint pattern is <u>similar to pattern</u> to that of Malawi elephants, then ivory haul from Malawi.

### N14P3Q4

# 4 Planning

[Total: 12]

Suggested answer scheme:

Part 1: Aim

To investigate effect of temperature and pH on rate of sucrase activity of 2 enzymes P and Q.

### Part 2: Theory

# (Main Theory): [T1: 1 mark for any 2 points from 1 to 5]

- 1. <u>Active site</u> of sucrase has a <u>specific conformation</u>, <u>complementary in shape</u> and <u>charge</u> to <u>substrate</u>, sucrose.
- 2. Conformation of active site, hence rate of sucrase activity, is affected by temperature and pH.
- 3. Excess [H<sup>+</sup>] or [OH<sup>-</sup>] ions disrupt <u>ionic, hydrogen bonds</u>, which determine tertiary/quarternary structure of enzyme hence its any conformation.
- 4. Increasing <u>temperature</u> (up to denaturation) increases <u>kinetic energy</u> of molecules, increasing rate of <u>effective collisions</u> between enzymes and substrate to form <u>enzyme-substrate complex</u>.
- 5. <u>At optimum temperature and pH</u> of each enzyme, <u>rate of production</u> of reducing sugars is maximum.

(Measurable variable):

6. Mass of <u>brick red precipitate formed</u> when products (glucose, fructose) obtained from hydrolysis of substrate (sucrose) are tested with Benedict's solution. **[T2: 1 mark]** 

**Dependent variable**: rate of sucrase activity (P and Q) as indicated by rate of brick red precipitate formed

# **Independent variable: temperature**

(to ascertain optimum temperature)

### Part 3: Procedure

a. <u>P</u>ilot Test

Conduct a pilot experiment to determine suitable range of independent variables used, suitability of apparatus, <u>concentration of substrate (sucrose)</u>. <u>If substrate is too</u> <u>concentrated, it may be diluted with *distilled water*\* (we can't think of where else to use the distilled water!) **[P: 1 mark]**</u>

- b. <u>Annotated diagram</u> Set-up simple, diagram probably not needed.
- c. Numbered steps in procedure
  - Fill 3 test tubes with 5 cm<sup>3</sup> of <u>5% sucrose</u>\* <u>buffered</u> at pH 7. Use a <u>pH probe, digital</u> <u>meter</u> to measure and monitor pH, and syringes to measure volumes.
  - Fill another 3 test tubes with 1 cm<sup>3</sup> of <u>2% sucrase P</u>\*. These serve as <u>replicates</u> to check that no anomalies are present. [R1: 1 mark for both replicates and repeats, including how they are carried out and why they are carried out] Each sample will follow this procedure:
  - 3. Constant variables include:
    - volume of substrate kept constant 5 cm<sup>3</sup> because extent of enzymatic reaction is affected by substrate quantity,
    - duration of heating in boiling water bath kept constant 3 minutes during Benedict's test as excessive heating converts sucrose into fructose and glucose.
       [CV1 and CV2: 1 mark each for 2 constant variables, including what variables, details on how they are kept constant and why it is necessary to keep variables constant]
  - Place all tubes in a water bath. Keep temperature constant at 30°C. Maintain temperature using <u>thermostatically-controlled water bath</u>\* and monitor temperature with a <u>thermometer</u>\*.
  - Allow substrate (step 1) and enzyme tubes (step 2) to <u>acclimatize separately</u> for 2 minutes to <u>reach set temperature</u>. Add sucrase to each of the sucrose solutions. Use <u>stop watch</u>\* to check starting time. [E: 1 mark for correct acclimatization with reason]
  - After reaction has proceeded for <u>5 minutes</u>, add <u>6 cm<sup>3</sup> Benedict's solution</u>\* to each tube, place in a boiling water bath over <u>Bunsen burner</u>\* for <u>3 minutes</u>.
  - 7. Pre-weigh each filter paper. After the 3 minutes filter the precipitate. Dry precipitate in a desiccator till a constant weight. Weigh mass of precipitate.
  - 8. Calculate dependent variable which is rate at which sucrase P hydrolyses sucrose to fructose and glucose:

average mass of brick red precipitate / time.

[DV: 1 mark – show how to obtain dependent variable including calculation, method of obtaining must be scientifically sound]

- Repeat steps 1-8 using <u>buffered sucrose</u> solutions at 20°C, 40°C. 50°C, 60°C. [IV1: 1 mark - independent variable, with total of 5 temp values of equal intervals. Include how the temperature is created and maintained.]
- Repeat steps 1-9 twice more to check for reproducibility.
   [R1: 1 mark for both replicates and repeats, including how they are carried out and why they are carried out]

d. <u>C</u>ontrol

Keep all variables constant. Set up control experiment at each of the five

<u>temperatures</u> using boiled and cooled sucrase.
 <u>No precipitate formed</u> for Benedict's test – shows hydrolysis of sucrose to monosaccharides is an enzyme-catalysed reaction.
 [Co: 1 mark for either control, including how it is carried out and reason why it is performed]

## Part 4: Data recording and processing:

Table showing rate of sucrase P activity at pH 7

[T1: 1 mark for any full table including correct units - either for enzyme P or Q / either pH or temperature]

| Temperature | Mass        | of precipitate | formed in 5 mir | n/g     | Rate of sucrase       |
|-------------|-------------|----------------|-----------------|---------|-----------------------|
| / °C        | Replicate 1 | Replicate 2    | Replicate 3     | Average | P activity            |
|             |             |                |                 |         | / g min <sup>-1</sup> |
| 20          |             |                |                 |         |                       |
| 30          |             |                |                 |         |                       |
| 40          |             |                |                 |         |                       |
| 50          |             |                |                 |         |                       |
| 60          |             |                |                 |         |                       |

11. Repeat Parts 3 and 4 <u>using sucrase Q to replace sucrase P</u> to determine optimum temperature of sucrase Q.

# Independent variable: pH

Once optimum temperatures for sucrase P and  $\overline{Q}$  are obtained, proceed to identify the optimum pH of sucrase P and Q.

Repeat Parts 3 and 4 – with the following changes:

### Part 5: Procedure

#### c. Numbered steps in procedure

- 1. Fill 3 test tubes with 5 cm<sup>3</sup> of 5% sucrose buffered at pH 7.
- Place all tubes in a water bath, keep temperature constant at optimum temperature of <u>2% sucrase P\*</u> determined in Parts 3, 4.
   Repeat steps 1-9 using buffered sucrose solutions of pH 5, 6, 8 and 9.
- Repeat steps 1-9 using buffered sucrose solutions of pH 5, 6, 8 and 9.
   [IV2: 1 mark independent variable, with total of 5 H values of equal intervals. Include how the pH is maintained.]

<u>d. C</u>ontrol

Keep all variables constant. Set up control experiment at each of the <u>five pH</u> using boiled and cooled sucrase.

No precipitate formed for Benedict's test as in Part 3.

[Co: 1 mark for either control, including how it is carried out and reason why it is performed]

#### Part 6: Data recording and processing:

Table showing rate of sucrase P activity, at optimum temp.

| рН | Mass        | s of precipitate | formed in 5 mir | n/g     | Rate of sucrase P   |
|----|-------------|------------------|-----------------|---------|---------------------|
|    | Replicate 1 | Replicate 2      | Replicate 3     | Average | activity / g min -1 |
| 5  |             |                  |                 |         |                     |
| 6  |             |                  |                 |         |                     |
| 7  |             |                  |                 |         |                     |
| 8  |             |                  |                 |         |                     |
| 9  |             |                  |                 |         |                     |

11. Repeat Parts 5 and 6 using sucrase Q replacing sucrase P.

[Fa: 1 mark for doing experiment 1 variable at a time]

#### [M: 1 mark for using all compulsory reagents and apparatus marked with \*]

#### Graph showing rate of sucrase activity at pH 7, of enzymes P, Q



Graph showing rate of sucrase activity, at the respective optimum temp. of sucrases P, Q



[G: 1 mark for either graph with trend and labels]

#### 10. Risks and precautions [1 mark]

- (i) Use a boiling tube holder to remove boiling tubes from boiling water bath, in order to prevent scalding.
- (ii) Wear gloves when measuring enzymes P, Q (or use of acid/alkali) as they are irritants.

| <del>ຟວ</del><br>/ | a) and (b) (OUT OF SYLLABUS)                                                                                                                                                                          |  |  |  |  |  |  |
|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| ) (<br>            | a) and (b) <b>(OUT OF STELABUS)</b>                                                                                                                                                                   |  |  |  |  |  |  |
| ~, .<br>k          | because of difference between prokarvotes and eukarvotes, including the                                                                                                                               |  |  |  |  |  |  |
| r                  | presence of introns.                                                                                                                                                                                  |  |  |  |  |  |  |
|                    |                                                                                                                                                                                                       |  |  |  |  |  |  |
| (                  | Jutline these problems and explain how they are overcome in order to allow                                                                                                                            |  |  |  |  |  |  |
| e                  | expression of eukaryotic genes in plasmids within <i>E. coll</i> cells.                                                                                                                               |  |  |  |  |  |  |
|                    | 1. Pre-mRNA produced from transcription of eukaryotic genes have introns and exons;                                                                                                                   |  |  |  |  |  |  |
|                    | 2. During <u>splicing</u> <sup>*</sup> in eukaryotic cells, <u>introns are excised</u> and <u>exons</u> joined together by <b>spliceosomes</b> <sup>*</sup> to form <b>mature mRNA</b> <sup>*</sup> ; |  |  |  |  |  |  |
|                    | 3. Unlike eukaryotic cells, prokaryotic cells <u>do not have</u> <b>spliceosomes</b> * and are unable to carry out splicing to form mature mRNA;                                                      |  |  |  |  |  |  |
|                    | 4. In turn, translation of pre-mRNA in prokaryotes results in <u>non-functional</u> protein produced:                                                                                                 |  |  |  |  |  |  |
|                    | <ol> <li>To overcome this problem, <u>reverse transcriptase</u>* can be used to<br/><u>reverse transcribe</u> <u>mature mRNA</u>* from eukaryotes to form<br/><u>complementary DNA</u>*;</li> </ol>   |  |  |  |  |  |  |
|                    | 6. <b><u>RNA polymerase</u></b> <sup>*</sup> in prokaryotes are <u>unable to recognize and bind</u> to eukaryotic <b>promoters</b> <sup>*</sup> to express eukaryotic genes:                          |  |  |  |  |  |  |
|                    | <ol> <li>This can be overcome by inserting the eukaryotic gene just<br/>downstream of a <u>prokaryotic <b>promoter</b></u>* in the plasmid;</li> </ol>                                                |  |  |  |  |  |  |
|                    | 8. <u>Prokaryotes are unable to carry out post-translational-modification</u> to form functional eukaryotic proteins:                                                                                 |  |  |  |  |  |  |
|                    | <ol> <li>e.g. functional <u>human insulin</u> is formed following cleavage of the C<br/>chain and formation of disulfide bonds between the A and B chains:</li> </ol>                                 |  |  |  |  |  |  |
|                    | 10. A and B chains can be purified separately from different bacteria cultures and formation of disulfide bonds between them chemically induced:                                                      |  |  |  |  |  |  |