

Tampines Meridian Junior College
2024 H2 Mathematics (9758)
Chapter 6B
3D Vector Geometry (Lines & Planes)
Learning Package

Resources

- \Box Core Concept Notes
- \Box Discussion Questions
- □ Extra Practice Questions

SLS Resources

- □ Recordings on Core Concepts
- □ Quick Concept Checks
- □ (Optional) Supplementary Geogebra Applets for exploration and visualisation

Reflection or Summary Page

H2 Mathematics (9758) Chapter 6B 3D Vector Geometry (Lines & Planes) Core Concept Notes

Success Criteria:

Surface Learning	Deep Learning	Transfer Learning	
□ Interpret and find equations of planes in the form $ax+by+cz = d$ or $(\mathbf{r}-\mathbf{a})\cdot\mathbf{n} = 0$	☐ Find the point of intersection of a line and a plane when it exists.	□ Find the reflection of a point in a plane	
 or r = a + λb + μc. Convert equations of planes from one form to another. Determine whether a line lies in a plane, is parallel to a plane, or intersects a plane. Find the angle between a line and a plane, and between two planes. 	 Find foot of the perpendicular from a point to a plane Find perpendicular distance between a point and a plane, between a line and a plane, and between two planes. Find the line of intersection and the angle between two non-parallel planes. 	 Interpret given information in contextual question. Solve 3D vector geometry questions involving unknowns. 	

§1 Equation of Planes

A plane is a flat, two-dimensional surface that extends infinitely in all directions. Some examples of planes are:

In the rest of this section, we will diagrammatise planes in the shape of a parallelogram.

1.1 <u>Vector Equation of a Plane</u>

Consider the plane π , which contains a given fixed point A, with position vector **a**. Suppose that the plane π is parallel to the **two non-parallel** vectors **m**₁ and **m**₂.

Let *R* be a general point on π , and **r** be the position vector of *R*.

Now, $\mathbf{r} = \overrightarrow{OR} = \overrightarrow{OA} + \overrightarrow{AR}$

Given two non-parallel vectors \mathbf{m}_1 and \mathbf{m}_2 on π , any vector on π may be expressed as a linear combination of those two vectors.

Hence, \overrightarrow{AR} may be expressed as a linear combination of \mathbf{m}_1 and \mathbf{m}_2 .

i.e
$$AR = \lambda \mathbf{m}_1 + \mu \mathbf{m}_2$$
.

So, $\mathbf{r} = \mathbf{a} + (\lambda \mathbf{m}_1 + \mu \mathbf{m}_2)$, λ , μ are real parameters.

Note:

- (i) The position vector of any point *P* on π can be expressed as $\overline{OP} = \mathbf{a} + \lambda \mathbf{m}_1 + \mu \mathbf{m}_2$ for some $\lambda, \mu \in \mathbb{R}$.
- (ii) If a plane π contains three non-collinear points *A*, *B* and *C*, then a vector equation of the plane can be given by :

$$\mathbf{r} = \overrightarrow{OA} + \lambda \overrightarrow{AB} + \mu \overrightarrow{AC} \quad , \quad \lambda, \mu \in \mathbb{R}$$

The equation is not unique.

E.g. Another possible equation is $\mathbf{r} = \overrightarrow{OB} + \lambda \overrightarrow{AB} + \mu \overrightarrow{BC}$, $\lambda, \mu \in \mathbb{R}$.

Example 1

Find a vector equation of the plane that contains the points A(2,1,4), B(4,2,4) and C(1,1,9).

Sketch a simple parallelogram to represent a plane and include points A, B and C on it to help with visualisation

Solution:

Find (any) two non-parallel vectors that are parallel to the plane:

$$\overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA} = \begin{pmatrix} 4\\2\\4 \end{pmatrix} - \begin{pmatrix} 2\\1\\4 \end{pmatrix} = \begin{pmatrix} 2\\1\\0 \end{pmatrix} \text{ and } \overrightarrow{AC} = \overrightarrow{OC} - \overrightarrow{OA} = \begin{pmatrix} 1\\1\\9 \end{pmatrix} - \begin{pmatrix} 2\\1\\4 \end{pmatrix} = \begin{pmatrix} -1\\0\\5 \end{pmatrix}$$

A vector equation of the plane is: $\mathbf{r} = \begin{pmatrix} 2 \\ 1 \\ 4 \end{pmatrix} + \lambda \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix} + \mu \begin{pmatrix} -1 \\ 0 \\ 5 \end{pmatrix}$, $\lambda, \mu \in \mathbb{R}$.

Note:
$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 2 \\ 1 \\ 4 \end{pmatrix} + \lambda \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix} + \mu \begin{pmatrix} -1 \\ 0 \\ 5 \end{pmatrix} \qquad \Rightarrow \qquad \begin{array}{l} x = 2 + 2\lambda - \mu \\ \Rightarrow \qquad y = 1 + \lambda \\ z = 4 \qquad + 5\mu \end{array}$$

The equation of the plane in **parametric form** is $\begin{array}{l} y = 1 + \lambda \\ y = 1 + \lambda \\ z = 4 \qquad + 5\mu \end{array}$.

1.2 **Equation of a Plane in Scalar Product Form**

Consider a plane, π , which passes through a given fixed point A with position vector **a**, and is perpendicular to a given vector **n**.

Let *R* be a general point on π , and **r** be the position vector of *R*.

Since the vector **n** is perpendicular to the plane, π , **n** is perpendicular to any vector that lies on π .

Since points A and R lie on π , the vector AR lies on π .

Therefore, AR is perpendicular to **n**.

 \Rightarrow

$$\overrightarrow{AR} \cdot \mathbf{n} = 0$$

(\mathbf{r} - \mathbf{a}) \cdot \mathbf{n} = 0
\mathbf{r} \cdot \mathbf{n} = \mathbf{a} \cdot \mathbf{n}
\dots \mathbf{r} \cdot \mathbf{n} = D, \text{ where }

 $D = \mathbf{a} \cdot \mathbf{n}$ is a scalar constant.

This is known as the equation of the plane π in scalar product form.

Example 2

Find an equation of plane p in the form $\mathbf{r} \cdot \mathbf{n} = D$ given that plane p passes through the point

(1,1,-1) and is perpendicular to the vector $\mathbf{i} + \mathbf{j} - 3\mathbf{k}$.

Sketch a simple parallelogram to represent a plane and include the given Equation of the plane *p*: point and the normal vector to help with visualisation = 5 1 1 -3 p= 5. i.e. r •(1,1,-1)

1.2.1 Normal Vector to a Plane

- (i) A normal to a plane is perpendicular to any line in the plane (A) or any line parallel to the plane (B). If a vector is perpendicular to any two non-parallel vectors, say b and c in the plane (C), then this vector must be a normal vector, n, to the plane.
- (ii) Normal to a plane is not unique. Thus, vector equation of a plane is **not** unique. If **n** is a normal to a plane, then $2\mathbf{n}$, $-\frac{2}{3}\mathbf{n}$ are also normal to the plane.
- (iii) The planes π_1 and π_2 are parallel \Leftrightarrow their normal vectors \mathbf{n}_1 and \mathbf{n}_2 are parallel.

(iv) From the equation of a plane in scalar product form, if we divide both sides of the equation of the plane by the magnitude of the normal vector **n**, we will get the following:

$$\mathbf{r} \cdot \mathbf{n} = \mathbf{a} \cdot \mathbf{n}$$
$$\mathbf{r} \cdot \frac{\mathbf{n}}{|\mathbf{n}|} = \mathbf{a} \cdot \frac{\mathbf{n}}{|\mathbf{n}|}$$

$$\mathbf{r} \cdot \hat{\mathbf{n}} = \mathbf{a} \cdot \hat{\mathbf{n}}$$
$$\mathbf{r} \cdot \hat{\mathbf{n}} = D'$$
where (a) $\hat{\mathbf{n}} = \frac{\mathbf{n}}{|\mathbf{n}|}$ is a unit vector normal to the plane,
(b) $D' = \mathbf{a} \cdot \frac{\mathbf{n}}{|\mathbf{n}|}$ is a constant,

Note:
Constant
$$|D'| = \left| \mathbf{a} \cdot \frac{\mathbf{n}}{|\mathbf{n}|} \right|$$
 is the **perpendicular distance from the origin**, *O*, to the plane.

Distance from origin *O* to the plane π = *OF* = length of projection of \overrightarrow{OA} onto **n** = $|\overrightarrow{OA} \cdot \hat{\mathbf{n}}|$ = $|\mathbf{a} \cdot \frac{\mathbf{n}}{|\mathbf{n}|}| = |D'|$

 $\left|\frac{3}{\sqrt{3}}\right|$ is the perpendicular distance from origin to plane.

(v) $\mathbf{r} \cdot \mathbf{n} = 0 \Leftrightarrow$ the plane passes through the origin.

(vi) If the point P lies on π , then the position vector of P will satisfy $\overrightarrow{OP} \cdot \mathbf{n} = \mathbf{a} \cdot \mathbf{n}$.

Example 3

A plane passes through the point A(4, -2, -2) and is perpendicular to the vector $\mathbf{i} + \mathbf{j} - 3\mathbf{k}$. Write down an equation of the plane in scalar product form. Hence find the shortest distance from the origin to the plane.

Do the points B(2,0,-2) and C(1,2,0) lie in the plane?

Solution:

Use previously found part(s) or result(s)

1.2.2 <u>Some Examples for the Determination of Normal n to a Plane</u>

	Information given	Normal
1	Plane containing 3 given points A, B and C	$\mathbf{n} = \overrightarrow{AB} \times \overrightarrow{AC}$
	B	
	A	
2	Plane containing 2 given points <i>B</i> and <i>C</i> and parallel to line	$\mathbf{n} = \overrightarrow{BC} \times \mathbf{d}$
	$l:\mathbf{r}=\mathbf{a}+\lambda\mathbf{d}, \lambda\in\mathbb{R}$	n-be×u
	$A \xrightarrow{d} l$	
	В	
2		
3	Plane containing the line $l: \mathbf{r} = \mathbf{a} + \lambda \mathbf{d}, \lambda \in \mathbb{R}$ and the point R (not on D)	$\mathbf{n} = AB \times \mathbf{d}$
4	Plane parallel to 2 lines (non-parallel) $l_1 : \mathbf{r}_1 = \mathbf{a}_1 + \lambda \mathbf{d}_1, \lambda \in \mathbb{R}$	$\mathbf{n} = \mathbf{d}_1 \times \mathbf{d}_2$
	and l_2 : $\mathbf{r}_2 = \mathbf{a}_2 + \mu \mathbf{d}_2, \mu \in \mathbb{R}$	
	→	
	<i>l</i> ₁	
5	Plane containing 2 given points B and C and perpendicular to a	$\mathbf{n} - \mathbf{n} \times \overrightarrow{BC}$
	given plane π_1 : $\mathbf{r} \cdot \mathbf{n}_1 = D_1$	$\mathbf{n} - \mathbf{n}_1 \wedge \mathbf{DC}$
	C B	
1	\bigvee "1	

Example 4

Solution:

A normal

Find an equation of the plane in scalar product form that contains the lines,

$$l_{1}:\mathbf{r} = \begin{pmatrix} 0\\1\\2 \end{pmatrix} + \lambda \begin{pmatrix} -1\\0\\2 \end{pmatrix} \text{ and } l_{2}:\mathbf{r} = \begin{pmatrix} -1\\3\\0 \end{pmatrix} + \mu \begin{pmatrix} -1\\1\\0 \end{pmatrix} \text{ where } \lambda, \mu \in \mathbb{R} \text{ .}$$
where $\lambda, \mu \in \mathbb{R}$.

Remember to check that the normal vector is correct.

Can you recall how?

Check if $\mathbf{n} \cdot \mathbf{d} = 0$

 $\begin{pmatrix} -2\\-2\\-1 \end{pmatrix} \begin{pmatrix} -1\\1\\0 \end{pmatrix} = \begin{pmatrix} -2\\-2\\-1 \end{pmatrix}$

An equation of the plane in scalar product

Example 5

Find an equation of the plane in scalar product form that contains the points A(2, -1, 1) and the line *l* with equation $\mathbf{r} = 2\mathbf{i} + \mathbf{j} + \mathbf{k} + \lambda(-\mathbf{i} + \mathbf{j} - 2\mathbf{k}), \ \lambda \in \mathbb{R}$.

[Solution]

Let point *B* on line l be (2,1,1).

$$\overline{AB} = \begin{pmatrix} 2\\1\\1 \end{pmatrix} - \begin{pmatrix} 2\\-1\\1 \end{pmatrix} = \begin{pmatrix} 0\\2\\0 \end{pmatrix}, \qquad \begin{pmatrix} 0\\2\\0 \end{pmatrix} \times \begin{pmatrix} -1\\1\\-2 \end{pmatrix} = \begin{pmatrix} -4\\0\\2 \end{pmatrix} = 2\begin{pmatrix} -2\\0\\1 \end{pmatrix}$$

An equation of the plane in scalar product form is:

1.3 Equation of a Plane in Cartesian Form

Consider the scalar product form of a plane $\pi : \mathbf{r} \cdot \mathbf{n} = D$, where $D = \mathbf{a} \cdot \mathbf{n}$ and $\mathbf{n} = \begin{bmatrix} b \\ a \end{bmatrix}$.

Since **r** is the position vector of a general point on π , let **r** = $\begin{vmatrix} x \\ y \end{vmatrix}$.

$$\mathbf{r} \cdot \mathbf{n} = D \Leftrightarrow \begin{pmatrix} x \\ y \\ z \end{pmatrix} \cdot \begin{pmatrix} a \\ b \\ c \end{pmatrix} = D \Leftrightarrow ax + by + cz = D.$$

$$\mathbf{r} \cdot \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} = 5 \Rightarrow \begin{pmatrix} x \\ y \\ z \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} = 5 \Rightarrow x + 2y + 3z = 5$$

ax + by + cz = DThis is known as the **Cartesian equation** of the plane π .

Example 6

Find the equation of the plane passing through the point (3, 1, -1) and parallel to the vectors $\begin{bmatrix} 1\\1\\1 \end{bmatrix}$ and $\begin{pmatrix} 2\\-1\\-3 \end{pmatrix}$ in (a) vector form (b) scalar product form. Find also the Cartesian equation of the plane. Solution: (a) Vector equation, $\pi : \mathbf{r} = \begin{pmatrix} 3\\1\\-1 \end{pmatrix} + \lambda \begin{pmatrix} 1\\1\\1 \end{pmatrix} + \mu \begin{pmatrix} 2\\-1\\-3 \end{pmatrix}, \ \lambda, \mu \in \mathbb{R}$ (b) A normal vector to the plane is $\begin{pmatrix} 1\\1\\1\\2 \end{pmatrix} \times \begin{pmatrix} 2\\-1\\-1\\-3 \end{pmatrix} = \begin{pmatrix} -2\\5\\-3\\-3 \end{pmatrix} = -\begin{pmatrix} 2\\-5\\3\\-3 \end{pmatrix}$. Choose $\mathbf{n} = \begin{pmatrix} 2\\-5\\3\\-3 \end{pmatrix} = -2$ Equation in scalar product form, $\pi : \mathbf{r} \cdot \begin{pmatrix} 2\\-5\\3\\-3 \end{pmatrix} = \begin{pmatrix} 3\\1\\-1\\-1 \end{pmatrix} \cdot \begin{pmatrix} 2\\-5\\3\\-3 \end{pmatrix} = -2 \Rightarrow \mathbf{r} \cdot \begin{pmatrix} 2\\-5\\3\\-3 \end{pmatrix} = -2$

$$\mathbf{r} \cdot \begin{pmatrix} 2 \\ -5 \\ 3 \end{pmatrix} = -2 \Rightarrow \begin{pmatrix} x \\ y \\ z \end{pmatrix} \cdot \begin{pmatrix} 2 \\ -5 \\ 3 \end{pmatrix} = -2$$

Cartesian equation of π , 2x-5y+3z = -2

1.4 Convert Equation of Plane from One Form to Another Form

§2 <u>Relationship Between a Line and a Plane</u>

Activity		
Step 1-	Take out 1 pen (representing a line) and a paper (representing a plane)	Hands-On
Step 2-	Using the pen and the paper, determine the possible relationships that a line and a plane can have in a 3-dimensional space.	Learn îng 💥

Consider the line $l: \mathbf{r} = \mathbf{a} + \lambda \mathbf{d}, \lambda \in \mathbb{R}$ and the plane $\pi: \mathbf{r} \cdot \mathbf{n} = D$.

l and π	intersect	do not intersect
parallel	l is contained in the plane π	
not parallel	l and π intersect at a point X	Impossible

d

n

2.1 <u>Line *l* parallel to Plane π and lies in π </u>

Consider the line $l : \mathbf{r} = \mathbf{a} + \lambda \mathbf{d}$, $\lambda \in \mathbb{R}$ and the plane $\pi : \mathbf{r} \cdot \mathbf{n} = D$. *l* lies in π if its direction vector, **d**, is parallel to the plane (and therefore perpendicular to **n**), and if any one point on *l* (eg. *A*) lies in π .

> *l* lies in π if: (i) *l* is parallel to π i.e. $\mathbf{n} \cdot \mathbf{d} = 0$ and (ii) the point with position vector \mathbf{a} on *l* is also in π i.e. $\mathbf{a} \cdot \mathbf{n} = D$.

2.2 <u>Line *l* parallel to Plane π but does NOT lie in π </u>

Consider the line $l: \mathbf{r} = \mathbf{a} + \lambda \mathbf{d}, \lambda \in \mathbb{R}$ and the plane $\pi: \mathbf{r} \cdot \mathbf{n} = D$. *l* is parallel to, but does not lie in π if its direction vector, \mathbf{d} , is parallel to the plane (and therefore perpendicular to \mathbf{n}), and if <u>no</u> point on *l* lies in π .

A _*

1

π

l is parallel to π but does NOT lie in π if: (i) *l* is parallel to π i.e. $\mathbf{n} \cdot \mathbf{d} = 0$ and (ii) the point with position vector \mathbf{a} on *l* is not in π , i.e. $\mathbf{a} \cdot \mathbf{n} \neq D$.

Example 7

Given a plane $\pi : \mathbf{r} \cdot \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix} = 4$, determine whether the following lines:

- intersect the plane, or
- are parallel to but do not lie in the plane, or
- lie in the plane.

(i)
$$l_1: \mathbf{r} = \begin{pmatrix} -2\\1\\-1 \end{pmatrix} + \lambda \begin{pmatrix} 1\\2\\0 \end{pmatrix}, \ \lambda \in \mathbb{R}$$
 (ii) $l_2: \mathbf{r} = \begin{pmatrix} 2\\1\\1 \end{pmatrix} + \mu \begin{pmatrix} -1\\0\\2 \end{pmatrix}, \ \mu \in \mathbb{R}$ parameters.

[Solution]

(i)
$$\mathbf{n} \cdot \mathbf{d} = \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix} = 2 - 2 = 0 \quad \therefore \quad l_1 \text{ is parallel to } \pi$$

Since $\begin{pmatrix} -2 \\ 1 \\ -1 \end{pmatrix} \cdot \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix} = -4 - 1 - 1 = -6 \neq 4$, point $(-2, 1, -1)$ is on l_1 but does not lie in π .

 \therefore l_1 is parallel to π but does not lie in π .

(ii)
$$\mathbf{n} \cdot \mathbf{d} = \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix} \cdot \begin{pmatrix} -1 \\ 0 \\ 2 \end{pmatrix} = -2 + 2 = 0 \quad \therefore \quad l_2 \text{ is parallel to } \pi$$

$$\binom{2}{1} \cdot \binom{2}{-1} = 4 - 1 + 1 = 4, \text{ point } (2, 1, 1) \text{ is on } l_2 \text{ and lies in } \pi.$$

 \therefore l_2 is parallel to π and lies in π .

Alternatively:

$$\begin{pmatrix} 2-\mu\\ 1\\ 1+2\mu \end{pmatrix} \begin{pmatrix} 2\\ -1\\ 1 \end{pmatrix} = 4-2\mu-1+1+2\mu=4$$
, therefore l_2 is parallel to π and lies in π .

2.3 Line *l* is not parallel to the plane and therefore intersects the plane

Example 8

Find the coordinates of the point of intersection between the plane $\pi : \mathbf{r} \cdot \begin{bmatrix} -2 \\ 1 \end{bmatrix} = 2$ and the line

Substitute (1) in (2):
$$\begin{pmatrix} 1 \\ 1+\lambda \\ 4 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix} = 2 \implies \lambda = 1$$

Substitute equation of line into equation of plane
Substitute $\lambda = 1$ into (1): $\mathbf{r} = \begin{pmatrix} 2 \\ 1 \\ 4 \end{pmatrix} + \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 2 \\ 2 \\ 4 \end{pmatrix}$

Therefore the coordinates of the point of intersection are (2, 2, 4).

Example 9

The equations of a line l and a plane π are

$$l: \mathbf{r} = \begin{pmatrix} 1 \\ 0 \\ 4 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix}, \ \lambda \in \mathbb{R} \qquad \text{and} \qquad \pi: \mathbf{r} \cdot \begin{pmatrix} a \\ -1 \\ 1 \end{pmatrix} = b$$

respectively, where *a* and *b* are constants.

- (i) Given that l lies in π , find the values of a and b.
- (ii) Given instead that l is parallel to π and does not lie in π , what can be said about the values of a and b?

(ii) Given instead that l does not lie in π , a = 2, $b \neq 6$

§3 Angle Between a Line and a Plane

Recall from Vectors 1 that the angle θ between two vectors **a** and **b** is found by

$$\cos\theta = \frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}||\mathbf{b}|}$$

Consider a line l and a plane π given by

$$l: \mathbf{r} = \mathbf{a} + \lambda \mathbf{d}, \lambda \in \mathbb{R},$$
$$\pi: \mathbf{r} \cdot \mathbf{n} = D.$$

Recall by convention, we want to find the **acute** angle θ between l and π .

To find the **acute** angle between l and π , we first consider the **acute** angle α between the normal vector **n** and the direction vector **d** using the scalar product formula

In conclusion, the **acute** angle θ between line *l* and plane π can be found using the formula

$$\sin\theta = \left|\frac{\mathbf{n} \cdot \mathbf{d}}{|\mathbf{n}||\mathbf{d}|}\right|$$

Example 10

Find the acute angle between the line l and the plane π , where

$$l: \mathbf{r} = \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix} + \lambda \begin{pmatrix} 2 \\ 4 \\ -1 \end{pmatrix}, \ \lambda \in \mathbb{R}, \text{ and } \pi: 2x - y + z = 0.$$

Solution:

$$\pi: 2x - y + z = 0 \Longrightarrow \mathbf{r} \cdot \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix} = 0 \quad \checkmark$$

Convert to scalar product form first

Let θ be the acute angle between l and π .

$$\sin \theta = \left| \frac{\mathbf{n} \cdot \mathbf{d}}{|\mathbf{n}||\mathbf{d}|} \right| \Rightarrow \sin \theta = \frac{\left| \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix} \begin{pmatrix} 2 \\ 4 \\ -1 \end{pmatrix} \right|}{\sqrt{6}\sqrt{21}} = \frac{1}{\sqrt{126}} \quad \therefore \theta = 5.1^{\circ}$$

§4 Foot of the Perpendicular from Point to Plane

Example 11

Find the foot of the perpendicular from the point P(1, -3, 3) to the plane $\pi : \mathbf{r} \cdot \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} = 6$.

Solution:

Let *F* be the foot of the perpendicular from the point *P* to π .

$$\overrightarrow{OF} = \begin{pmatrix} 1\\ -3\\ 3 \end{pmatrix} + 4 \begin{pmatrix} 1\\ 1\\ 0 \end{pmatrix} = \begin{pmatrix} 5\\ 1\\ 3 \end{pmatrix}$$

§5 <u>Perpendicular Distance from a Point to a Plane</u>

Example 11 (Continued) – where the foot of perpendicular is found ("Hence" method)

Find the foot of the perpendicular from the point P(1, -3, 3) to the plane $\pi : \mathbf{r} \cdot \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} = 6$.

Hence find the shortest distance from P to the plane π .

Solution:

Let *F* be the foot of the perpendicular from the point *P* to π .

Since we have already found the position vector of the foot of the perpendicular from *P* to π to be $\overrightarrow{OF} = \begin{pmatrix} 5\\1\\3 \end{pmatrix}$, the shortest distance from *P* to the plane π is none other than $|\overrightarrow{PF}|$.

$$\overrightarrow{PF} = \overrightarrow{OF} - \overrightarrow{OP} = \begin{pmatrix} 5\\1\\3 \end{pmatrix} - \begin{pmatrix} 1\\-3\\3 \end{pmatrix} = \begin{pmatrix} 4\\4\\0 \end{pmatrix}$$

Thus the shortest distance from P to the plane $\pi = \left| \overrightarrow{PF} \right| = \sqrt{4^2 + 4^2 + 0^2}$ = $\sqrt{32} = 4\sqrt{2}$ units

Example 12 (Using the concept of length of projection – "Otherwise" method)

Find the shortest distance from P(2,3,-4) to the plane π with equation 2x + y - 2z + 9 = 0.

Next, observe that finding the shortest distance from *P* to the plane π which is $|\overrightarrow{PF}|$ is same as finding the length of projection of \overrightarrow{PA} onto **n**.

Let
$$\overrightarrow{OA} = \begin{pmatrix} 0 \\ -9 \\ 0 \end{pmatrix}$$
. $\overrightarrow{PA} = \overrightarrow{OA} - \overrightarrow{OP} = \begin{pmatrix} 0 \\ -9 \\ 0 \end{pmatrix} - \begin{pmatrix} 2 \\ 3 \\ -4 \end{pmatrix} = \begin{pmatrix} -2 \\ -12 \\ 4 \end{pmatrix}$

Shortest distance from *P* to the plane π = length of projection of \overrightarrow{PA} onto **n**

§6 <u>Relationship Between Two Planes</u>

π_1 and π_2	intersect	do not intersect
Parallel (i.e. $n_1 = \lambda n_2$ $\lambda \in \mathbb{R}$)		×
	π_1 and π_2 are in fact the same plane	
not parallel (i.e. $n_1 \neq \lambda n_2$ $\lambda \in \mathbb{R}$)	π_1 and π_2 intersect in a line l	Impossible

Consider the planes $\pi_1 : \mathbf{r} \cdot \mathbf{n}_1 = D_1$ and $\pi_2 : \mathbf{r} \cdot \mathbf{n}_2 = D_2$. Again, there are 3 possibilities.

6.1 <u>Non-Parallel Planes: Line of Intersection</u>

Two distinct planes are either parallel or intersecting. If the two planes are non-parallel, they **always** intersect in a line.

Example 13 [numbers in vectors: use GC]

Find the line of intersection of the planes $\pi_1 : \mathbf{r} \cdot (\mathbf{i} - 5\mathbf{j} - 3\mathbf{k}) = 0$ and $\pi_2 : \mathbf{r} \cdot (\mathbf{i} - \mathbf{j} - 3\mathbf{k}) = 8$.

Solution:

It is good to observe that since
$$\begin{pmatrix} 1 \\ -5 \\ -3 \end{pmatrix} \neq \lambda \begin{pmatrix} 1 \\ -1 \\ -3 \end{pmatrix}$$
, $\lambda \in \mathbb{R}$, π_1 and π_2 are not parallel,

therefore they are intersecting.

Step 1: Convert the equations to Cartesian form

$$\pi_1: \mathbf{r} \cdot (\mathbf{i} - 5\mathbf{j} - 3\mathbf{k}) = 0 \implies \begin{pmatrix} x \\ y \\ z \end{pmatrix} \cdot \begin{pmatrix} 1 \\ -5 \\ -3 \end{pmatrix} = 0 \implies x - 5y - 3z = 0$$

$$\pi_2: \mathbf{r} \cdot (\mathbf{i} - \mathbf{j} - 3\mathbf{k}) = 8 \implies \begin{pmatrix} x \\ y \\ z \end{pmatrix} \cdot \begin{pmatrix} 1 \\ -1 \\ -3 \end{pmatrix} = 8 \implies x - y - 3z = 8$$

Step 2: Use GC to solve simultaneous equations

Using GC (Polysmlt2) (refer to steps on next page)

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 10 + 3z \\ 2 \\ z \end{pmatrix}$$

Step 3: Let
$$z = \lambda$$

Let $z = \lambda$, $\lambda \in \mathbb{R}$:
 $\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 10 + 3\lambda \\ 2 \\ \lambda \end{pmatrix} = \begin{pmatrix} 10 \\ 2 \\ 0 \end{pmatrix} + \lambda \begin{pmatrix} 3 \\ 0 \\ 1 \end{pmatrix}, \lambda \in \mathbb{R}$
 \therefore the planes intersect in the line $\mathbf{r} = \begin{pmatrix} 10 \\ 2 \\ 0 \end{pmatrix} + \lambda \begin{pmatrix} 3 \\ 0 \\ 1 \end{pmatrix}, \lambda \in \mathbb{R}$.

Important Note:

Given the two planes π_1 : **r.n**₁ = D_1 and π_2 : **r.n**₂ = D_2

The line of intersection of the planes π_1 and π_2 has direction vector parallel to $\mathbf{n}_1 \times \mathbf{n}_2$.

Direction vector of the line of intersection can be found by $\mathbf{d} = \mathbf{n}_1 \times \mathbf{n}_2$

it means that $\begin{bmatrix} 0 \\ 0 \end{bmatrix}$ lies on both planes

Example 14 [unknowns in vectors]

Find the line of intersection of the planes
$$\pi_1 : \mathbf{r} \cdot \begin{pmatrix} 1 \\ 2 \\ \alpha \end{pmatrix} = 0$$
 and $\pi_2 : \mathbf{r} \cdot \begin{pmatrix} 4 \\ 5 \\ 0 \end{pmatrix} = 0$ in terms of the constant α .
Unknown: cannot use GC Notice that RHS=0:
 $\begin{pmatrix} 0 \end{pmatrix}$

Solution:

$$\mathbf{n}_1 \times \mathbf{n}_2 = \begin{pmatrix} 1\\2\\\alpha \end{pmatrix} \times \begin{pmatrix} 4\\5\\0 \end{pmatrix} = \begin{pmatrix} -5\alpha\\4\alpha\\-3 \end{pmatrix}$$

Since the origin (0,0,0) is a common point on the planes π_1 and π_2 , the line of intersection

of the planes
$$\pi_1$$
 and π_2 is $\mathbf{r} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} + \lambda \begin{pmatrix} -5\alpha \\ 4\alpha \\ -3 \end{pmatrix}$, $\lambda \in \mathbb{R}$.

Note: If a common point between the 2 planes cannot be easily observed, simply equate one of the coordinates (either x or y or z) in both equations to 0, and solve the resulting pair of simultaneous equations to obtain a common point between the 2 planes.

6.2 <u>Non-Parallel Planes: Angle Between Two Planes</u>

Recall from *Vectors 1* that the angle θ between two vectors **a** and **b** is found by

$$\cos\theta = \frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}||\mathbf{b}|}$$

Consider the two planes $\pi_1 : \mathbf{r} \cdot \mathbf{n}_1 = D_1$ and $\pi_2 : \mathbf{r} \cdot \mathbf{n}_2 = D_2$.

Recall by convention, we want to find the **acute** angle θ between π_1 and π_2 .

To find the **acute** angle between π_1 and π_2 , we first consider the **acute** angle α between the two normal vectors \mathbf{n}_1 and \mathbf{n}_2 using the scalar product formula

From the "cross-section view", observe that the acute angle between the planes π_1 and π_2 is also the acute angle between their normal vectors \mathbf{n}_1 and \mathbf{n}_2 , i.e. $\theta = \alpha$.

In conclusion, the **acute** angle θ between planes π_1 and π_2 can be found using the formula

$$\cos\theta = \left|\frac{\mathbf{n}_1 \cdot \mathbf{n}_2}{|\mathbf{n}_1||\mathbf{n}_2|}\right|$$

Special Case: Two planes π_1 and π_2 are perpendicular if and only if $\mathbf{n_1} \cdot \mathbf{n_2} = 0$.

Example 15

Find the acute angle between the planes $\pi_1: x + y + z = 3$ and $\pi_2: 2x - 2y + z = 1$.

S

Solution:

$$\pi_1 : \mathbf{r} \cdot \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = 3 \text{ and } \pi_2 : \mathbf{r} \cdot \begin{pmatrix} 2 \\ -2 \\ 1 \end{pmatrix} = 1$$
Convert to scalar product form first

Let θ be the acute angle between π_1 and π_2 .

$$\cos\theta = \left|\frac{\mathbf{n_1} \cdot \mathbf{n_2}}{|\mathbf{n_1}||\mathbf{n_2}|}\right| \Rightarrow \cos\theta = \frac{\begin{vmatrix} 1\\1\\0\\1 \end{vmatrix} \begin{pmatrix} 2\\-2\\1\\1 \end{pmatrix}}{\sqrt{3\sqrt{9}}} = \frac{1}{3\sqrt{3}}$$
$$\therefore \theta = 78.9^{\circ}$$

6.3 <u>Parallel Planes: Distance Between Two Planes</u>

Example 16

The plane p_1 has equation $\mathbf{r} \cdot \begin{pmatrix} 7 \\ 2 \\ -3 \end{pmatrix} = -4$. The plane p_2 passes through (2, 4, 5) and is parallel

to p_1 . Find the equation of p_2 and determine the distance between the two planes.

Solution:

The equation of
$$p_2$$
 is $\mathbf{r} \cdot \begin{pmatrix} 7 \\ 2 \\ -3 \end{pmatrix} = \begin{pmatrix} 2 \\ 4 \\ 5 \end{pmatrix} \cdot \begin{pmatrix} 7 \\ 2 \\ -3 \end{pmatrix} = 14 + 8 - 15 = 7$ i.e. $\mathbf{r} \cdot \begin{pmatrix} 7 \\ 2 \\ -3 \end{pmatrix} = 7$

Method 1: (Using the concept of length of projection)

First, observe that the point A(0,-2,0) lies in p_1 and B(1,0,0) lies in p_2 .

Step 1: Find a point on each plane to form vector \overrightarrow{AB}

Next, observe that finding the distance between the two planes is the same as finding the length of projection of \overrightarrow{AB} onto **n**.

$$\overline{AB} = \overline{OB} - \overline{OA} = \begin{pmatrix} 1\\0\\0 \end{pmatrix} - \begin{pmatrix} 0\\-2\\0 \end{pmatrix} = \begin{pmatrix} 1\\2\\0 \end{pmatrix}$$
Distance between p_1 and p_2
= length of projection of \overline{AB} onto \mathbf{n}

$$= \begin{vmatrix} \overline{AB} \cdot \hat{\mathbf{n}} \end{vmatrix}$$

$$\sum_{\substack{p_2 \\ p_2 \\ B}$$
Step 2: Find length of projection of \overline{AB} onto \mathbf{n}

$$= \frac{\begin{vmatrix} 1\\2\\0 \\ \end{vmatrix} \cdot \begin{pmatrix} 7\\2\\-3 \\ \end{vmatrix}} = \frac{|7+4|}{\sqrt{62}} = \frac{11}{\sqrt{62}}$$
 units

Method 2: (Using distance from origin to plane p_1 and p_2)

To find the distance between p_1 and p_2 , we first convert the equations into the form $\mathbf{r} \cdot \hat{\mathbf{n}} = D'$.

In general, given 2 parallel planes $\pi_1 : \mathbf{r} \cdot \mathbf{n}_1 = \mathbf{D}_1$ and $\pi_2 : \mathbf{r} \cdot \mathbf{n}_2 = \mathbf{D}_2$, the distance between them can be found using the formula

Distance between two parallel planes = $\left \frac{\mathbf{D}_1}{ \mathbf{n} } - \frac{\mathbf{D}_2}{ \mathbf{n} } \right $

H2 Mathematics (9758) Chapter 6B 3D Vector Geometry (Lines & Planes) Discussion Questions

Level 1

- **1** Find the equation of the following planes in parametric form, scalar product form and Cartesian form.
 - (a) The plane passing through the points A(0, 1, 1), B(1, -3, 2) and C(1, 0, 1).

(**b**) The plane containing the lines
$$x = 3$$
, $\frac{y+1}{2} = z-3$ and $\mathbf{r} = \begin{pmatrix} 3 \\ -1 \\ 3 \end{pmatrix} + \mu \begin{pmatrix} 2 \\ 4 \\ 3 \end{pmatrix}$, $\mu \in \mathbb{R}$.

(c) The plane that includes the line $\mathbf{r} = \mathbf{i} - 2\mathbf{j} - 4\mathbf{k} + \lambda(2\mathbf{i} + 3\mathbf{j} - 6\mathbf{k})$ and the point with position vector $2\mathbf{i} + 5\mathbf{j} - 6\mathbf{k}$.

In each case, find the coordinates of the point of intersection of the plane and the line $\mathbf{r} = \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix} + \alpha \begin{pmatrix} 1 \\ -5 \\ 3 \end{pmatrix}, \alpha \in \mathbb{R}.$

- 2 Find the coordinates of the point where the line $\mathbf{r} = \mathbf{i} + \lambda(\mathbf{i} \mathbf{k})$ intersects the plane with equation 2x 3y + z = 1.
- **3** Find the equation of the line of intersection between the two planes with equations

$$\mathbf{r} \cdot \begin{pmatrix} 3 \\ 2 \\ -1 \end{pmatrix} = 10 \text{ and } \mathbf{r} \cdot \begin{pmatrix} 5 \\ -1 \\ 2 \end{pmatrix} = 6 \text{ respectively.}$$

4 Find the acute angle between

(a) the line
$$\mathbf{r} = \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix} + \lambda \begin{pmatrix} 3 \\ 5 \\ 2 \end{pmatrix}, \lambda \in \mathbb{R}$$
, and the plane $x - 3y + z = 2$;
(b) the planes $\mathbf{r} \cdot \begin{pmatrix} 2 \\ -3 \\ 4 \end{pmatrix} = 6$ and $x + 2y - 5z = 8$.

Level 2

- 5 Find the position vector of *F*, the foot of the perpendicular from B(2, 3, -4) to the plane *p*, whose equation is 2x + y 2z + 9 = 0.
- 6 Find the perpendicular distance from point A(4,5,6) to the plane $\mathbf{r} \cdot \mathbf{k} = 2$.
- 7 The plane π contains the point P(2,2,4) and the line l_1 : $\mathbf{r} = \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}, \lambda \in \mathbb{R}$.
 - (i) Find the vector equation of the plane π in scalar product form.
 - (ii) Find the position vector of the foot of the perpendicular from the point S(1,0,-4) to π .

(iii) Verify that
$$S(1,0,-4)$$
 lies on line $l_2: \mathbf{r} = \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} + \mu \begin{pmatrix} 0 \\ 1 \\ -5 \end{pmatrix}, \mu \in \mathbb{R}$.

(iv) Find the equation of the image obtained by reflecting the line l_2 in the plane π .

8 2011(9740)/I/11

The plane p passes through the points with coordinates (4, -1, -3), (-2, -5, 2) and (4, -3, -2).

(i) Find the Cartesian equation of p. [4]

The line l_1 has equation $\frac{x-1}{2} = \frac{y-2}{-4} = \frac{z+3}{1}$ and the line l_2 has equation $\frac{x+2}{1} = \frac{y-1}{5} = \frac{z-3}{k}$, where k is a constant. It is given that l_1 and l_2 intersect.

(ii) Find the value of k. [4]

(iii) Show that l_1 lies in p and find the coordinates of the point at which l_2 intersects p.

- [4]
- (iv) Find the acute angle between l_2 and p. [3]

[4]

9 2013(9740)/II/4 (modified)

The planes
$$p_1$$
 and p_2 have equations $\mathbf{r} \cdot \begin{pmatrix} 2 \\ -2 \\ 1 \end{pmatrix} = 1$ and $\mathbf{r} \cdot \begin{pmatrix} -6 \\ 3 \\ 2 \end{pmatrix} = -1$ respectively, and

meet in the line *l*.

- (i) Find the shortest distance from the origin to plane p_2 . [2]
- (ii) Find the acute angle between p_1 and p_2 . [3]
- (iii) Find a vector equation for *l*.
- (iv) The point A(4, 3, c) is equidistant from the planes p_1 and p_2 . Calculate the two possible values of c. [6]

10 2016(9740)/I/11

The plane *p* has equation $\mathbf{r} = \begin{pmatrix} 1 \\ -3 \\ 2 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix} + \mu \begin{pmatrix} a \\ 4 \\ -2 \end{pmatrix}$, and the line *l* has equation $\begin{pmatrix} a-1 \\ -2 \end{pmatrix}$

$$\mathbf{r} = \begin{pmatrix} a - 1 \\ a \\ a + 1 \end{pmatrix} + t \begin{pmatrix} -2 \\ 1 \\ 2 \end{pmatrix}, \text{ where } a \text{ is a constant and } \lambda, \mu \text{ and } t \text{ are parameters.}$$

- (i) In the case where a = 0,
 - (a) show that *l* is perpendicular to *p* and find the values of λ , μ and *t* which give the coordinates of the point at which *l* and *p* intersect, [5]
 - (b) find the cartesian equations of the planes such that the perpendicular distance from each plane to *p* is 12. [5]
- (ii) Find the value of a such that l and p do not meet in a unique point. [3]

Level 3

S (-5, -6, -7)

A ray of light passes from air into a material made into a rectangular prism. The ray of

-3 from a light source at the point *P* with coordinates light is sent in direction

(2, 2, 4). The prism is placed so that the ray of light passes through the prism, entering at the point Q and emerging at the point R and is picked up by a sensor at point S with coordinates (-5, -6, -7). The acute angle between PQ and the normal to the top of the prism at Q is θ and the acute angle between QR and the same normal is β (see diagram).

It is given that the top of the prism is a part of the plane x + y + z = 1, and that the base of the prism is a part of the plane x + y + z = -9. It is also given that the ray of light along PQ is parallel to the ray of light along RS so that P, Q, R and S lie in the same plane.

- Find the exact coordinates of Q and R. (i) [5]
- (ii) Find the values of $\cos\theta$ and $\cos\beta$.
- (iii) Find the thickness of the prism measured in the direction of the normal at Q. [3]

Snell's law states that $\sin \theta = k \sin \beta$, where k is a constant called the refractive index.

- (iv) Find k for the material of this prism. [1]
- **(v)** What can be said about the value of *k* for a material for which $\beta > \theta$? [1]

[3]

12 2017(9758)/I/6

- (i) Interpret geometrically the vector equation $\mathbf{r} = \mathbf{a} + t\mathbf{b}$, where \mathbf{a} and \mathbf{b} are constant vectors and t is a parameter. [2]
- (ii) Interpret geometrically the vector equation $\mathbf{r} \cdot \mathbf{n} = d$, where \mathbf{n} is a constant unit vector and d is a constant scalar, stating what d represents. [3]
- (iii) Given that $\mathbf{b} \cdot \mathbf{n} \neq 0$, solve the equations $\mathbf{r} = \mathbf{a} + t\mathbf{b}$ and $\mathbf{r} \cdot \mathbf{n} = d$ to find \mathbf{r} in terms of \mathbf{a} , \mathbf{b} , \mathbf{n} and d. Interpret the solution geometrically. [3]

13 2008/HCI/I/12(b) (modified)

Referring to the origin O, two planes Π_1 and Π_2 are given by

$$\Pi_1: \mathbf{r} \cdot \begin{pmatrix} 1 \\ 2 \\ -4 \end{pmatrix} = 13 \text{ and } \Pi_2: \mathbf{r} \cdot \begin{pmatrix} 1 \\ 3 \\ 3 \end{pmatrix} = -8.$$

Find an equation of the plane which is the image of Π_2 when Π_2 is reflected in Π_1 . [9]

Answer Key
1(a)
$$x = \lambda + \mu, y = 1 - 4\lambda - \mu, z = 1 + \lambda$$
, where $\lambda, \mu \in \mathbb{R}$; $\mathbf{r} \cdot \begin{pmatrix} 1\\ 1\\ 3 \end{pmatrix} = 4$; $x + y + 3z = 4$;
 $\left(\frac{7}{5}, -4, \frac{11}{5}\right)$
1(b) $x = 3 + 2\mu, y = -1 + 2\lambda + 4\mu, z = 3 + \lambda + 3\mu$, where $\lambda, \mu \in \mathbb{R}$; $\mathbf{r} \cdot \begin{pmatrix} 1\\ 1\\ -2 \end{pmatrix} = -4$;
 $x + y - 2z = -4$; $\left(\frac{11}{10}, -\frac{5}{2}, \frac{13}{10}\right)$
1(c) $x = 1 + 2\lambda - \mu, y = -2 + 3\lambda - 7\mu, z = -4 - 6\lambda + 2\mu$, where $\lambda, \mu \in \mathbb{R}$; $\mathbf{r} \cdot \begin{pmatrix} 36\\ -2\\ 11 \end{pmatrix} = -4$;
 $36x - 2y + 11z = -4$; $\left(\frac{24}{79}, \frac{117}{79}, -\frac{86}{79}\right)$
2 (0, 0, 1)
3 $\mathbf{r} = \begin{pmatrix} 22/3\\ 32/13\\ 0 \end{pmatrix} + \lambda \begin{pmatrix} -3\\ 11\\ 13 \end{pmatrix}, \lambda \in \mathbb{R}$
4 (a) 29.3° (b) 35.5°

$5 \frac{1}{3} \begin{pmatrix} -10\\1\\4 \end{pmatrix}$		
6 perpendicular distance from <i>A</i> to plane is 4		
$\mathbf{7(i)} \ \mathbf{r} \cdot \begin{pmatrix} 3 \\ -2 \\ 1 \end{pmatrix} = 6 (\mathbf{ii}) \ \frac{1}{2} \begin{pmatrix} 5 \\ -2 \\ -7 \end{pmatrix} (\mathbf{iii}) \ S(1,0,4) (\mathbf{iv}) \ \mathbf{r} = \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} + \alpha \begin{pmatrix} 3 \\ -1 \\ -4 \end{pmatrix}, \alpha \in \mathbb{R}$		
8(i) $x + y + 2z = -3$ (ii) $k = -7$ (iii) $(-1, 6, -4)$ (iv) 22.2°		
9(i) $\frac{1}{7}$ (ii) 40.4° (iii) $\mathbf{r} = \begin{pmatrix} -\frac{1}{6} \\ -\frac{2}{3} \\ 0 \end{pmatrix} + \lambda \begin{pmatrix} \frac{7}{6} \\ \frac{5}{3} \\ 1 \end{pmatrix}, \lambda \in \mathbb{R}$ (iv) -49 and $\frac{35}{13}$		
10(ia) $\lambda = -\frac{8}{9}$, $\mu = \frac{19}{18}$ and $t = -\frac{5}{9}$ (ib) $-2x + y + 2z = 35$ and $-2x + y + 2z = -37$ (ii) $\frac{9}{2}$		
11(i) $Q\left(\frac{8}{11}, \frac{1}{11}, \frac{2}{11}\right), R\left(-\frac{37}{11}, -\frac{39}{11}, -\frac{23}{11}\right)$ (ii) $\frac{11}{21}\sqrt{3}, \frac{11}{255}\sqrt{510}$ (iii) $\frac{10}{3}\sqrt{3}$ (iv) 1.86 (v) $0 \le k \le 1$		
12(iii) $\mathbf{r} = \mathbf{a} + \left(\frac{d - \mathbf{a} \cdot \mathbf{n}}{\mathbf{b} \cdot \mathbf{n}}\right) \mathbf{b}$		
13 $\mathbf{r} = \begin{pmatrix} -3 \\ -1 \\ 6 \end{pmatrix} + \lambda \begin{pmatrix} 18 \\ -7 \\ 1 \end{pmatrix} + \mu \begin{pmatrix} 29 \\ -10 \\ -3 \end{pmatrix}$ where λ and $\mu \in \mathbb{R}$		

H2 Mathematics (9758) Chapter 6 3D Vector Geometry Extra Practice Questions

1 Show that the line $l: \mathbf{r} = \begin{pmatrix} 2 \\ -2 \\ 3 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ -1 \\ 4 \end{pmatrix}, \lambda \in \mathbb{R}$, is parallel to the plane $\pi: x + 5y + z = 5$.

Find the shortest distance between the line l and the plane π .

2 2007/IJC/I/5

The position vectors of the points A, B, and C are given by $\mathbf{i} + \mathbf{j} + \mathbf{k}$, $4\mathbf{i} + 3\mathbf{j} + 2\mathbf{k}$ and $-7\mathbf{i} - 2\mathbf{j} - \mathbf{k}$ respectively.

- (i) Prove that the points *A*, *B* and *C* are not collinear. [2]
- (ii) Find a vector which is perpendicular to the plane *ABC*. [2]
- (iii) Deduce the exact length of projection of PQ on the plane ABC, given that $\overrightarrow{OP} = 2\mathbf{i} + 4\mathbf{j} + 7\mathbf{k}$ and $\overrightarrow{OQ} = 4\mathbf{i} + 4\mathbf{j} + 6\mathbf{k}$. [3]

3 2007/PJC/I/6

The line l_1 has equation $\mathbf{r} = \begin{pmatrix} p \\ 3 \\ 7 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \lambda \in \mathbb{R}$. The line l_2 passes through points A

and *B* with position vectors $3\mathbf{j}+3\mathbf{k}$ and $q\mathbf{i}+3\mathbf{j}+5\mathbf{k}$ respectively, where *p* and *q* are constants.

- (i) If q = 1 and p = 4, find the position vector of the point C on l_1 such that A is the foot of perpendicular from C to l_2 . [4]
- (ii) If the acute angle between l_1 and l_2 is 60°, find the possible value(s) of q. [3]

4 2008/JJC/I/3

The lines l_1 and l_2 have equations

*l*₁: **r** = (**i**+3**j**+2**k**) +
$$\lambda$$
(**i**-**j**+7**k**)
*l*₂: *x* = 1, $\frac{y-3}{-4} = \frac{z-2}{3}$,

where λ is a real parameter. The point *P* lies on the line l_1 with position vector $a\mathbf{i} + \mathbf{j} + 16\mathbf{k}$. The point *Q* lies on the line l_2 such that *PQ* is perpendicular to the line l_2 .

(i) Prove that
$$a = 3$$
. [1]

- (ii) Find the position vector of the point Q. [3]
- (iii) Find, in degrees, the acute angle between the lines l_1 and l_2 . [2]

5 2008/HCI/I/12b

Referring to the origin O, two planes Π_1 and Π_2 are given by

$$\Pi_1: \mathbf{r} \cdot \begin{pmatrix} 1\\2\\-4 \end{pmatrix} = 13 \quad \text{and} \quad \Pi_2: \mathbf{r} \cdot \begin{pmatrix} 1\\3\\3 \end{pmatrix} = -8.$$

- (i) Given that a point A(1,7,-10) lies on Π_2 , show that the perpendicular distance from A to Π_1 is $2\sqrt{21}$. [2]
- (ii) Hence or otherwise find \overline{OB} where *B* is the image of *A* when reflected in the plane Π_1 . [2]
- (iii) Write down the Cartesian equations of both Π_1 and Π_2 . [1] Find a vector equation of the line of intersection of Π_1 and Π_2 . [1]
- (iv) Find a vector equation of the plane which is the image of Π_2 when Π_2 is reflected in Π_1 . [3]

6 2010 DHS Prelim/P2/Q4

The planes Π_1 and Π_2 are defined by

$$\Pi_1: \mathbf{r} \cdot \begin{pmatrix} 2\\4\\1 \end{pmatrix} = 10, \qquad \Pi_2: \mathbf{r} \cdot \begin{pmatrix} 1\\3\\1 \end{pmatrix} = 8.$$

- (i) Find the acute angle between the two planes. [3]
- (ii) Obtain a vector equation of l_1 , the line of intersection of the two planes. [4]

The Cartesian equation of another line, l_2 , is given by $\frac{x-2}{6} = \frac{7-z}{3}$, y = m, where *m* is a real constant.

- (iii) If the plane Π_1 and line l_2 intersect at the point (6, m, 5), find the value of m. [2]
- (iv) Show that the lines l_1 and l_2 are perpendicular for all values of m. [2]

7 2009/CJC/I/11 (Modified)

The planes p_1 and p_2 , which meet in the line l, have vector equations

$$\mathbf{r} = \begin{pmatrix} 2\\4\\6 \end{pmatrix} + \lambda_1 \begin{pmatrix} 1\\0\\-1 \end{pmatrix} + \mu_1 \begin{pmatrix} 0\\1\\1 \end{pmatrix},$$
$$\mathbf{r} = \begin{pmatrix} 2\\4\\6 \end{pmatrix} + \lambda_2 \begin{pmatrix} 2\\3\\0 \end{pmatrix} + \mu_2 \begin{pmatrix} 1\\0\\1 \end{pmatrix}$$

respectively, where $\lambda_1, \lambda_2, \mu_1$ and μ_2 are real constants.

- (i) Show that *l* is parallel to the vector $5\mathbf{i} + 6\mathbf{j} + \mathbf{k}$. [3]
- (ii) Calculate the acute angle between p_1 and p_2 . [2]
- (iii) Find, in exact form, the perpendicular distance from the point with coordinates (4, 2, 2) to p_2 . [2]

The plane p_3 has equation ax - 2y + 2z = b, where $a, b \in \mathbb{R}$.

(iv) Given that a = 2, find the values of b, such that the distance between the planes p_1 and p_3 is $\frac{1}{\sqrt{3}}$ units. [3]

8 2009/MJC/I/9

The equations of two planes Π_1 and Π_2 ,

$$x + 3y + az = 8,$$

$$3x + y + bz = 0.$$

respectively, where a, b, p and q are constants.

- (i) If the point $(\alpha, \beta, 0)$ lies on both Π_1 and Π_2 , find the values of α and β . [2]
- (ii) Given that the line l_1 lies on both Π_1 and Π_2 , find a vector equation of l in terms of a and b. [2]

The line l_2 has equation $\mathbf{r} = \begin{pmatrix} 5 \\ 2 \\ 2 \end{pmatrix} + \mu \begin{pmatrix} 4 \\ 1 \\ 0 \end{pmatrix}$, where μ is a parameter.

(iii) Given that l_1 and l_2 intersect at a point and a + b = 0, find the values of a and b. [4]

9 2014 SRJC P2 Q1

The line *l* with Cartesian equation $\frac{4-x}{4} = \frac{z}{3}$, y = 1 contains the point *B* with position vector $\mathbf{j} + 3\mathbf{k}$.

A point *A*, not lying on *l*, has position vector $2\mathbf{i} + (1 + \sqrt{5})\mathbf{j} - \mathbf{k}$.

- (i) Given that **c** denotes a unit vector parallel to *l*, find $|\overline{AB} \cdot \mathbf{c}|$ and give a geometrical interpretation of this quantity. [3]
- (ii) Hence find the shortest distance from *A* to *l*. [2]The foot of perpendicular from *A* to *l* is denoted by *F* and the foot of perpendicular from *F* to *AB* is denoted by *G*.
- (iii) Write down the ratio between the area of $\triangle AGF$ and area of $\triangle BGF$. [1]
- (iv) Hence, deduce the ratio AG:GB and find the position vector of G. [2]

Answer Key

No	Voor	IC/CI	Angwong
INO	теаг	JC/CI	Answers
			$\left \frac{10}{2}\sqrt{3}\right $
1			9
			(ii) 2
			$\sqrt{14}$
2	2007	UC	$(iii) \frac{\sqrt{1}}{2}$
	2007	190	$(\mathbf{i}) \overrightarrow{OC} = -8\mathbf{i} - 9\mathbf{i} + 7\mathbf{k}$
2	2007	DIC	(i) $c c = 0$ $(j + n)$ (ii) $a = +2$
3	2007	PJC	$(1) q - \pm 2$
			(ii) $OQ = \begin{vmatrix} -5 \end{vmatrix}$ (iii) 45.6°
4	2008	JJC	
			(-3)
			$ (\text{bii})\overline{OB} = -1 ;$
			(biii) $\Pi : r + 2v - 4z = 13$.
			$\frac{(611)}{11} + \frac{1}{2} + \frac{2}{2} + \frac{1}{2} = 10,$
			$11_2 \cdot x + 3y + 3z = 0,$
			$l: \mathbf{r} = -21 + \lambda -7 , \ \lambda \in \mathbb{R}$
			$\begin{pmatrix} -3 \end{pmatrix}$ $\begin{pmatrix} 18 \end{pmatrix}$ $\begin{pmatrix} 29 \end{pmatrix}$
			(biv) $\mathbf{r} = \begin{vmatrix} -1 \\ +\alpha \end{vmatrix} -7 \begin{vmatrix} +\beta \\ -10 \end{vmatrix}$ where α and $\beta \in \mathbb{R}$
	2000		
5	2008	HCI	

			$\begin{pmatrix} -1 \end{pmatrix} \begin{pmatrix} 1 \end{pmatrix}$
			(i) 9.3° (ii) $\mathbf{r} = \begin{vmatrix} 3 \\ -1 \end{vmatrix} + \alpha \begin{vmatrix} -1 \\ -1 \end{vmatrix}$ (iii) $m = -\frac{7}{4}$
6	2010	DHS	$\left(\begin{array}{c} 0 \end{array} \right) \left(\begin{array}{c} 2 \end{array} \right) $
			(ii) 75.7°
			(iii) $\sqrt{22}$
7	2009	CJC	(iv) $b = 6 \text{ or } 10$
			(i) $\alpha = -1, \beta = 3$
			$\begin{pmatrix} -1 \end{pmatrix} \begin{pmatrix} 3b-a \end{pmatrix}$
			(ii) $l_1 : \mathbf{r} = \begin{vmatrix} 3 \\ +\lambda \end{vmatrix} 3a - b \end{vmatrix}, \lambda \in \mathbb{R}$
			$\left(\begin{array}{c} 0 \end{array} \right) \left(\begin{array}{c} -8 \end{array} \right)$
8	2009	MJC	(iii) $a = 2, b = -2$
			(i) 4 (ii) 3 (iii) $\frac{9}{2}$ (iv) $\frac{1}{25+16\sqrt{5}}$
			$16 \ 25 \ 11 \ 11 \ 10 \ 10 \ 11 \ 11 \ 11 \ 1$
9	2014	SRJC	