2022 DHS H2 Physics Prelim Paper 3 Suggested Solutions

Section A

1	(a)	(i)	(50 to 200) x 10 ⁻³ kg	A1
---	-----	-----	-----------------------------------	----

(ii) diameter of tennis ball is about 6 – 7 cm

volume =
$$\frac{4}{3}\pi r^3$$
 from 110 to 180 cm³ A1

C1

$$C = \frac{Q^2}{2E}$$

units of
$$C = \frac{A^2 s^2}{kgm^2 s^{-2}} = kg^{-1} m^{-2} A^2 s^4$$
 A1

2	(a)	(i)	1.	equal	B1
			2 .	density of ice is less than density of water	B1

$$m_{\text{ice}}g = m_{\text{displaced water}}g$$

 $m_{\text{ice}} = m_{\text{displaced water}}$

2. $V_{ice}\rho_{ice} = V_{displaced water}\rho_{water}$ since $V_{ice} > V_{displaced water}$, then $\rho_{ice} < \rho_{water}$

 (ii) mass of ice becomes equal mass of water after melted/ mass of melted ice equal mass of displaced water
 B1
 volume of melted ice equals volume of water displaced/ melted ice fills the space of water displaced by ice
 B1
 so level does not change
 A1

(b) (i) Upthrust is equal in magnitude and opposite in direction to the weight of the fluid displaced by a submerged or floating object. B1

- (ii) Upthrust = weight of water displaced by the anchor= density of water x volume of anchor x g
 - = 1030 x 0.50 x 9.81 C1
 - = 5050 N A1
- (iii) Let volume of air be V Upthrust on lifting bag + upthrust on anchor – weight of anchor = ma(1030)V (9.81) + 5050 – 7800(0.50)(9.81) = 7800(0.50)(2.50) C1 $V = 4.25 \text{ m}^3$ A1

3 (a) (i) 5.00 cm

(ii)
$$\omega = \frac{2\pi}{T}$$
 C1

$$=\frac{2\pi}{4.0}$$
 = 1.6 rad s⁻¹

A1

B3

(iii)
$$v_0 = \omega x_0$$
 C1
= (1.6)(5.0) = 8.0 cm s⁻¹ A1

(b) Any three points below, 1 mark each

- initial pull was to the right
- distance from X to trolley (at equilibrium) is 20 cm
- initial motion undamped
- motion becomes damped at/from 12 s
- damping is light
- maximum speed at 1 s, 3 s, etc. / stationary at 2 s, 4 s, etc.
- (c) sketch closed loop encircle (20,0) see belowB1minimum L shown as 15 cm and maximum L shown as 25 cm andandminimum v shown as -8.0 cm s⁻¹ and maximum v shown as 8.0 cm s⁻¹B1

4 (a) (i) Fundamental mode of vibration, $\lambda = 4L = 0.680$ or L = 0.17 m (not formed)

1st overtone:
$$\lambda = \frac{4L}{3} = 0.680 \text{ or } L = 0.51 \text{ m (formed)}$$
 A1

2nd overtone:
$$\lambda = \frac{4L}{5} = 0.680 \text{ or } L = 0.85 \text{ m (formed)}$$
 A1

(ii)

- (b) waves pass through/enter the slits in the gratingB1waves spread out after passing through/entering the slitsB1
- (c) (i) $d\sin\theta = n\lambda$ C1

or
$$\sin \theta = \frac{n}{d} \lambda$$

Hence $G = \frac{n}{d}$ or $d = \frac{4}{G}$ A1

(ii)

straight line from 400 mm to 700 mm that is always below given line **M**

straight line has smaller gradient than given line and is 5 small squares high at wavelength 700 nm A1

M1

5 (a) The velocity v may be resolved into two components – one parallel to the
magnetic field B, which is $v\cos\theta$, and the other perpendicular to B, which
is $v\sin\theta$.B0
 $v\sin\theta$ results in a circular motion of the proton in the plane perpendicular to
 \underline{B} .B1
Using Fleming's Left-hand Rule, the centripetal force is directed into the page
initially.B1
 $v\cos\theta$ causes the proton / circle to move at constant speed in the same
direction as B.B1

Consequently, the proton moves in a <u>helical</u> path.

B1

(ii) Using
$$F = Bqv \sin\theta$$
, we get
 $F = 3.8 \times 10^{-4} (1.6 \times 10^{-19}) (1 \times 10^5) \sin 55^0 = 4.98 \times 10^{-18} \text{ N}$
A1

$$= 5.0 \times 10^{-18}$$
 N (to 2 sf)

6

- (a) (i) The direction of induced e.m.f. produces effects that oppose the change in magnetic flux
 B1
 - (ii) As the current in the solenoid is switched on, the <u>magnetic field in</u> <u>solenoid</u> is increases.
 B1 This causes an increase in <u>magnetic flux linkage</u> through <u>the small coil</u>.
 B1

By Lenz's law, the magnetic field in the coil <u>point upwards</u> to oppose the increase in flux linkage. **B1**

(iii)

B1

(A)	small coil
τ	

(b) e.m.f. =
$$N \Delta \phi / \Delta t$$

= $(75 \times 1.4 \times 10^{-3} \times 7.0 \times 10^{-4}) / 0.12$
= $6.1 \times 10^{-4} V$ A1

7 (a) (i)
$$Q = (M_{Ra} - M_{Rn} - M_{\alpha})c^2$$

= (226.0254 - 222.0176 - 4.0026) x (3.00 x 10⁸)²
= 7.7688 x 10⁻¹³ J C1
= (7.7688 x 10⁻¹³) / (10⁶ x 1.6 x 10⁻¹⁹) M1
= 4.86 MeV A0

(ii) Conservation of momentum:
$$MV + M_{\alpha} V_{\alpha} = 0$$
 (1) M1

Conservation of energy: $Q = \frac{1}{2}MV^2 + \frac{1}{2}M_{\alpha}V_{\alpha}^2$ (2) M1

From (1):
$$V = -\left(\frac{M_{\alpha}}{M}\right)V_{\alpha}$$
 (3)

Sub (3) into (2)

$$Q = \frac{1}{2} M \left(-\left(\frac{M_{\alpha}}{M}\right) V_{\alpha} \right)^{2} + \frac{1}{2} M_{\alpha} V_{\alpha}^{2}$$
$$= \frac{1}{2} M_{\alpha} V_{\alpha}^{2} \left(\frac{M_{\alpha}}{M} + 1\right)$$
M1

$$= K_{\alpha} \left(\frac{M_{\alpha}}{M} + 1 \right)$$
 A0

(iii) **1.**
$$4.86 = K_{\alpha} \left(\frac{4.0026}{222.0176} + 1 \right)$$
 C1

$$K_{\alpha} = 4.77 \text{ MeV}$$
 A1

2. The alpha particles carries away most of the energy (98%). B1

(b) alpha particle kinetic energy per mm =
$$\frac{4.77}{25}$$

energy to produce an ion pair =
$$\frac{0.191 \times 1.6 \times 10^{-13}}{5.0 \times 10^3}$$
 C1

Section B

8	(a)	(i)	2 <i>mu</i>	A1
		(ii)	2L / u	A1
		(iii)	force = <i>N</i> x change in momentum / time = <i>N</i> 2 <i>mu</i> / (2 <i>L</i> / <i>u</i>)	
			$= Nmu^2 / L$	A1
		(iv)	pressure = force / area = $(Nmu^2 / L) / L^2$	
			$= Nmu^2 / L^3$	A1

or
$$c^2 = u_x^2 + u_y^2 + u_z^2$$

or
$$\langle c^2 \rangle = \langle u_x^2 \rangle + \langle u_y^2 \rangle + \langle u_z^2 \rangle$$

Since the molecules are in random motion, on average,

$$< u_x^2 > = < u_y^2 > = < u_z^2 >$$
 B1

Thus

$$< c^2 > = 3 < u_x^2 >$$

 $< u_x^2 > = \frac{1}{3} < c^2 >$ B1

From (a) (iv),
$$p = Nmu^2 / L^3$$

or $pV = Nmu^2$
 $pV = \frac{1}{3}Nm < c^2 >$ A0

(ii)
$$pV = NkT$$
 C1

$$NkT = \frac{1}{3}Nm < c^{2} >$$

multiply $\frac{3}{2}$ to both sides: $\frac{1}{2}m < c^{2} > = \frac{3}{2}kT$ and $\frac{1}{2}m < c^{2} > = E_{K}$ M1

so
$$E_{\rm K} = \frac{3}{2}kT$$
 A0

(c)
$$\frac{1}{2} \times 3.34 \times 10^{-27} \times \langle c^2 \rangle = \frac{3}{2} \times 1.38 \times 10^{-23} \times (25 + 273)$$
 C1

r.m.s. speed =
$$1.9 \times 10^3$$
 m s⁻¹

(d)	internal energy = ΣE_{K} of molecules + ΣE_{P} of molecules B <u>no forces between molecules</u> , so potential energy of molecules is zero B				
(e)	(i) (ii)	increase in internal energy = Q + work done constant volume so no work done thermal energy per unit mass to cause a unit change in tempera	B1 B1 ature B1		
	(iii)	$c = Q / Nm\Delta T$ = [N × (3/2)k\[Delta T] / (Nm\[Delta T]) = 3k / 2m	C1 M1 A0		
(f)	As the gas expands, it does work against the atmosphere/external pressure B1 for same temperature rise, more thermal energy needed, so larger specific heat capacity B1				
(a)	similarity: both are radial or both have inverse square variation with distan I difference: direction is always/only towards the mass or direction can be towards or away from charge				
(b)	gravitational force = $mg = 1.67 \times 10^{-27} (9.81) = 1.64 \times 10^{-26} \text{ N}$ electric force = $qE = \frac{qV}{d} = \frac{1.6 \times 10^{-19} (270)}{1.8 \times 10^{-2}}$ = 2.4 x 10 ⁻¹⁵ N electric force is about 10 ¹¹ times larger than gravitational force hence gravitational field not taken into consideration				
(c)	(i)	$V = \frac{Q}{4\pi\varepsilon_0 r}$ $\frac{4.0x10^{-9}}{4\pi\varepsilon_0 x} + \frac{-7.2x10^{-9}}{4\pi\varepsilon_0(0.12 - x)} = 0$ 4.0 (0.12 - x) = 7.2x x = 0.043 m	C1 A1		
	(ii)	At P, the electric field strengths due to both charges are in the s direction so the electric field strength is not zero.	ame B1 A1		

(iii) straight arrow drawn leftwards from X, in direction between extended line joining Q and X and the horizontal A1

- (d) The gravitational field strength equals the negative of the gravitational potential gradient.
 B1
- (e) (i) gravitational potential is zero at infinity
 gravitational force is attractive
 mass getting closer to moon/planet loses potential energy or negative work done to bring mass from infinity to moon/planet
 B1

(ii) Any two points below, 1 mark each B2

- potential at surface of planet is smaller than at surface of moon
- potential gradient at surface of planet is smaller than at surface of moon
- magnitude of potential varies inversely with distance from centre near the spheres
- point of maximum potential is nearer to the moon than planet
- (iii)curve, starting with gradient of decreasing magnitude at 2R and finishing
with gradient of increasing magnitude at D RB1field strength shown as zero at the point of maximum potential
negative field strength near one sphere and positive field strength near
the otherB1

