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Chapter
Differentiation Techniques

At the end of this chapter, students should be able to:
(a) understand the derivative of f{x) as the gradient of the tangent to the graph of y = f{x) and

f(x+6x)—f(x) to find the derivative of f{x); |

ox |

applying the First Principles }irr%)

(b) apply the following rules of differentiation: Product Rule, Quotient Rule, Chain Rule;

(c) find the approximate value of a derivative at a given point using a graphical calculator;

(d) find the derivative of x" for any rational n, a*, log, x, together with constant multiples,
sums and differences;

(e) understand the derivative of sin x, cos x, tan x and their inverse functions, together with |
constant multiples, sums and differences; -’

(f) find and use the derivative of simple functions defined implicitly.

(g) find the derivative of functions defined parametrically.

7.1 Rules of Differentiation (Independent reading)
Let u and v be functions of x with #, ¢ and d being constants.

a. Derivative of a constant:

d o= 4 50)=
a(c)—o e.g. dx(SO) 0

b. Derivative of c(u):

-dd;(cu) =c-dd:(u)=c% e.g. %(5x)=5%(x)=5(1)=

c. Derivative of X", neR:

Ec:?(cx")zc—(;i—x(x")=c(nx"'1)=cvnx"‘l e8 —(3x) 3 (x) :”(SJC)—ISx4

d. Sum and Difference Rules:

d
10+ 12 10 1/2
Ecl—[cu+dvl c%+d% (12x x")=12— ( )+3dx( ) |

:12(10x9)+3(% x—ln)

— 12020 + 25712
2




2 Chapter 7: Differentiation

e. Product Rule:

a;‘—(uv)=v%+u:x—v e.g. %(sz)(Zx+l) =(2x+1)-&d;(3x2)+(3x2)%(2x+1)
=(2x+1)(6x)+(3x*)(2)
=18x" +6x
f. Quotient Rule:
Jdu_ d An _ i g L3
1 C IR gl e
dxe\ v v i ()(“-g. (?)xn 'le +(2,)xn 15\(1+-' -(2)‘8)(')—-?("
. %(xzxjrl]=(x2+1):x(x32)—x:%(x2+l) X0 ~ n $ X —
o) i (XX HG)XTEE +- (e
:(x2 +1)(3x*)-x* (2x) " o $x -
et A e ) 0 ()]
X (37 +3-2x") = [im
(1) e 5
xz(x2+3)
(@) = nx"'

g. Chain Rule:

We can apply chain rule to differentiate composite functions using the result

& _EF S , where y and u are both functions of x.
dx du dx

e.g. Given that y =5(x* +4x)’, we want to differentiate y w.r.t x.
y =5(x* +4x)*

% = %(x2 + 4x)3

= 5[3(x2 +4x)2]%(x2 + 4x)

= 15(.7:2 +4x)2 (2x+4)

In general, de—[f(x)]" = n[f(x)]"—1 xf'(x), neR.
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Example 1

Find % for each of the following:

(@ y=(32+7x+1) (b) y=;
(x% +1)
3 3
d =231_2‘§ =2x+7
@ y=2x'(1-x) © y="—
Solution:

() y= (x2 +2)e

& y=\=

x“+1

(a) y=0C3x+7x+1)’
% =503x* +7x +1)* %(3):2 +7x+1) |
=5(3x’ + Tx+1)*(6x+7)

® y=

1 —
=(x*+1) 2
Vx?+1
dy

_3
. a=——;—(x2+1) 2(2x)

=—x(x*+ 1)_%
() y=@"+2)
gx—y =e(x’+2)"'(2x)
=2ex(x* +2)°"

3

@ y=27(1-x)2

d _3 3 _3
L _ex*(1-x) 2+:Zx’li——(1—x2) 2(—2x):|
dx 2

3 23
= 6x*(1-x?) 2 +6x*(1-x2) 2
_3
S =6x"(1-x) 2(1—x2+x2)

_3
= 6x*(1-x) 2
_ 2%’ +7
x+1
dy ~ 6x* (x" +l)—(2x3 +7)(4x3)
dr (x“+l)2

(e)

A

Why is it desirable to write
N
VG2 +1)

when differentiating?

1
as  (x?+1)?2




Chapter 7: Differentiation

2x? (3x4 +3-4x - 14x)

(x‘+1)2
20 (3-14x-x")
(x"+1)2
x
@ r= x*+1
Ly
Gy s )
de 2\ x*+1 de\ x? +1
1
=l[ x )_Zx(x2+l)-1—x(2x)
2\x" +1 (¥ +1)°
. 1
l(x2+1)E 1-x? 1-x?
= — X = —_—
2l » (o +1)° , J;( \/"T*—l)3

Note:
1.

2.

sin f(x) : f (x)i 'co:f(x) -
coSs X ~sinx cos f{x) — f'(x)x sin f{x)
tan x sec’x tan f{x) f'(x)x sec” fix)
sec x sec x tan x [MF 26] sec f{x) f'(x)x sec f{x) tan f{x)
cosec x — cosec x cot x [MF 26] | cosec flx) |- f'(x)x cosec f{x) cot f{x)
cot x — cosec’x cot f{x) — f'(x)x cosec? f{x)
Table 7.1

d n o - d
— MmO = . on
dp s db Sin 155

: - . . . . . or
When differentiating trigonometric functions, x must be in radians. = é-’:a ol 10

and obtain the derivative by applying

5 -1
You could write sec x as (cosx) or

cosx
ydu_ v
fx-[f(x)]" = n[£(x)]"" x£'(x) (Chain Rule) or %(ﬁ) ——dx _ d¥ (Quotient Rule).
v v

The same method applies to differentiating cosec x and cot x.

Important: (cosx)  is not to be written as cos™ x.

y=cos™ x is the inverse function of y =cosx.
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Example 2

en

(i)  Prove that %(tan x)=sec’ x.

(i)  Differentiate the following with respect to x:

(a) cos’ (3x2) (b) sec’(5x) (c) x* sin’x (d) tan(xz)—x2

Solution;

cosx~d—(sin x) —sinxi(cosx)
(1) itanx:i(smx)= dx dx

dx dx\ cosx cos’ x
2 5 . .
_Cos” x—(sinx)(—sinx) cos? x+sin’x 1 2
= 5 = = = 7 = sec” x
cos’ x cos® x cos’ x

() e0s* (32) =L cos(32?) ]
=2 [cos (3x2 )]H %[COS(3X32 )|
=2cos (3x2 )[— sin(3x?) i(3)«:2 )] =—12xsin(3x*) cos(3x*) = —6xsin(6x?)
dx
(b) % sec’ (5x) = 5[sec(5x)]*[Ssec(5x)tan(5x)]= 25sec’ (5x) tan(5x)
(c) %(x2 sin’ x) = 2x sin’x + x*(2sin x cos x) = 2x sin x (sin x + x cos x)

£ (tan(a?) - ) = sect () (1) -2

(d) dx
=2xsec’(x’)—2x
= 2x(sec’(x*)-1) [since 1+tan’ @ =sec’ 6]
=2xtan’(x)

7.318 Using the Graphic Calculator (GC) to find the approximate value of the derivative
at a particular point

Given y = f(x), we can use the graphic calculator to calculate the numerical value of the

derivative % or slope of the tangent line at a given point on the graph of f{x).

Example 3

Use the GC to find % at the point where x = 2 given that y = 3x* +5 .
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Method 1: We can enter the function into the graphic calculator and find the value of the

derivative of function at the point where x = 2.

§ Solution:

< TR
ALPHA

Step 1: Press

screen.

shown below.

NORHAL FLOAT AUTO REAL RADIAN MP n

& to call the command 3:nDeriv( on the

Step 2: Enter the function y = 3x*+5 and x = 2 into the GC as

NORMAL FLOAT AUTO REAL RADIAN MP n
d y
ax (3X"45) e,

%(3):“+5)|,,=2 is the

value of -d—(3x4+5)
dx

when x = 2.

Check for yourself that
the derivative obtained
is the same as using

computation by hand.

Method 2: We can also find the derivative by graphing the function using the GC.

§ Solution:

Step 1: Enter the function y = 3x* +5 into Y; = and press (e to graph the function.
P

Step 2: Press m @ to select the command 6:dy/dx, the numeric derivative

option. This will return the user to the graph screen.

Step 3: Enter the X value by pressing z] and you will see X=2 on the graph screen. Then

press(mJ. This will give you the value of % atx=2.

NORMAL FLOAT AUTO REAL RADIAN MP n

CALCULATE
jHvalue
2:zero
3iminimum
4:maximum
S:intersect
6:dysdx

7: S f(x)dx

Note:

NORMAL FLOAT AUTO REAL RADIAN MP n NORMAL FLOAT AUTO REAL RADIAN MP n
CALC DERIVATIVE AT POINT CALC DERIVATIVE AT POINT
Y1=3X"4+5 \}/
= dy/dx=96.000024
X=2 X=2 Y=53

When using the GC, there are some restrictions in it giving numerical answers instead of exact

answers.
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7.4 Differentiation by first principles
The gradient at any point on the curve is defined as the gradient of the tangent at that point on

the curve.
Consider a curve y = f(x). Let P(x, y) be an arbitrary fixed point chosen on the curve. Our

objective is to find the gradient of the curve at P.

yl\

(x+dx, y+y)

%

Let Q(x+dx, y+6y) be another point on the curve near P where &x (read as ‘delta x”) denotes the

small increment of x and Jy (delta y) denotes the corresponding small increment of y.

The gradient of the chord P gy
X

Now imagine Q to be a “bead” threaded to the curve and is gradually sliding down towards P.

As Q approaches P, we see that the gradient of the chord PQ approaches the gradient of the

tangent to the curve at P.

Gradient of the curve at P = gn}p (gradient of the chord PQ)

= lxmé— (since Q > P as &x — 0)
5x-0 §x

Since 6y =f(x+ 6x)—f(x), the gradient of tangent at P is

lim Sy l]mf(x+5x) f(x)
5x50 §x x>0 ox

; ; - é
This process of taking the limit of 6_i) as &x — 0 to find the gradient of the tangent at a point

on the curve is known as differentiation by first principles.

dy, .
The symbol * 2> is used to denote the more cumbersome notation lim o , Le. .2 = lim 24
dx 520 §x dx 048
Ay, —_—
The symbol di is called the derivative of y with respect to x or equivalently, the gradient

function corresponding to the curve y = f{x).
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Remarks:

1. Ify = f(x), we can also denote % by f'(x) (read as ‘fprime of x*).

2. ¢ m " iS an operator, not a fraction. % is read as ‘the result when % operates on )’ or

‘differentiate y with respect to x’.

Input Operator ; O(liltpllt
y=£f(x) —» d — 2 —[f(x)] or £'(x)
- dx  dx
dx
Function Derivative }

Example 4

Use ‘Differentiation by First Principles’ to find f’(x) given that f(x) = x*.

Solution:

Using first principles,

2 2 2 )
f'(x)= lim £E+00) () _ . (x+6x)" —x x* +2x6x+(5x)* —x

= lim

5x—0 ox 5x—0 ox 5x—0 ox
> Sx[2x+ (S
= Jim 205 @) Sx[2x1(@n)] lim(2x + 5x) = 2x
5x—0 ox x50 ox 8x—0
Example §

Use ‘Differentiation by First Principles’ to find f'(x) given that f(x)= —1-

X
Solution:
Using first principles,
1 1 x—(x+6x) —Ox
£(x) = lim f(x+dx)—1f(x)  lim Xt0x x _ lim x(x+06x) - lim x(x+6x)
5x—0 ox 8x—0 ox 8x—0 ox 8x—0 ox
. -1 1
=lm ———=—-—
810 x(x + 0x) x°

Example 6

Use ‘Differentiation by First Principles’ to find f' (x) given that f(x)=sinx.

. sinf
[Take Llilg ) =1]
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Solution:
Using first principles, ﬁ
f(x+6x)—f(x) Recall that in [MF 26]:
f'(x) = lim
530 ox sin P—sinQ = 2cos—(P+ Q)sm (P-0)
. sin(x+0x)—sinx
= lim
8x-0 ox
2c0sL (2x+6x)sin— (5x)
= lim —2
x50 5x
cos L (2x+5x)sm (5x)
= lim —2—
2 Applying theorem of limits:
1 sinl(ax) Given that limf (x) and limg(x) exists,
= lim cos—(2x +6x) lim : - x—>a
7(6%) lim[ £ (x)g(x)] = limf (x)lim g ()
1 sm9
=[cos;(2x)}(l) Using E_I,% -
=cosx

Self-Review 1
Use ‘Differentiation by First Principles’ to find f'(x) given that f(x)=x’.

7.5 Implicit Differentiation

Suppose we are given y = f{x). Then to find % we simply differentiate f{x) directly. However,
there are instances when y cannot be written explicitly as a function of x. In this case, y is said
to be an implicit function of x. In such cases, we will use the chain rule to find % This

process is known as implicit differentiation. So to differentiate a function in y with respect to

d
BV Y g, example iyz =i(y2)£}i=2yd—y

d
x, we have —[g(y)|= .
dx (8] dy dr dx dy = " dx de

To obtain the derivative of an implicit function, differentiate the given equation term by term

with respect to the variable required.
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We can also differentiate the given equation with respect to another variable. For example:

|
Differentiating )* + x = 1 with respect to y, we get: Zygl + ix_ 0
y

dy

Note: dr and L are both equal 1.
dx dy

Example 7

(a) Find % in each of the following in terms of x and y:

() y+y+xy=1 (1) smy=e".

(b) Without the use of a Graphing Calculator, find % at the point where x = 0 given

that y = i+x2 (|x|<l).

Solution:

(@@ y+y +xy=1 Note:

Differentiate the equation implicitly w.r.t x, @) _&d; (¥)=2x, but (_;ix_ ()£ 2y.

d d ., d . d
E(J’)+E(J’ )+E(xy)—dx(l)

d oy

B R Y | As —[gD)]=g'() =
¥ =0 | 50 Lon=2pL(y)=2y &
; au;@‘ﬂ”‘*‘)"?‘*‘ﬂ‘ 5% 4 » ”
i E By the product rule,
Y E dy P ;‘ = )
 dX 2yt | 3=y @ +x—(y)
\\ _______________________________________________ " _ dy

_ —y+xdx

(@)(u) smny=e

dy . .
Implicitly differentiate w.r.t. x, Note that o terms of x and y.

4 sinyy=de Y _ e (a)(ii)

dx(smy) dx(e ) :>cosydx e ) .

d_y= oF a(smf(x))=cosf(x)a(f(x))
dx cosy

2
®) y= ft; (I¥<1) (b) Why must || <1?

Another method is to differentiate
Squaring both sides of the equation,

. o ody  df 1+

1+ x2 directly, 1.e. —=—

2=1+x2‘ y . dx[ 1_x2]
—x

y

Differentiating implicitly, we obtain Compare with the method of
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11
g dy 2x(l—x2)—(—2x)(1+x2) squaring both sides, which method is
4 dx (1 i )2 easier?
5 x(l 41 +x2) e There is 3rd method, which is to take
= N\ = S\ - In both sides. We will discuss this
(=) (1) .
d_y _ 2 method further later in Example 9(g).
-]
“ot w gve Y :
Whenx=0,! Y=\ vo e :
Example 8 (MB N84/11/6)
A curve is defined by the equation x* + ¥} +3xy — 1 = 0. Find the gradient of this curve at the
point (2, —1).
Solution:

Differentiate the equation with respect to x, we have
X+ +3xy-1=0

2 dy

3P +3y° L+ By +3x—=
Y3 3y

dy _3x-3y —x'-y
de 3y +3x

& _-@-h_-3_

At the point (2, —1), e @ 3

Therefore, gradient of this curve at the point (2, —1) is —1.

Extension:
Obtain the coordinates of the
point on the curve at which

gradient is zero.
Ans: (-1,-1)

Self-Review 2

Find % for 2cos y + sinx = y” in terms of x and y.

- d
d syt Ssitx = Sy

ax

- g( -'Lsi\n3d3'g_( £ X = 7-:9%

= o

CREDE -

P co) X

-

BT sy

d_y: COS X
dr 2(y+siny)

11
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7.6 The Derivative oflog.x (¢>0,a#1, x>0)

We know that —(logg x)——(lnx)— (Or more generally, g —Inf(x)= L xf'(x))
dx f(x)
So i(loga x) :i(_lﬂ.) - i(_l_x In x] Change of logarithm base:
dx dx\Ina/ dx\Ina oz B log,b Inb
oga = — T —
log.a Ina
= 1 i([nx)z(L (l)
Ina )/ dx Ina )\ x
1 4 (x+Ex) ~lyx
xlna (|V\X) = h":o T
d __1 x t§x
dx(log,,x)—xlna _ 7] ’?‘)

More generally, i[logﬂ f(x):l _ f (x) Jx
dx (lna)f(x) ”_éy
< W) < n(C 8")
7.7 The Derivative of a* (a>0, xeR) i b =
We know that i(e") =e*.
dx
d

More generally, by the chain rule, a(e“") =f'(x)e™

Let us consider the function y =a* in general.

Taking In both sides gives Iny=xlna

Differentiating w.r.t x, lfil =lna = d_y =ylna=a"lna

y dx dx

% (a" ) =a’lna
More generally, i(af(”)) =a""f'(x)Ina

dx
Example 9
Differentiate the following with respect to x:
1

(a) x'log,x (b) sin (e ) (c) xe* (d) 10%

(e) e ® m((‘le)z)J (2) M

e "(1+x e "(1+x")

X 3 (
— o S /h’-H xgx
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Solution:
d 3 d 31ﬂx 1 d 3
(a) dx(x 0g, ) dx(x — ln2dx( )
2
L lisemy=2(+3mx
In2 x In2
. 2\ _ x? d 2 _ x* x?
(b) Esm(e )—(cos(e ))ae =2xe cos(e )
(c) d xzei (2.7c)el+x2 L o l(2 1)
] = x ——eF —e*(2x—
dx X )
(d) %(103*)2: 10°*(3)(Inl0) ; (d) Remember to differentiate
L | 3% w.rt. x.
; . alnf) _
e _.| () Recall that
L gx(e™ )= 50X = 2 |t
: o i| e =f(x) where f(x)>0.
""""" Zerly YT
® ln(e(*(l—w)ﬂl:m(zx“)z““(e 1+2)) (9 Applying the rules of
Ay O BT 3D Rl DY BN D . T N : iffentiati
- _&_D“(ml_ | axny _‘“u_.,(‘“(_,x: logarithm before diffentiating
= _ ‘ ( l | eases the differentiation

d (Q@x+)* ) 4 . 3%
dx le™(1+x%)) 2x+1 1+x°
T 75 8D Sttt “
; [d'H"é-_;“—-*),,) = WY = 2N + 2\l 4x>) N
(®: q X 2 222 | (g) This is a typical example
: s = -._x_-- 1 o :
E =M= o+ Ay, ditteretiociy MpWAY of using rules of logarithm
g -—Q—‘%.{= ,:"-—;\- % \= :\3%1 i followed by implicit
LA ] differentialtion.
I 4 S 3P ) @x+)? (4 3
ar Y\ 2x+1 1+x ) e (1+x*)| 2x+1 1+x°
7.8 Differentiation of Inverse Trigonometric Functions

The Derivative of sin”' x (-1<x<1)

It is noted that f(x)=sinx is a 1-1 function for _%SXS%’ which is also known as the

principal range for x.
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_________________________________________________________________________

—
g
_‘lﬂ
o
Ay
u
S
=4
IR
b g
+3
&
A
In
>
\_L\
\
n
>
b8
(
el
'n
Iy
(A
NN

___________________________________________________________________________

then siny=x

Differentiating implicitly w.r.t x

Ay
Qcos y=1 = __1 R et
dx dx cosy 3
However, cosy = i\fl —sin’ y and
. = -1 1 x
since _ES y SE, we have cosy=>0

| n
Thus, cosy =+/l—sin’ y ) | By

—>0.
dx

Hence we have the following results:

%(sin_l x) = =, —1<x<1 (in MF 26)
1-x

f'(x)

d,.
—(sin”" f(x) ) = ————,
dx( ) V1-[f()T

-1<fix)<1

Self-Review 3

Without the use of tables or standard results, find % for

1 1

-‘“_xz ’l+x2]

@ y=cos'x,(-1<5x<1) (i) y=tan'x,(xe R) [-

Solution
(i). It 1s also noted that f(x)=cosx is a 1-1 function where 0 < x <, which is known as
the principal values for x.

We denote the inverse function f'(x) by cos™ x.

Thus, if y=cos™ x where —1<x<1 ,and 0<y<~

then cosy=x

Differentiating implicitly w.r.t x ,
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__________________________________ N aV e
g M A dy \
4 ot =L

[~

=

2
(<
n[
e

£ Y
N
©
Y
<
N
o
Py
o

-
>
I'n
<
I~
a

____________________________

Note that, from the graph of y = cos™'x for —-1< x <1, it is a strictly decreasing function, hence

:ﬁ <0

Thus, we have the following results:
i(cos"x)=—;, —1<x<1 (in MF 26)
dx V(1-x)

f'(x).

d
—(cos™ f(x)) = ——=—,
dx( ) JI-[f()F

(i) It is also noted that f(x)=tanx is a 1-1 function where —% <x< % , which is known as

-1<fix)<1

the principal values for x.

We denote the inverse function f'(x) by tan™ x.

i ittt

~

; < Thos ﬂ‘g.‘mq‘\x where - 09 (X(Q' am}\_«’(_y y:i YA
5 ) 4. 2
A R S =2 ;
a i x
E dy _ \ e | "
E e - 5 M ' __r T
! «d Loy RIS fYET3
Thus, we have the following results:
d -1 o«
it t -
dx( an~ x) o (in MF 26)
i(tem‘l f(x)) __f®_
dx 1+[f(x)]
A Note about Notation:

- 1 _ 1
a. sin'x#z——, cos'x# , tan'x =
sinx COoS X tan x

Inverse trigonometric functions # Reciprocal of trigonometric functions,

15
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b. Instead, the correct notations for the reciprocal of trigonometric functions are as

follows:
R T | -1 1 -1 1
(sinx) =——=cosecx, (cosx) = =secx, (tanx) = =cotx
sin x cosx d o tan x
9 grflx) = ——
dx Yi-feoo1™
d coslél) = - L
Example 10 = 0¥tk
. . . A V7-Ceo)”
Differentiate the following with respect to x: A b RO .
A T T
(a) sin(¥/x) (b) cos™ (g) (c) tan’'(xe) (d) xsin™ (x?)
(e) cosec™'x
Solution:
(a) i(sin" " ) __ 1 d Jr Remember to differentiate  v/x ’
dx 2
l~(\/;) i W.I.t. X.
; \ ooy 3
I = < —_— = — :
1 e 2= Q :
d _(=x 1 1 o Remember to differentiate ‘= w.r.t.
() —cos™| T |=———=x(3 3
dx 3 LY 3
1- —) x
3
3 1 1
=— X—=—
3?-x 3 9—x’
R e, x| (I x)e’ : :
(c) —tan”'(xe¥) = RV x(e +xe’ )= f+lezx Remember to differentiate * xe™’

w.rt. x.

When x>0,x/z_c2—=x

e | eg N2 =2.

Whenx <0, \/x_zz—x.

2
= sin"' (x*)+ 2%
______________________________ 1 ?_".4.---------- Note that : Forall xeR,
/ {_o_" y: X % C“kby—;)( \| (a) xz =|x|2
> L ) ( E
My ¥ =) Hys—~ D Y- !
n“’), e X ¢ l)‘q“( %) E Reason for (b):




dy

Ax

PR A
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dy d sin_l(l) 1 d (1] x’ (-1) e.g. (-3 =-(-3)=3.
d dr )T rivdlx) V21l
de dr . 1_(1) drix i S [ T—— whether x is
x .. .
positive or negative, we must state:

_ | x| 1 _ 1
) Jx2_1(|x|2]_ | x|Vx? -1 JF:lxlas V@ >0

uf")r - g < 7 ) D w’“‘)ﬂ"’lffo

Self-Review 4 - * LW I eenin
{&4"“% ’Jj 1 &

Find the derivative of cot"x % tany X oy etV < "'(f;..;" 'B—l 2]

,_ — +x

r—

NA7IX _ oy

S ) 2
( an'l)()

7.9 Differentiation of Parametric equations

Gy

u%
wty:)(

-~ dy

(o)tt"yfv_ 21

Recall from Chapter 3, Section 3.4, when the relationships between x and y are complicated, it
may be easier to express x and y each in terms of a third variable (say /), called a parameter. In
this case the equation of the curve may be expressed via a pair of parametric equations: x = f(f)

and y = g(#) where 7is a variable and fand g are functions of 7.

For example, the expression x=2(y+3)’—4 can be replaced by the pair of parametric
equations: x=2r—4 and y=1-3, where 7 is a parameter.

Since x=2-4 = %=4t,and,y=t—3 = it—y=1,bythechainrule,wehave

dy dy dx , then we can find d— as follows:
dr dx d dx
dy
dx dy dy dx dy 4
S— 0, th e — = —=—,
If dti e dt dx dt dx dx
dr
dy
: dy & 1
In th 1 —
n this case RIS TR .
dr Ist%us
easier?
dy 1 1

dy
: - 2_4 1=2x2(y+3)2 -0
Note: (a) x=2(y+3)—4 = Ay +I dc a(y+3) 4

. dx .
(b) The curve has a vertical tangent when & =0, thatis7=0.
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Chapter 7: Differentiation

2 dzy
e 2
dx g_x dx®* dx\dx) drldx
dr?
Example 11

0

A di\dx)
R
dr

dx

)

1
Given that x=(* +4)? and y = %, where 7 (> 0) is a parameter, find % in terms of .

Solution:

2 3 dc 1 = .
x=("+4)2? = E=E(12+4)2(2t)=t(t2+4)2.

Are you able to find

Y directly?
dx

1
t| - |-Int
Int dy (t) 1-Int
AlSO, —— :> — = @
Y T dr r 2
dy 1-Int
H dy 4 E I-lnr  (-lneWP +4
e Tk, T .. I
A (2 +4)2 £ +4)?
Example 12

) . ) d
Given that x =e* cos3t, y =e” sin3¢ where ¢ is a parameter, show that ay = tan(3¢ +%) .

Solution:

x=e" cos3t

;ﬂ = e” (-3sin3t)+3e* cos 3¢ = 3e™ (cos 3 —sin 37)
!

Also,

=

y= e SlIl 3t
=5 %— =e*(3cos3r)+3e” sin3r = 3¢¥ (cos 3¢ +sin3¢)

dy
) g_i_ 3e3'(cos3t+sin3t) _ sin3t+cos 3t
“dx dr  3e”(cos3r—sin3r) cos3t—sin3t
dr

Since sin37+cos3t = ﬁsin(3t +%) ,

and cos3t—sin3t = s/icos(St +-;£) ;

Recall that :

asina +bcosa = Rsin(a +8)

where

R=+a’+b* and Q:tan"k,
a

and also




Chapter 7: Differentiation 19
. 7 acosc—bsina =Rcos(a +6) |
ﬁ sin(3z + Z)

Then —=———=tan(3¢+ E) ;s where
n 4
\/2 cos(3t+—) 5
4 R=+a*+b* and =tan' =

a

Alternatively,
dy cos3r+sin3 Here: R=+y1*+1=42 and

dx  cos3t—sin3t T
O=tan" 1 =—
cos3f+sin 3¢ 4

From (1),

— cos 3¢
cos 3t —sin 3¢

cos 3¢
cos3t sin3t
+

_cos3t cos3t
cos3t sin3¢

cos3t cos3t
_ 1+tan3t

b=l tana + tan
T tan(a-r-ﬂ)——n——ﬂ
tan— + tan 3¢ l-tana tan B

=—A——— =+ 5)
1-tan 7 tan 3 4

3
Self-Review 5 P S ( YN

Given that x = 5cos’ 2t and y =5sin’ 2, where  is a parameter, find % in terms of 7.

{Mmﬁﬁw [-tan2s ]
s =t

y & L 2(5) 20 -2t (2)
b

= -‘BOQOS’LL‘QM@:)
O‘v (5 st P om TN

= YW EDNENES)
205017 (18D Covi/

_ L aw
- ) (.’L'U)

= <o



Chapter 8: Applications of Differentiation

At the end of this chapter, students should be able to:
(a)  interpret the graphs of f'(x)>0, f'(x)=0, f'(x) <0, f"(x)>0 and f"(x)<0;

(b)  relate the graph of y =f'(x) to the graph of y =f(x);

(c)  determine the nature of stationary points (local maximum, minimum and points of inflexion)
analytically using first derivative test or second derivative test;

(d) find the local maximum and minimum points using GC;

(e) find equations of tangents and normal to curves defined implicitly or parametrically;

03] apply and solve local maxima and minima problems;

(2) apply and solve problems with connected rates of change.

8 The Gradient Function
Lety= f(x),then y=f'(x) where f'(x)= % is called the gradient function of y =f(x). y =f'(x)is the

function whose value at x is the slope or gradient of the tangent line to the graph of y =f(x) at x.

8.1 Interpretation of f'(x)>0and f'(x)<0

Algebraically, a function f is said to be strictly increasing on a domain D if for all x,,x, €D,
x, <x, = f(x)<f(x,). Similarly, a function fis said to be strictly decreasing on a domain D if for all

x. %, €D, %<k =>E(x)>E(x);

Consider a function given by y = f{x).

If % >0 fora <x<b, theny = f(x) is strictly increasing for a <x <b.

/y=ﬂx) alka

> >
X X

If % <0 fora<x<b, theny= f(x) is strictly decreasing for a <x<b.

&= fix) \y =)

—> —»
X X




1
Note: This is true even if y = f'(x) is not defined. For example y =X 3 is an increasing function for all

real values of x but the derivative is not defined onx = 0.

Example 1

Using a sketch, find the range of values of x for which the graph of y = x*—4x+5 is
(i) strictly increasing, (1i) strictly decreasing.

Solution:

Q: What is the value of the gradient at

x=27?

A

v

Using the sketch
(1) The graph is strictly increasing forl__—:
(i1) The graph is strictly decreasing for:'

Example 2
Given that f:x—1Inx, xe R, x>0, prove that f 1s a strictly increasing function. Hence show that

O<x<x,=>hx<hyx.

Solution:
Lety:]n)c,thengz=l Ay
dx x y=Inx
Asx>0,ﬂ>0. Inx, ,/
dx
Hence f is a strictly increasing function. In x
1
O<x, <x,= f(x)<f(x,)

= Inx <lnx, 0 /xl X2 x

The graph verifies the results for
0<x <x,=>Inx <hnx,

Example 3

1
Sket h th =— 1 — : .
ch the graph of y - for xe R, x# 0. Explain why f(x)== is not strictly decreasing. Given that

x |-

fis strictly decreasing for x <a orx>a, ae R, state the value ofa.



Solution:

yﬂ

v

x=0
Consider x, =—1, x,=1, then f(x)=-1 and f(x,)=1. Since x, <x, but f(x)<f(x,), fis not
strictly decreasing,

From the graph, f'is strictly decreasing forx <0 or x>0. ..a=0.

Question: If fis strictly increasing (or decreasing) on a domain D, prove that f is a 1-1 function on D.
Illustrate your result with an example.

[Recall that a function fis 1-1 on D if for all x,,x, € D, x, #x, = f(x) #f(x;)]

8.2 Stationary Points
A point (a, f{a)) on the graph of y = f(x) is called a stationary point if %= 0 at that point. In other

words, f’ (a) =0. The value of f{a) is called the stationary value at this stationary point (a, f{a)).

8.2.1 Nature of Stationary Points

(@) Turning Points

Turning points are either maximum points or minimum points.

A maximum point on a curve is a stationary point at which the y-coordinate is greater than the y-coordinates
of any other points on the curve in the neighbourhood of the point.

A minimum point on a curve is a stationary point at which the y-coordinate is smaller than the y-coordinates

of any other points on the curve in the neighbourhood of the point.

(b)  Stationary Points of Inflexion

A stationary point of inflexion is a point with zero gradient and the curvature of the curve changes in the

neighbourhood of the stationary point.



Graphical representations
N

---------- fla)

y=1f(x)

v

& bssssrnssanee

B (bf(b))
.| I

(a) Stationary points: B, C, D, E and G.

(b) Turning points: B, C, D and E.

() Minimum points: B and D. Maximum points: C and E.
f(b) and f(d) are called the minimum values of y = f{x); f{c) and f(e) are the maximum values of y
=f{x).

(d) Gis called a stationary point of inflexion of y = f(x).

(e) The greatest value of y = f{x) occurs at r l

(f) The least value of y = f{x) occurs at

(g) y=f(x)is strictly increasing when

(h) y=f(x) is strictly decreasing when | |

Example 4 (Using GC to sketch y =f'(x) )

Given that f(x)=x’+3x’ —x—3, sketch the graph y=f(x). On the same axes, sketch the graph of
y=f'(x).

State the set of values of x for which the graph is

(a) strictly increasing,

(b) strictly decreasing,

(c) stationary.



Solution:

Using a graphic calculator to sketch the graphs of y =x’ +3x*—x—3 and y =f'(x).
stat plot 1 NORMAL FLOAT AUTO REAL RADIAN MP n

Step 1: Press and enter the expression Y1=X*+3X2-X-3 Poti Ptz Plats
B\Y18X°+3X7-X-3

o e 2 A b
Step 2: At YZ, press @. I\Yg.= ...........................................
B\Ya=
Ty oo N
Select 3:nDeriv( and press @ H\

Enterthe expression Y= (¥, ,

AN

table 15
Step 3: Press . Press@ to change the window settings to / \){/
Y

your preference.
NORMAL FLOAT AUTO REAL RADIAN HP - NORHAL FLOAT AUTO REAL RADIAN MP n
CALC INTERSECT I] CALC INTERSECT 2
Yaze Ya=0 A\ [//
tersection Intersection
g‘!.l‘.!% ¥=0 X=.154700: ¥=0

(@) Graph is strictly increasing when % >0 Thatis, Y, >0.
Therefore, the set of values required is {xe R:x<-2.15or x > 0.155}.

(b) Graph is strictly decreasing when % <0 Thatis, Y, <0. Therefore, the set of values
required is {re R:-2.15<x< 0.155}.

(c) Stationary points occur at Y2 =0 or %= 0,1e. x=-2.15 and x=0.155

8.2.2 Investigating the Nature of Stationary Points

There are various ways to determine whether a stationary point is a maximum, a minimum or a stationary

pomt of inflexion. Below are two methods.

Method 1: The First Derivative Test
This method involves constructing a table and finding the sign of f'(x) in the neighbourhood of the

stationary point. Let f(x) be a function and (a, f(a)) a stationary point of y = f(x). Let a” and a’ denote

respectively arbitrary numbers which are slightly less than and larger than a respectively.



Test for maximum point:

Positive gradient

y = flx)

Negative gradient

T T > X
/ a a* \

x a a a

) >0 0 <0

slope / - \

From the table, we conclude that the graph of y = f (x) has a maximum point at (a,f(a)).

Test for minimum point:

Negative gradient

¥

= fix)

a a Positive gradient
I > &
x a P p
f'(x) <0 0 >0
slope \ —_ Y

From the table, we conclude that the graph of y = f ((x) has a minimum point at (a, f(a)).

Test for stationary point of inflexion:

Case (1)

Case (ii)
y = fx) _ .
Positive gradient Negative gradient
Y =1x)
: : { —> T } { —» X
a a a X a a gt

ositive gradient Negative gradient
i “ ‘ a = a a a
f’(x) >0 0 >0 fr(x) <0 0 =B

slope / - / . : — \

From the two tables, we conclude that the graph of y

= f(x) has a stationary point of inflexion at (a,
f(a)).



Note:

(@) Incase (i), f'(x)decreases from a positive value to 0 as x increases from a~ to a, and then, f'(x)
increases from 0 as x increases froma to a*. f'(x) has the minimum value 0 when x = a.

(b) In case (ii), f'(x) increases from a negative value to 0 as x increases from a~ to a, and then, f'(x)

decreases from 0 as x increases from a to a*. f'(x) has the maximum value O when x = a.

Method 2: The Second Derivative Test ( Given f'(a)=0)

Test for maximum point: The graph y = f{x) has a maximum point at (a,f(a)) if "(a) <0

Test for minimum point: The graph y = f{x) has a minimum point at (a,f(a)) if £"(a) >0

Note: When f”(a) =0, we have no conclusion as to whether the point is maximum or minimum so we

have to perform the 1* derivative test.

Example 5(a) (MC J91/1/16a)
Find the exact coordinates of the turning points on the curve y = x*e™ and determine the nature of each
tumning point.

Solution:

Do not if th t1
¥ et = dy —(@x)e 4 xh(—e) = e (4—3) o not use GC if the question
dx q requires the exact coordinates.
At turning points, ay= 0
= xr’¢e*(4-x) =0 = x=0 or x=4
Whenx=0 = y=0.
Whenx=4 = y=256¢.

Using first derivative test:

slope

(4,256 ) is a
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Alternatively, using second derivative test: You may use GC for this part
2 instead of the algebraic approach:
ap e
5 L (%™ (4-%)))|,.
— +2a7%(19 _ 2y = x2e(x — -6 X4
=re”(12-8x+a)=x'e (x—2)(x—6) * -1.172200816

.....................................................

In this case, only the first derivative test can be used.

Example 5(b) (MC J91/1/16a) (Independent Reading)
Find the coordinates of the turning points on the curve y = x*e™ and state the nature of each turning point.
Solution: Graphic Calculator Approach

stat plot M NORMAL FLOAT AUTO REAL RADIAN MP n
Stepl: Press to display the Function Display Screen. .’\‘;:‘Ex::’_': e
Then key in the equation. i
NZE
oo ® N=
Step 2: Press to display the graph of the equation. :2322
alc E\Ys=
Step 3: Press to activate the Calculate Display Screen.

NORMAL FLOAT AUTO REAL RADIAN MP n
CALC MINIMUM
Y1=X"He"("X)

(&} [ ] “ T
Step 4: Press @ for finding minimum turning point or@ for
finding maximum turning point.

Step 5: For minimum turning point, scroll to the left of the

entry solve QI{'I‘?&!%303 Y=8.1806E-7
minimum point, press (™), then scroll to the right of the [T

Y1=R 4en(-
R M4e R

entry solve
minimum point and press @, then .

Minimum turning point is at (0, 0). /\
Step 6: Repeat the process, maximum point is at (4, 4.69). — .

|
Haximu
X=Y4.0000003 Y=4.6888036

Example 6 (MC N93/1/16a)

Find by differentiation the x-coordinate of the stationary point of the curve y=x-Kn (iJ , where k

and a are positive constants, and determine the nature of the stationary point.



e -

Solution:

y=2-Kh(Z)=x-K(nx-Ina)
a

dy k*
= = =2x-—
dx x
_ -k
x
(Zx -k)(V2x +k)
=" x
d V2 k)T x +k)
When & = 0, we have =X - =0
dx
Thus, = ﬁ_
X iTi
As x> 0, therefore, ® =F;-

Method 1 (First Derivative Test):
Observe that ¥2x + k> 0 for positive values of x and k.

When x=(i-) , x<i:>\6x<k:>\/2x—k<0,

V2 V2

& 4G x —k)(ﬁ'x*kho
0 == *
dx
When x=(i)+, x>i:>w/§x>k:>\/2x—k>0,
V2 V2
dy (VZx < X5 x 1)
so —= — —— 7D
dx X
& | &)
i L) |\\2) |[\2
& LD 7 20
dx
slope N - /

k.. .. .
Hence, when x = E , it is a minimum point.

Method 2 (Second Derivative Test):
2

d’y _ £
From (1), we have Frie +?

2
Atx:—@— d_y=

27 d?

- . k
Hence, minimum point occurs at x = 7_2— :

What if we did not use
In(X)=lmx-Ina?
a

Q:Why x > 0?
A:ln (%) is well defined only if =>0.
a a

As a> 0, then x> 0.

Note that in this example, method 2 is
easier.
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Self-Review 1

) Inx ..
Find the exact coordinates of the stationary point on the curve y = —~ x> 0 and determine its nature.

1 ) :
Sketch the curve. [(QEJ » Maximum point]

8.2.3 Stationary Points of curves defined by Parametric Equations

Given x = f{¢) and y = g(7) are the parametric equations of a curve where ¢ is the parameter, then we
dy

have, #0.

&|e
I

8| e e |
e|e

Example 7

Find the stationary points on the curve x =12, y=r+. where ¢ eR,r#0.
> Y "

Solution:
2
dr dr Al
L
e —=: T 112
& T
T
iy_ Ttq

At stationary points,

dx:O’ iLe. % 5‘1’:",\;0 > =l o -

1
When /=-1,wehave x=(-1)’=1, y=—1+—=-2 .

1
When /=1, we have x=1% =1, y=1+I=2.

So(1,-2) and (1,2) are the stationary points.

8.3 Graphical Interpretation of f*(x)>0 and f"(x)<0

.. dy dfdy .
The second derivative, o a(a) or £*(x) measures the rate of change of f "(x), as x changes.

That is, it measures the rate of change of the gradient of y = f(x) with respect to x.
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YA YA
» X > x
As x increases, the gradient of the tangent As x increases, the gradient of the tangent
on the curve decreases ie f"(x) <0 on the curve increases ie f”(x)>0

8.4  Concavity

The graph of y = f(x) is concave downward on the interval (a, b) if f '(x) is decreasing on (a, b). /\
Geometrically, the graph lies below the tangent lines in (a, b).

The graph of y = f(x) is concave upward on the interval (a, b) if f ‘(x) is increasing on (a, b). u
Geometrically, the graph lies above its tangent lines in (a, b).

Using the second derivative test, the graph is concave downward if f "(x) <0 and concave upward if

f"(x)>0.

f'(a) =0
(a, f(a)) is a maximum point (a,f(a)) is a minimum point
Notice that f'(x) decreases as x increases Notice that f'(x) increases as x increases
froma toa'. froma to a”.
f"(a)<0 f'(a)>0

Example 8 (Independent Reading)
Refer to the graphs of y =f (x) and y =f'(x), where f(x)= x* +3x* —x—3, in Example 4.

State the set of values of x for which the graph 1s
(d) concave upwards,
(e) concave downwards.

Solution:



2
(d) Graph is concave upwards when %’o 0, i.e. the values

of x where % or Y, is strictly increasing.

Use the graphic calculator to determine the minimum point
2

of the % or Y2 graph or plot the ix—‘i’ or Y3 graph and find its

roots. Therefore, the set of values required is {x e R: x> —1}.

Ploti Plot2 Plotd
B\Y1BX°+3%X*-X-3
B\Y 2B (Y1) yey

A E%(Yz)h: x ..........................

2
(¢) Graph is concave downwards when d_,;z <0orYs <0,

1e. the values of x where % is strictly decreasing.

Therefore, the set of values required is {x e R : x < —1}.

NORHAL FLOAT AUTO REAL RADIAN HP
CALC ZEROD
¥3=nDeriulY2,X:X)

2Zero
X="1 Y=e

]

8.5  Relationship between the graphs of y = f(x) and y = f'(x)

The diagram below shows the graph of y =f(x) with stationary points at points 4, C and E, and the

corresponding graph of the gradient function % or y=£'(x).
Ya
y = fix)
A
\ T
> x

Ya
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Procedure to obtain the graph of y =f'(x) from the graph of y =f(x):

Step y=1(x) |:‘:> y=1f'(x) Remarks
Stationary points at x = A
Maximum point at (b, k) Graph of y=f'(x)
! x-intercepit at x =4 chang_es from positive to
negative
Minimum point at (A, k) Graph  of y=f'(x)
changes from negative to
positive
2 Vertical asymptote at x=a Vertical asymptote at x =a
Horizontal asymptote (if any)
Horizontal asymptote y =0 Graph of y = f'(x) has
y=a .
horizontal asymptote at y =
- . = i f
3 Oblique asymptote (if any) k, where, ¥ -gradlent ¥
: asymptote in graph of
Horizontal asymptote y =a
y=f(x)
y=ax+b
) X ) oo .. dy
In particular, the gradient function for the graph of y =f'(x) is the second derivative o =f"(x)).

2

In other words, %;]2—} (=f"(x)) is the gradient of the graph of y =f'(x).

Example 9

The diagram below shows the graph of y =f(x). Sketch the graph of y =f'(x) on a separate
y

diagram.

1

3

&

S R S S S o 10 5 i o i i o e
|
(S]

=
Il
| -
[\8)

=
-
N



Solution:

14

RA=-2

B IR P ——

Note:

In sketching the graph of y =f'(x),
bear in mind that the y-coordinates
of the graph of y=f'(x) are the
gradients of the tangents to the graph
of y=f(x) at the points
corresponding to x.

In other words, the point (x,f (x))
in the graph of y = f(x) will become
the point (x,f '(x)) in the graph of]

y=£f(x)

Example 10

The diagram shows the graph of y = f(x). State the values of x for which

(@) f'(x<0,

(11) the graph of y =f(x) is stationary,
(ii1) the graph of y =f(x) is strictly increasing.
Sketch the graph of y =f'(x) on a separate diagram.




Soluticn: . f ST

From the graph of y =f(x), we deduce that

() f'(x)<0for| Ajawee or CLXX)

(ii) the graph of y = f(x) is stationary at x = Xy o Xy

(i) the graph of y = f(x) is strictly increasing for] <Xy v 2% ™
¥y Note:

For the graph of y =£'(x),
observe that as

/_——— x>, y=f'(x)>a.

This is because as x — oo,

fix) >ax+b

so that f'(x) > a.

The same applies to the
situation when

X —> —00.

g
S

— .
9

Self-Review 2

Without the use of GC, sketch the graph of y:I—x— (reR,x#-1) and hence deduce the graph of
+x

y= i(i) . What is the set of values of x for which the graph of y = =i (xeR,x#—1) is concave
dx\1+x l+x

downward?
[(-L®)]
8.6 Tangents and Normals for y = f(x)
The gradient of the tangent to a curve with equation y = f(x) at any arbitrary point (x,,y,) is % |y, OF

f(x,).

Let m = f'(x,) . Then the equation of the tangent to the curve y = f{x) at the point (x;,»,) is

YW
X=X

=m or y-y=m(x-x).

. 1 1
It also follows that the gradient of the normal to the curve at (x,,»,) Is - or _f_'(T)_'
1

Thus the equation of the normal to the curve y = f{x) at the point (x,,y,) will be

- 1 1
Ao — o y-n=-—=(x-x)
x-x, = m m
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Example 11 (2015 Promo/RI(JC)/1/4) (Independent Reading)
A curve C has equation xy% =1 for x#0, y #0.

(1) Find % in terms of x and y.

. 1 -
(i)  Show that the equation of the normal to C at the point P (?, p) , Where p is a non-zero

constant, is p’y=2p’x -2+ p°.
(i) Hence, write down the equation of the normal at the point Q (], - l) and use an algebraic method

to determine if this normal meets C again.

Solution:

()  Differentiate xy* =1 implicitly with respect to x, We do not need to make y the

subject of the equation before
2+(x) 2 dy =0 . :
¥ Y el differentiating.
. dy y
Rearranging, — = ——
sme dx 2x

(ii) AtP(#,pJ y___p__ P

drx 2(%} b
b4

Gradient of normal at P is %

. 2
Equation of normalat P is y—p =?[x ——)

2 2
y:?x—?+p

p’y=2px-2+p°
(i) AtQ(1,-1), p=-1
Equation of normal at Q is
-y=2x-2+1
y=-2x+1
The normal meets the curve at

When the normal meets the curve,

. the point(s) of intersection.
x(-2x+1)" =1

4x —4x? + x-1=0

(x-1)(4x*+1)=0

The only real solutionis x=1. When x=1, y=-1.
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Since the normal meets the curve only at the point

0 (1, —1), the normal does not meet the curve again.

Example 12
The equation of a curve is 3x* + 8xy + y* = —13. Find the equations of the two tangents which are parallel
to the y-axis.
Solution:

3%’ +8xy+y* =-13

Differentiate implicitly with respect to x,

Ot Ix™ L 3y = 2y v _ o dv_3xi4y
e CE ooy
: . dy Alternatively, you can think of
Since the tangent is parallel to the y-axis, — is undefined. .
dx the tangent being parallel to the
Thixs, depomitistor of dy _3x+4y fezero, y-axis as the normal being
dx+y parallel to the x-axis. As the
4X+y: 0= Y= gradient of the normal 1is
Substitute y = —4x into 3x” +8xy+ y’ =—13 yields 1 dx+y
2s dy 3x+4y’
x> 4 EX XD +(~4x)* = -13 dx
> S AL -3 then drty 0=>4x+y=0
2= = —
X%=t (Do NoF UWE -4 ="Cxarx) 3x+4y J
Xz=( X =—¢ ,
o a5 Mé wdeiyed as before.

So, the equation of the tangents are x=1 and x=-1.

Example 13 (MC J93 / 1/ 16 modified) (Independent Reading)
dy 3x-y

The equation of a closed curve is (x + y)? + 2(x - y)* =24 . Show that = e
X=3y

Find the coordinates of all the points on the curve at which the tangent is parallel to either the X-axis or

the y-axis. State the equations of the tangents for each of the points.

Solution:
(x+y) +2(x—y)* =24 Extension:
. L Find the coordinates of the
Differentiate implicitly with respect to x, point(s) on the curve at
which the tangent makes an
angle of 45° with the
positive x-axis.
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d
2(x+y)(l+ay)+2(2)(x—y)(l—%) =0
d
2(x+y)+2(x+y)Ex}i+ 4(x—y)—4(x—y)%=0

d
(2x+2y—4x+4y)ay=_2(x+y)_4(x_y)

Q_3x—y
dx x-3y

d
(—2x+6y)ay=—6x+2y =

For tangent parallel to the x-axis, Y =32y 0.

x—3y—

Thus, 3x-y=0> y=3x.
Substitute y =3xinto (x+y)® +2(x - y)? =24 gives
(4x)* +2(-2x)* =24
x=1 or -1
y=3x=3 or -3
The points at which the tangents are parallel to the x-axis are
(1,3) and (-1,-3).
The equations of the tangents parallel to x-axis are y = 3 at the point
(1,3) and y = -3 at the point (~1,-3).
When the tangent is parallel to y-axis, we must have x—3 y=0 (see
Example 12)
Substitute x =3yinto (x+ y)* +2(x — y)* = 24 we have,
4y +2(2y)° =24
y=1 or -1
x=3 or -3
The points at which the tangents are parallel to the y-axis are
(3,1) and (-3,-1).
Hence, the equations of the tangents parallel to y-axis are x = 3 at the

point (3, 1) and x = —3 at the point (-3, -1).

Ans:
dy

When — =1,

en a5
3x-y=x-3y

x=-y
(-y+y) +2(-y-y) =24
y=3

The coordinates are

(V5,~5) or (~3.45)

8.6.1 Tangents and Normals for Parametric Equations

Example 14

A curve is defined parametrically by x = ar, y =2at, where a is a positive constant.

., dy .
Find —= in terms of ¢.
e e

(i)  State the equation of the tangent at = 0.
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(i) Show that the equation of the normal at the point P ( ap® , 2ap) where p#0 is
y+xp—ap3—2ap=0.

(iil) The normal to the curve at the point P meets the curve again at the point Q. Find the value of the

parameter at Q in terms of p.

(iv) The normal cuts the y-axis at the point R. Find, in term of a and p, the area of the triangle ROQ,
where O is the origin.

Solution:

x=at’® = %= 20at+|and y=2ar = %};)-= 2a

t

() Atr=0,x=y=0 and gradient of tangent is undefined.

Hence tangent is parallel to y-axis.

Equation of tangent is X=0

(i) At the point P (ap®,2ap), t=p, then % _1
p

= Gradient of the normal at the point P with parameter p 1s —p

The equation of the normal at the point P is

y-2ap= & PR +qr,s
Ytpx-api-1ap=0

@) C: y+ px—ap’ -2ap=0 “The normal meets the curve
C: x=at’ y =2at again at point Q” implies
th 2 int f
Equating:  2at + p(at*)—ap’ —2ap=0 ere are e
intersections between the

= pt*+2-p2+p*)=0
= (t-p)[pt+@+p")]=0

normal and the curve.

t=p or t= -24P°
’0

As the parameter at the point P is p, thus the parameter at O

2
should be _2+_p .
p

(iv) AtR: x=0 for y+px—2ap—-ap’ =0

y=2ap+ap’.
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Thus, the coordinates of the point R is (0, 2ap + ap’).

2+ p*Y 2+ p
At Q: coordinatesis( (— 5 J,Za(— s J .

Area of the triangle ROQ =—;—X basexheight

Obtain a sketch of the
triangle ROQ. AsSUme p> 0

Example 15 (2012 Prelim/RVHS/1/8 modified)

- R
; 24p%\2 (249*) 2up
== (2aptaph) x a(- Z2E-) = L ap (2tp2) aEL
z" av‘i‘l—*‘gm)a A Fegopcaph) Y* ”‘V’i
-
2tpn
)

The parametric equations of a curve are x =asin#, y=bcos! where a and b are positive constants.

(1 Find Ey in terms of z. Express your answer as a single trigonometric function.

(i) Show that the equation of the tangent to the curve at the point P(asina, bcosa) is of the form

xsina Lyeosa

a b

1,

(1) The tangent at the point Q (asiné, bcos @) intersects the x-axis and the y-axis at the points 4 and

B respectively. Find a cartesian equation of the locus of the mid-point of AB as 6 varies.

(Note: A locus is a set of points which satisfies a certain condition. Please refer to Annex for a

short note about locus.)

Solution:

!

(1) x=asins 3%=acost, and y=bcost = %:—bsint

dy _dy dx bsiat b
—_— et — = = I = - =
A dr dr ac =" are
(1) Atpoint P (asina, bcosa), t =a , then :x—y=—£tana
a

Equation of tangent at the point P:

y—bcosa =—£tana (x—asina)
a

bsina

= y—-bcosa =— (x—asina)

acosa
= aycosa —abcos’a =-bxsina +absin’ a

= bxsina+aycosa = ab(sin’ a + cos’ a)
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= bxsina +aycosa =ab

bxsina L aycosa ab

Dividing both sides by ab, =—
ab ab ab
Hence, YSme | YOSz (shown)
a b
a ) a
(iii) At4: y=0=>x=——. Coordinates of 4 : (—,——, 0)
sin @ sin @
b : b
AtB: x=0=>y=——. Coordinatesof B: |0,
cos® cos®
e ) a b
Midpoint of 4B is (7_3".,9, 250 )
As @ varies, the mid-point of 4B changes such that the coordinates 1s
X<z __ﬁ__ il b_.
Zonp e I

Then sin0=i and cos9=i
2x 2y

2 2
Since sin’ @ +cos’@ =1, then (i) +(—b—) =1
2x 2y

ai‘y=-+ bl/‘q:wlyl- where XE© ry'{ 0

Recall: Midpoint of
(xl’yl) and (xz’yz)
1S given by

x+X,  y+)
2 2 '

Self-Review 3

(a) The tangent at the point P on the curve with equation y = x2 + 1 passes through the origin. Find the

possible coordinates of P.

[(1 ’2)3 (—1,2)]

(b) A curve C is defined by the parametric equations x = £ and y = 2/%. Show that the equation of the

normal to C at the point corresponding to the parameter fis 4y +3tx—8t* -3t* =0.

(i) Find the equation of the tangent to C at the point where C crosses the x-axis. [x = 0]

(i) Prove that the normal to C at the point where ¢ =—1 does not meet C again.

8.7 Applications of Differentiation to Rates of Change

If y = fx), then % is the rate of change of y with respect to x. Very often we are interested to find out

how one variable, say y, changes with respect to a variable  when another variable, say x, changes with

respect to 1.
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To solve problems of this nature, we either use implicit differentiation or apply the chain rule which says

dy_dydr
dr dedr’
Example 16

A hemispherical bowl of radius a cm is initially filled with water. The water runs through a small hole

|
at the bottom of the bowl. It is given that, at the instant when the depth of the water is Ea , the water

level is decreasing at a rate of % cny/s.

Find, in terms of a, the rate at which the top surface area of the water is decreasing at the instant when

the depth of the water is %a .

Solution:
Question says “ ... Interpretation in context
STEP 1: Find the rate at which the top | Let A cm® represents the area of the top surface
Define surface area of the water is | area of the water and x cm represents the depth of
variables decreasing at the instant when | water.
the depth of the water is %a ¢ You need to find % when x = la 3
2
STEP 2: It is given that, when the depth of When x =—1-a , dx —_ 9 s
Translate .1 2 dr 27
: . the water is —a, the water level
given info to 2
notations a
is decreasing at a rate of =
cm/s.
STEP 3: You need to obtain an equation that connects 4 and
Construct an a x. Obviously, when the depth of water is x cm,
equation that A=mr’ where r is the radius of the top surface
links the area of the water.
identified So, you need an equation that connects r and x !
variables Sketch diagrams to help in visualizing.
From the diagram, note that:
r’=a’—(a-x)* =2ax-x*
Also, 4= nr?
So A=n(2ax-x*).
® . - _ 2 . . .
STEP 4: At the instant when x = la, Differentiate 4 =7(2ax—x) implicitly w.r.t. ¢,
Perform p) dA dx dx de
implicit find, in terms of a, the rate at FTI (2";‘ 2x a) =n(2a- 2x)a-
differentiation | ypich the top surface area of the _ dd  dd dr die
with respect | ygyer is decreasing. (alternatively, —=——=7(2a-2x)— )
chain rule
STEP 5: Solve Whenx:la, £=_i om/s
for the y 2 d 27
: a, a ra’ .
i te re. —=ma(2a-2-—)(-—)=—— cm?/
required ra gy ( 2)( 2_,) S om’/s
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of change at
the specific
instant of time

STEP 6:

conclusion

1 .
Write When x= 3% the top surface area of the water is

decreasing at the rate of =

ra*

cm’/s

Example 17 (NJC/ Prelim 2006 / I/ 5 modified)

The diagram below shows an isosceles triangle 4BC with fixed lengths AB and AC of 10 cm each and

LACB = ZABC =6 radians.

4 is a variable point which is at a height # cm directly above the point O while B and C are variable

points which move horizontally along the line /.

4
s
v

!

B (0] C

Given that 4 descends vertically towards the point O such that the area of triangle ABC is decreasing at

a constant rate of 0.7 cm?s”’, determine, at the instant when A4 is 6 cm above O,

(i)  the rate of change of 0,
(i)  the rate of descent of 4,
(iii)  the rate at which C is moving away from O.

Solution:

Let the area of the triangle ABC be P cm’ and length OC be x cm.

Considering the right-angled triangle 4OC, we have
x=10cos8 -—-(1)
h=10sin == (2)

1
P=5Base x height =%(2x)h=xh =100sin & cos
P=50sin20  -ieiieienininnn (3)

(1) To find the rate of change of €, 1i.e. Z—? .

Differentiate (3) implicitly, w.r.t to 7,

When h =6 c¢m, find

. dé .. dh ... dx

1) —, (n)— and (m) — .

(1) = (")dt ( )dt

You are given that -j—f=—0.7, to

find 1—6 , you need to find an
t

equation connecting P and 6.
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dP de dée
— —=50(2cos20)— =100cos260 —
= (2cos )dt .

As P is decreasing at constant rate 0.7 cm’s™, then % =07

=y 100c0520£=—0.7 ------ (4)
dr
Wihen k=8, {7} Ssinfsa=d
10 10 5

(4) = 100(1-2sin? 9)

} Y

=-0.025 rads™
dt

0.7

= 100[

Hence rate of change of 6 is —0.025 rad s™.
(i) Differentiating (2) with respect to ¢,

dh 49
[0cos0(=~ ). o /MY (/_,. _— -
dr (ﬁ:}' '0/5"){ P02§) =70 L am

So, when A =6, rate of descent of 4 is 0.2 cms™".

(ii1) Differentiating (1) w.r.t. £, we have

dx do

— 108 LY AATS 5 -
& 462—; ID(‘T)( 0\"2.5/), V- s

|

So, when# =6, the rate at which C moves away from O is

0.15cms™.

Here we have used the trigonometric
identity sin260 =2sinfcosf in

establishing (3).

Notice how we have cleverly used

the trigonometric identity

cos20 =1-2sin’ @ here  to

facilitate the computation by simply

substituting sinf == thus

removing the need to find angle 6.

For part (i1), rate of descent of 4,

means —

For part (iii), the rate at which C

moves away from O means % i

Self-Review 4

) ) 4 )
The volume ¥ of a sphere of radius r 1s V' = Eztr3 and its surface area 4 is A = 472 .

The radius r of a sphere is increasing at a rate such that when r = 8 m, its volume ¥ is increasing at a

rate 10 m’s™". The surface area of the sphere is denoted by 4. Find

(1) the corresponding exact rate of increase of r at this instant,

(ii) the corresponding rate of increase of 4 at this instant.

8.7.1: General guide on how to solve rates of change problems

S 1
1287

[2.5 m’s]

[

LR Know what the question wants, for example, ;ﬂ
t
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STEP 2: Write down what you are given, for example, x and %

STEP 3: Form an equation relating the variables, for example, 4 and x.
If there are more than 2 variables in the equation, for example, 4 = xy, form

. ; 1
another equation to relate the two variables x and y, for example, y = Ex.
Substitute this equation into 4 = xy to reduce the number of variables to only 2.
The equation becomes 4 = %xz.

| If the variables are not defined in the question, you have to define them.
STEP 4: | Differentiate the equation implicitly with respect to ¢, substituting the known

values of x and % to get the desired result.

STEP 5: Write conclusion statement.

8.8  Derivative as a Rate of change

Suppose that a particle is moving along a straight line so that we know its position s, relative to a fixed
point O on the line, as a function of time r: s =1{r).

That is, the function f(¢) tells us its position from point O at any time . This is the displacement of the
particle at time ¢.

The rate at which a particle’s displacement changes is called the velocity of the particle. Then, if a

particle’s displacement at time ¢ is s = f{r), then the particle’s velocity (instantaneous velocity) at
time ¢ is the derivative of displacement with respect to time, that is, v(f) = %

Similarly, the rate at which a particle’s velocity changes is called the acceleration of the particle.

The acceleration measures how quickly the particle picks up or loses speed.

If a particle’s position at time 7 is s = f{f), then the particle’s acceleration at time ¢ is the derivative of

velocity with respect to time , that is, a(f) = % = ﬂ;-f :

Scalar Vector
Distance Displacement
Speed Velocity
- Acceleration

Example 18

A weather balloon is released at time ¢ = 0 and allowed to rise. Suppose its height above the ground at
time ¢ seconds is given by H ()= %t’ -5 +23t m.

(1)  Find the velocity of the balloon ¢ seconds after its release.

(i)  Find when the balloon is rising and when (if ever) it is falling.
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(i) Because of unforeseen problems, the balloon bursts after 11 seconds of flight. How fast is it rising
at the moment it bursts?

Solution:

(i)  The velocity, ¥ (¢) , of the balloon ¢ seconds after its release
V(t)=H'(t)=1*-10¢+23 ms"
(i)  The balloon is rising when V'(f) >0, thus

210042350 = (1-5)'-2>0 =1<5-v2 or 1>5+2

The balloon is falling when ¥ (1) <0,

£-10/+23<0 = 5-2<1<5+42 Note: The starting time
Since 120, the balloon is rising from the start till the time is ist=0.
(5—\/5) sec, then begin falling until the time is (5+\/§) sec, and
after this moment, it will be continue rising forever.

(i) When r=11 sec, ¥(11)=112-10(11)+ 23 =34 ms".

) velouity
The balloon is rising at the-speed-of 34 ms™!

Example 19

A particle moves in a straight line. Its displacement s m from a fixed point on the line is given by
s=1*—4t—5, at atime ¢ after the start, where />0 . Find

(1)  where the particle starts and its initial velocity,

(i) when and where it comes to instantaneous rest,

(11) when it passes through the fixed point,

(iv) its acceleration,

(v) the total distance travelled by the particle when it passes the fixed point.

Solution

When 1=0, s=-5,v=—4
So the particle starts at —Sm from the fixed point with an initial
velocity —4 ms .
(i) When v=0,1=2, s=-9
The particle comes to rest 2 seconds after it started at a distance
of 9 m from the fixed point.

(iii) When s=0, *-4-5=0
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t=5or t=-1(NA)
The particle passes through the fixed point 5 seconds after it

started.
dv
{ = 2
(iv) a P
The acceleration of the particle is 2 m/s*. Sketch the path of travel of
(v) Total distance travelled = (-5 - (-9)) + 9 =13 m. the particle.

The total distance travelled is 13 m.

8.8.1 Application of the relationship between the graphs y = f(x) and y = f'(x)

) Displacement-Time graph and Velocity-Time graph
Suppose that a particle is moving in a straight line, and s(7)is the distance of the particle from a fixed

point O at time ¢, then the displacement-time graph is the graph of'the function y = s(f) , and the velocity-

time graph is the graph of the function y =s'(f).

(1)  Velocity-Time graph and Acceleration-Time graph

Similarly, if v(r)is the velocity of the particle at time ¢, then the velocity-time graph is the graph of the

function y = v(¢), and the acceleration-time graph is the graph of the function y =v'(r).

Example 20
A particle moves along a straight line and O 1s a fixed point on that line. The displacement s m of the

particle from O at time f seconds is given by: /

> !

Draw the velocity-time graph and the acceleration-time graph for the particle.

Solution " a N

N
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8.9 Applications of Differentiation to Optimisation Problems (Maxima or Minima Problems)

In many real-life problems, we are interested to optimize, that is, maximize or minimize certain
quantities under certain constraints. For example, given some constraints, we may wish to maximize the
volume of a geometrical solid or minimize the cost of building a fence round a garden. Problems of this
nature are called maximum and minimum problems and differentiation is an extremely useful tool to

solve this class of problems.

Example 21 (DHS Prelim 2009 / I/ 11 modified)

A mould in the shape of a letter-box as shown in the diagram below, is to be made from a metal sheet.
The lower portion of the cross-section of the mould is in the shape of a rectangle with a length of x cm
and a height of y cm. The upper portion is in the shape of a semi-circle with diameter x cm. When
completed, the mould has a length of 2x cm and the total area of the metal sheet used, excluding the base

of the mould, is 8007 cm? .

k—x—ﬂ‘/

Considering the total area of the metal sheet used, show that 5mx® + 24xy =32007% .

Deduce that the volume, ¥ cm’ of the mould (neglecting thickness of the metal) is given by

V:%nx(IGOO—xz).

If x and y may vary, use differentiation to find the values ofx and y for which ¥ has its maximum value
and give this maximum value in the form k7 where k is a number rounded off to the nearest integer.

Solution:

Area of the metal sheet Step 1: Obtain equation of
constraint.

2
1 (1 o4 .
=2| xy+(2x)y +—n(—x) +—(2x) =800 (Given) _
[ 2 \2 2 Hint: Total area used have to be
2
= 2[31'y+%1rx2]+ e’ =800 S00mem”,
= 5mx’ +24xy = 32007

o e 32007 - 57x’
d 24x

Write y in terms of x.

V =base area x height
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2
1 [x 1
V: + — — 2 =2x2 +_m3
|:xy 2“[2] }( x) =

2
p=oe 22200 | Lo = 2 (32008 - S )+~ o’
12 4

24x 4
800 5zx> 1 , 800 x’
=—x— = =—mx——
3 12 4 3 6
14 :lmc(1600—x2) (Shown)
6

Since V=%7rx(1600—x2)=%ﬂ(1600x—x3)

dar 1
= —==
dx 6
. dV 2
For stationary V, E:O. Then 3x* =1600.

n(1600—3x?)

= x=23.094, —23.094 (rejected, asx>0)

_, - 3200m- Smx® _ 32007 —5m(23.094)’
24x 24(23.094)

=3.0230

So the values of x and y are 23.1 and 3.02cm respectively.

2
:11:2/ =ln(—6x) =—mx<0 = V is maximum.

1
Max ¥ =%nx(1600—x2) =gn'(23.094)(1600—23.0942)

V ~ 41067 cm’.

Step 2: Obtain equation
connecting variable to be
optimized, ¥V, and x and y.

Step 3: Substitute
32007 —57x’
24x
for V' to obtain an equation
connecting ¥ and the variable x
only.

into equation

Step 4: Differentiate V' w.r.t x

Step 5: Set %= 0. Then, find

the value of x.

Step 6: Determine nature of

stationary value of V.

Step 7: Obtain optimum value.
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Example 22 (H2 Math 2010/1 /9)

3 3x

X

Box Lid
A company requires a box made of cardboard of negligible thickness to hold 300 cm® of powder when
full. The length of the box is 3x cm, the width is x cm and the height is y cm. The lid has depth ky cm,

where 0 <k <1 (see diagram).
(1)  Use differentiation to find, in terms of &, the value of x which gives a minimum total external
surface area of the box and the lid.

(i)  Find also the ratio of the height to the width, X , In this case, simplifying your answer.
x

(iii) Find the values between which 2 must lie.
p

(1iv) Find the value of k for which the box has square ends.

Solution:

External surface of the box
10 : .

Volume of box = 3x’y=300 = y= _20 . consists of the two long sides (3x
x

x y), the two ends (x x y) and the
External surface area of box

= (3x)(x)+2(3x)(») +2(x)(»)

=3x" +8xy Can you identify the external
External surface of lid = (3x)(x)+2(ky)(3x)+ 2(ky)(x) surface for the lid as well?

base (3x x x).

=3x" +8kxy
Total external surface area of box and lid, denoted by 4, is
given by:
A=3x" +8xy+3x" +8hkxy =6x" +8xy(k +1)

Substitute y = E)zg into the above, we have
x
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A =6x2 +8X(@)(k+l)=6x2 +M

X b

When 4 is stationary, % =0. Thus

(i)

(i)

(iv)

2
s d_A=12+1600(k+1)
dx 3

X

= >0 since x>0, and k> 0.

1
Hence A4 is a minimum when x = [w]s .

200(k +1

=00 o 210 as (k+1) __ 3

x x X 3 2(k+1)
0<k<l = 1<k+1<2 =  2<2(k+1)<4
o Lo L sl o 3, 3 2

2 2(k+1) 4 2 2(k+1) 4
Hence 2>122.

2 x 4

If the box has square ends, then D Thus ,l
Therefore

It is mandatory to do a first or
second derivative test to ensure
that A is minimum even if only
one value of x is obtained for

U oo
dx

x> 0 since x represents the length

of one side of the box.

We have used the fact that: when

a,b>0thena<b = l>l
a b

Q: Is it still true that:

when a, b < 0, then a < b

= —>-=7
a
What about the case whena <0,

b>0?




Example 23 (SRJC Prelim 2008 / 1/ 6)
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The diagram below shows the cross-section of a cylinder of radius x that is inscribed in a sphere of fixed

internal radius R. Show that 4*> =1672x?(R? - x*), where 4 is the curved surface area of the cylinder.

Prove that, as x varies, the maximum value of 4 is obtained when the height of the cylinder is equal to

its diameter.

R ——
LoXx
—
" R
Solution:
Let h be the height of the cylinder. It is very common that the
By Pythagoras’ theorem, diagram of the question always

2
R =x +(lh)
2

= h* =4R>-4x*
A=2rxh

= A*=4n’x*h?

A’ =4nx* (4R* - 4x) [ hown)

= A*=16x’R*x* -167°x" --—-- (1)
Differentiate (1) w.r.tx,
24 o . 327 R*x - 647X’
dx
327 R*x — 647 x°
24

d4
Si A#0 , — =
nce ax

~ 16”2x(R2 __2x2) _ 167IZX(R—\[2-X)(R+\/EX)
- A - A

; . d4
At stationary point, o =0

16n2x(R—J§x)(R+JEx) =0

e (2)

provide an equation connecting

two variables.
1 2
Here, R =x? +(—h)
2
connects
x and A.

Notice that it is not necessary to
write 4 explicitly in terms of x
(by taking square root) before
differentiating as 4> can be
differentiated implicitly to give
a neater form. This is a useful
skill to

situations.

employ in many
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x =0 (reject) ,i, E 3 (reject)
V27 2
Therefore x= _I_(_
2

Observe that R +2x >0 since R> 0 and x > 0.
Note:

R R 5 From (2) we have
When *= N N R-v2r>0,50 d4 _167°x(R-2x)R++2x)
dx A

d4

dx

RY R
When x=|—=| , x>— = R—\/Ex<0,
(JEJ V2 %0

i
VY
=
el

V2
d4
— >0 0 <0

dx

Slope | — \

Hence, when x = —R— A 1s maximum.
2

x=i:>2x2=R2.

7z

o h=aR? —4x? =\[4(2x") - 4x°

=+/4x? = 2x = diameter of cylinder
Hence, the maximum value of 4 is obtained when the height 4 of

the cylinder is equal to its diameter 2x.

8.9.1: General steps involved in solving optimisation problems

Steps Explanation and Illustration

1. Obtain the equation of constraint and write | This is usually an equation connecting two variables,

| one variable in terms of the other. say x and .
For example, the equation of constraint could be

x+y=1. Writing y in terms of x gives y =1 —x.
Note: If the variables are not defined in the question,

you will need to define them first before proceeding.
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2. Obtain an equation connecting the variable
to be optimized, say A and the variables x and
y. Write 4 in terms of x and y.

For example, this equation could look like
A=xy.
Notice that 4 is expressed in terms of two variables x

and y.

3. Substitute the variable in terms of the other

in step 1 into the equation in step 2.

This substitution reduces the number of variables by

one.

For example, substitute y =1 —xinto 4 = xy gives
A =x(1 —x) so that the quantity 4 is in terms of only

one variable, x.

4. Differentiate the variable to be optimized

with respect to the single variable.

Differentiate 4 with respect to x in the equation 4 =

d4
1 —x) to obtan —=1-2x.
x(1 —x) to obtan &

5. Set the derivative to zero and solve the

equation .

Setﬂzo =>1-2x=0> x=l.
dx 2

6. Determine the nature of the stationary value
of the optimized variable using either the first

or second derivative test, whichever is easier.

Note: This step is mandatory unless the

question specifically says that this is
unnecessary.

Construct a table for the first derivative test

or
. d’4 _
find the sign of o for the second derivative test.
x| 1
d2
For example, —| =-2<0
x =

. ) 1
So 4 is a maximum when x=—.

Note: In this example, the second derivative test is
easier.

7. Obtain the optimum value of the variable to

be optimized.

In this example,

the maximum value of 4 is l(l —l) = l .
2 2 4

Self-Review 5

(a) A piece of wire of length / units is cut into two pieces. One piece is bent to form an equilateral triangle

while the other piece is bent to form a square. Prove that, when the combined area of the two figures

attains a minimum, the length of each side of the equilateral triangle is approximately 0.188/ units.
(You need to verify that the value obtained is a minimum)

(b) Find the coordinates of the points on the curve y = x* +2x—1 that is closest to the point (-1,2).

[(0.871,1.50) and (~2.871,1.50)]
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Annex: A short note about locus
A locus is a path formed by a moving point which moves according to certain conditions.

Example 1 o
The locus of a point P moves so that it is always a same distance 7 from a fixed point C (4, k). What

shape 1s it? Find its Cartesian equation.

Solution: _ . .
Obviously, it is a circle. The centre is the point C and the radius is r.

To find the Cartesian equation of the locus of a moving point, we always let the coordinates of the
moving point P be (x, ») , then we have
CP=r = (x—h)’ +(y-k) =r

= (-h+(—k)7 =1’

Example 2
The locus of a point which moves so that it is an equal distance from two points, A (a, b) and B (c, d) .

What shape is it? Find its Cartesian equation.

Solution:
It is a straight line. In fact, it is the perpendicular bisector of the line joining A and B. To find the

Cartesian equation of the locus, we let the coordinates of the moving point P be (x, y), then,
PA=PB = \(x-a) +(y—b)’ =\(x—c) +(y-d)’
= (x—a)+(y-b) =(x—¢)’ +(y—d)’
> [x-a)-G-o[(x-a)+(x=0)]=[=d)--B[(y=d) +(y-2)]
= (c—a)(2x—a—c)=(b—d)(2y—b—d)
=

c—a
2y—bod =g (2xma=e)==p=5 b-d
c—a a+c(c—a) b+d
= y= x— +
b-d 2 \b-d 2

_c-a__ c’-a’ +(b+a’)(b—d)
“b-d~ 2(b-d)  2(b-d)
c-a_ c*—a’-b+d’
— x—
b-d 2(b-d)

It is an equation for a straight line.
EOW,fwe want to prove that this locus is the perpendicular bisector of the line AB.
roof:

d-b
c—a

Gradient of AB is

Gradient of the locus =—<——.
d-b

T NN W
c-a d-b
The locus is perpendicular to the line joining 4 and B.
Hence the locus is a perpendicular bisector of the line joining 4 and B.

In general, to find the Cartesian equation of the locus of a moving point P that satisfies a
certain rule or condition, we let the co-ordinates of the point P be (x, y), and form an
expression connecting the variables x and y based on the given rule or condition.




