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H2 Mathematics (9758)  
Chapter 6B  
3D Vector Geometry (Lines & Planes) 
Core Concept Notes 

 
Success Criteria: 

Surface Learning Deep Learning Transfer Learning 

 Interpret and find equations of 
planes in the form 
ax by cz d    or   0  r a n  
or    r a b c . 

 Convert equations of planes from 
one form to another. 

 Determine whether a line lies in a 
plane, is parallel to a plane, or 
intersects a plane. 

 Find the angle between a line and 
a plane, and between two planes. 

 Find the point of 
intersection of a line and 
a plane when it exists. 

 Find foot of the 
perpendicular from a 
point to a plane 

 Find perpendicular 
distance between a point 
and a plane, between a 
line and a plane, and 
between two planes. 

 Find the line of 
intersection and the angle 
between two non-parallel 
planes. 

 Find the 
reflection of a 
point in a plane 

 Interpret given 
information in 
contextual 
question. 

 Solve 3D 
vector 
geometry 
questions 
involving 
unknowns. 
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§1 Equation of Planes 
 
A plane is a flat, two-dimensional surface that extends infinitely in all directions.  Some 
examples of planes are:  
 
 
 
 
In the rest of this section, we will diagrammatise planes in the shape of a parallelogram. 
 
1.1 Vector Equation of a Plane 
 
Consider the plane , which contains a given fixed point A, with position vector a. Suppose 
that the plane   is parallel to the two non-parallel vectors m1 and m2.          

 
Let R be a general point on , and r be the position vector of R. 

 
Now, OR OA AR  r

  
  

 
Given two non-parallel vectors 1m and 2m on  , any vector on   may be expressed as a 
linear combination of those two vectors.  
Hence, AR


may be expressed as a linear combination of 1m and 2m .  

i.e 1 2AR   m m


. 
So,  1 2   r a m m , ,  are real parameters. 

 
Vector equation of a plane   which contains the point A with position vector a and parallel 
to the vectors m1 and m2 is given by:  
 

1 2: ,where       r a m m         
 

 
 
 
  
 
 
 
 
 
  

 
 

R 
 

O 

 

a 

Position vector of 
a general point 
on the plane  

Position vector 
of a fixed point 
on the plane  

and  are two 
non-parallel vectors 
that are parallel to 
the plane  

real parameters 
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Note: 
(i) The position vector of any point P  on   can be expressed as 1 2OP    a m m


 

for some ,  . 
 
(ii) If a plane  contains three non-collinear points A, B and C, then a vector equation of 

the plane can be given by : 
 

  ,  ,OA AB AC      r
  

  
      

The equation is not unique.   
E.g. Another possible equation is , ,OB AB BC      r

  
 . 

 

Example 1  

Find a vector equation of the plane that contains the points  2,1, 4A ,  4, 2, 4B  and  1,1,9 .C  
 
 
 
 
 
 
 
 
Solution: 
Find (any) two non-parallel vectors that are parallel to the plane:  

4 2 2
2 1 1
4 4 0

AB OB OA
     
              
     
     

  
  and  

1 2 1
1 1 0
9 4 5

AC OC OA
     

              
     
     

  
 

A vector equation of the plane is: r 
2 2 1
1 1 0
4 0 5

λ 
     

            
     
     

 , ,   . 

  

Note: 
2 2 1
1 1 0
4 0 5

x
y λ
z


       

                
       
       

                
2 2
1
4 5

x
y
z

 




  
 
 

 

 

The equation of the plane in parametric form is  
2 2
1
4 5

x
y
z

 




  
 
 

.  

Sketch a simple parallelogram to 
represent a plane and include points A, B 
and C on it to help with visualisation 

B 
 

C 
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1.2 Equation of a Plane in Scalar Product Form  
 
Consider a plane,  , which passes through a given fixed point A with position vector a, and is 
perpendicular to a given vector n. 

 
Let R be a general point on , and r be the position vector of R. 
 

Since the vector n is perpendicular to the plane,
 , n is perpendicular to any vector that lies on 
 . 
Since points A and R lie on , the vector AR


 lies 

on . 
Therefore, AR


 is perpendicular to n. 

 

           0AR  n


 

            0  r a n  

            r n a n  
          D  r n , where 
D a n  is a scalar constant. 
 
This is known as the equation of the plane  in scalar product form. 
 
Equation of the plane   in scalar product form which contains the point A with position 
vector a and perpendicular to the vector n is given by: 
 

         :   r n a n  
 

 
 
 
 
 
 
 
Example 2  

Find an equation of plane p in the form Dr  n  given that plane p passes through the point 

 1,1, 1 and is perpendicular to the vector 3 i j k .  

Solution: 
Equation of the plane p:  

1 1 1
1 1 1 5
3 1 3

     
           
            

 r   

i.e. 
1
1 5
3

 
   
  

r . 

Position vector of a 
general point on the 
plane . 

Normal vector  
(a vector perpendicular 
to the plane  ).  

Position vector of a fixed 
point on the plane . 
 

 

O 

 

Sketch a simple parallelogram to 
represent a plane and include the given 
point and the normal vector to help with 
visualisation 

p 
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1.2.1 Normal Vector to a Plane 
                    

(A)                                                     (B)                                                   (C)  
 
 
 
 
 
 
 
(i)  A normal to a plane is perpendicular to any line in the plane (A) or any line parallel to 

the plane (B). If a vector is perpendicular to any two non-parallel vectors, say b and c in 

the plane (C), then this vector must be a normal vector, n, to the plane. 

 
(ii)  Normal to a plane is not unique. Thus, vector equation of a plane is not unique. If n is a 

normal to a plane, then 2n, n
3
2

  are also normal to the plane. 

 
(iii)  The planes 1 2 and    are parallel       their normal vectors 1 2 and n n  are parallel. 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
  

 

 

 
n 

l 
 

n 

l 

 
n 
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(iv)  From the equation of a plane in scalar product form, if we divide both sides of the 
equation of the plane by the magnitude of the normal vector n, we will get the following: 

 




r n a n
n nr a
n n

 

   

 
 

            
ˆ ˆ
ˆ 'D



r n a n
r n
 


      

where  (a) ˆ  nn
n

 is a unit vector normal to the plane, 

                                             (b) 'D na
n

   is a constant, 

 
 
Note: 

Constant 'D 
na
n
  is the perpendicular distance from the origin, O, to the plane. 

 
Distance from origin O to the plane   
=  OF  

=  length of projection of ontoOA


  n  

=  ˆOA  n


    

=  na  
n

  = 'D  

 
 
(v) 0 r n  the plane passes through the origin. 
 
(vi) If the point P  lies on  , then the position vector of P  will satisfy OP n a n


  . 

 
 (vii) In scalar product form, equations of  

(a) x-y plane  : 
1

0
0
0
 
 






 

r  

(b)  y-z  plane  : 
0

0
1
0
 
 






 

r  

(c)  x-z plane  : 
0

0
0
1
 
 






 

r  

 

  

O 

n 

F A 

 

 

 

 

 

 

 

 

  

Any vector parallel to z-axis is perpendicular to 
the x-y plane. Choose the simplest vector 0

0
1

 
 
 
 
 

. 

E.g. Given equation of plane 
1
1

1
1 31 3
3 31

 
 
          

 
 

r  r     

3
3

is the perpendicular distance 

from origin to plane. 
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Example 3 

A plane passes through the point  4, 2, 2A   and is perpendicular to the vector 3 i j k . 
Write down an equation of the plane in scalar product form. Hence find the shortest distance 
from the origin to the plane.  
 
Do the points  2,0, 2B   and  1, 2,0C  lie in the plane? 
 
Solution: 
 
An equation of the plane in scalar product form is: 

1 4 1
1 2 1 8
3 2 3

     
                  
            

r n a n r   

i.e 
1
1 8
3

 
   
  

r  

 
Shortest distance from Origin to Plane

8 8
1 11
1
3

 
 
 
 
  

  

 
 
Check if B lies in the plane: 

2 1
0 1 2 0 6 8
2 3

   
          
       

      B  lies in the plane.  

 
Check if C lies in the plane: 

1 1
2 1 1 2 0 3 8
0 3

   
           
      

      C  does not lie in the plane. 

Use previously found 
part(s) or result(s) 

Recall formula 

Check if the 
position vector 
satisfy equation 
of plane 
LHS=RHS 

Sketch a simple parallelogram to 
represent a plane and include the given 
point and the normal vector to help with 
visualisation. 

p 
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1.2.2 Some Examples for the Determination of Normal n to a Plane 
 

 

 Information given Normal 
1 Plane containing 3 given points A, B and C 

 
 
 
 
 
 
 

AB AC n
 

 

2 Plane containing 2 given points B and C and parallel to line 
: ,l    r a d   

 
 
 
 
 
 

BC n d


 

3 Plane containing the line : ,l    r a d   and the  
point B (not on l). 
 
 
 
 
 
 

AB n d


 

4 Plane parallel to 2 lines (non-parallel) 1 1: ,l    1 1r a d   
and 2 2 2: ,l    2r a d   
 
 
 
 
 
 
 

 1 2n d d  

5 Plane containing 2 given points B and C and perpendicular to a 
given plane 1 1 1:  D  r n  
 
 
 
 
 
 
 
 
 
 
 
 

1 BC n n


  

l  

A B 

C 

1  

 
 

A 
B 

B 
C 

A l  

C B 
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Remember to check that the 
normal vector is correct. 
Can you recall how? 
 
Check if 0

2 1 2 1
2 0 2 1
1 2 1 0

2 2 0 2 2 0

 

          
                 
               
     

n d

 

Example 4 
Find an equation of the plane in scalar product form that contains the lines,  

1

0 1
: 1 0

2 2
l λ

   
       
   
   

r   and 2

1 1
: 3 1

0 0
l 

    
       
   
   

r  where ,   . 

 
Solution: 

A normal vector to the plane is 
1 1 2

0 1 2
2 0 1

       
            
          

 

 
An equation of the plane in scalar product form is: 
 

2 0 2
2 1 2 4
1 2 1

      
                    
           

r n a n r  

i.e  
2
2 4
1

 
     
  

r   or   
2
2 4
1

 
   
 
 

r  .  

 
Example 5 
Find an equation of the plane in scalar product form that contains the points A(2, 1, 1) and  

the line l with equation 2 ( 2 ),          r i j k i j k  .  

 

[Solution] 
 
Let point B on line l be  2,1,1 .  

AB


 = 
2 2 0
1 1 2
1 1 0

     
            
          

,        
0 1 4 2
2 1 0 2 0
0 2 2 1

         
                
              

 

An equation of the plane in scalar product form is: 
 

2 2 2
0 1 0 3
1 1 1

      
                   
     
     

r n a n r  

i.e  
2

0 3
1

 
    
 
 

r    

 
 
  

Sketch a simple parallelogram to represent 
a plane and include relevant details. 

Sketch a simple parallelogram to represent 
a plane and include relevant details. 

A 

B 
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1.3 Equation of a Plane in Cartesian Form 

Consider the scalar product form of a plane : D  r n , where D  a n  and 
a
b
c

 
   
 
 

n . 

Since r is the position vector of a general point on  , let 
x
y
z

 
   
 
 

r . 

x a
D y b D ax by cz D

z c

   
              
   
   

r n . 

 
 
 

 
 
 

 
Example 6 

Find the equation of the plane passing through the point  3,1, 1 and parallel to the vectors 
















1
1
1

 

and 



















3
1

2
 in (a) vector form  (b) scalar product form. Find also the Cartesian equation of the 

plane. 
 
Solution:  

(a) Vector equation, 
1

3
1

1
1:

31

2
1  

   




 
    


   
    


 
  


r ,  ,    

(b) A normal vector to the plane is
2 2

5
33

1 2
1 1
1

5
3

 
  
 

 
     
  

   
      
  

   


.  Choose 
2
5

3

 
  
 
 

n  

Equation in scalar product form, 
3

: 2 2
2 2 2
5 5 5

3 3 3
1
1


     
      

 
 



           
   




 



   






r r   

 
2 2
5 2 5 2

3 3

x
y
z

     
                  
     
     

r   

ax by cz D    
This is known as the Cartesian equation of the plane  . 

 

1
1
1

 
 
 
 
 

 

2
1
3

 
  
  

 

3
1
1

 
 
 
  

 

E.g.  
1 1
2 5 2 5
3 3

2 3 5

x
y
z

x y z

     
            
     
     

   

r    
 

Sketch a simple parallelogram to represent 
a plane and include relevant details. 
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Cartesian equation of  , 2 5 3 2x y z     
 
1.4 Convert Equation of Plane from One Form to Another Form 
 
 

Vector Equation form 
 

Scalar Product form Cartesian form 

 :  , ,      r a u v        : where r  n a  n   n u  v       ax by cz d    

  

 
 
 

 
 
 

 
 
 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

  

Step 1: Find the normal vector 
n u  v   

 
Step 2: Since a is the position 
vector of a fixed point on the plane, 

r  n a  n    

Let r
x
y
z

 
   
 
 

. Given that n
a
b
c

 
   
 
 

, 

r  n
x a
y b ax by cz
z c

   
         
   
   

   
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§2 Relationship Between a Line and a Plane 
 

 
 
Consider the line : ,l    r a d   and the plane : D  r n . 

 and l   intersect do not intersect 

parallel 
 

 
l  is contained in the plane    

not parallel 
 

 
 and l   intersect at a point X  

 
Impossible 

 
 
 
  

Activity 
 
Step 1- Take out 1 pen (representing a line) and a paper (representing 

a plane) 
 
Step 2- Using the pen and the paper, determine the possible  

relationships that a line and a plane can have in a 3-dimensional  
space.  

 

 

X 
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2.1 Line  l parallel to Plane π and lies in π 
 
Consider the line : ,l    r a d   and the plane : D  r n . 
l lies in   if its direction vector, d, is parallel to the plane  
(and therefore perpendicular to n), and if any one  
point on l (eg. A) lies in  . 
 
   

          
 
 

 
2.2 Line l parallel to Plane π  but does NOT lie in π 
 
Consider the line : ,l    r a d   and the plane : D  r n . 
l is parallel to, but does not lie in   if its direction vector, d,  
is parallel to the plane (and therefore perpendicular to n),  
and if no point on l lies in  .  
  
 
 

 
 
  

l  lies in   if:  
(i)  l is parallel to   i.e. 0 n d   and 
(ii) the point with position vector a on l is also in  i.e. D a n . 

l is parallel to   but does NOT lie in   if: 
(i)  l is parallel to   i.e. 0 n d   and  
(ii) the point with position vector a on l is not in , i.e. D a n . 
 

l 

 

n 

A 
d 

l  

n 

d 
A 
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Example 7 

Given a plane 
2

: 1 4
1


 
   
 
 

r , determine whether the following lines:  

 intersect the plane, or 
 are parallel to but do not lie in the plane, or 
 lie in the plane.   

 

(i) 1

2 1
: 1 2 ,  

1 0
l  

   
        
      

r   (ii)   2

2 1
: 1 0 ,  

1 2
l  

   
        
   
   

r     parameters. 

 
[Solution] 
 

 (i) 0
2 1
1 2 2 2

1 0

   
         
   
   

n d     1l is parallel to  

Since
2

4 1
2

1 1 41 6
1 1

   
   



     
   



 

 




 , point  2,1, 1  is on 1l  but does not lie in  . 

 l1 is parallel to   but does not lie in  . 
 
 
 

(ii) 0
2 1
1 0 2 2

1 2

   
          
   
   

n d     2l is parallel to  

 

  
2 2
1 1 4
1

1 1
1

4
   
       
   
 

  

 

 , point  2,1,1 is on 2l  and lies in  . 

  2l is parallel to and lies in . 
 
Alternatively:  

2 2
1 1 4 2 1 1 2 4

1 2 1


 



   
            
      

 , therefore 2l is parallel to and lies in . 

 



Chapter 6B 3D Vector Geometry                                            TMJC 2024 

Page 15 of 28 

 

2.3 Line l is not parallel to the plane and therefore intersects the plane  
 

 
Point of Intersection between a line l and a plane π 
  
Consider the line,   : ,l    r a d                 — (1) 
and the plane,   :  D  r n                  — (2) 
  

 
 
 

 

If l and   are not parallel, then they must intersect at a point.   
The coordinates of the intersection point can be found by: 
Step 1:  Substitute (1) in (2) and solve for  . 
 
Step 2:   Substitute the value of obtained into (1) to obtain the intersection point. 
 

 
 
Example 8  

Find the coordinates of the point of intersection between the plane 
1

: 2 2
1


 
    
 
 

r and the line

2 0
: 1 1 ,  

4 0
l  

   
        
   
   

r  . 

 
Solution: 
 

2 0
: 1 1 ,  

4 0
l  

   
        
   
   

r — (1)    
1

: 2 2
1


 
    
 
 

r — (2)  

 

Substitute (1) in (2): 
2 1

1 2 2
4 1


   
         
   
   

  1   

Substitute 1   into (1):  
2 0 2
1 1 2
4 0 4

     
            
     
     

r  

 
Therefore the coordinates of the point of intersection are  2, 2, 4 . 
 
 
 
 

l 

 

n 

A d 

Substitute equation of line 
into equation of plane 

l 

 

Sketch a line and a parallelogram 
to help with visualisation. 
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Example 9 

The equations of a line l and a plane   are   
1 1

: 0 2 ,  
4 0

l  
   
        
   
   

r     and   : 1
1

a
b

 
    
 
 

r . 

 
respectively, where a and b are constants. 
(i) Given that l  lies in  , find the values of a and b.  
 
(ii) Given instead that l  is parallel to   and does not lie in  , what can be said about the 

values of a and b?  
 
 
Solution: 
 
(i) Since l  lies in  , 
 

 
1

1 2 0 2 0 2
1 0

a
a a

   
            
   
   

  

 
1 2
0 1 6
4 1

b b
   
         
   
   

  

 
(ii)  Given instead that l does not lie in  , 2a  , 6b   
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

0 n d  

the point with position vector on l 
is also in   i.e. D a n . 

l 

 

Sketch a line and a parallelogram 
to help with visualisation. 
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§3 Angle Between a Line and a Plane 
 
Recall from Vectors 1 that the angle   between two vectors a and b is found by  

cos 


a b
a b  

 

Consider a line l  and a plane   given by  
: ,r a dl     , 

: D  r n . 
 
Recall by convention, we want to find the acute angle   between l  and  .  
 
To find the acute angle between l  and   , we first consider the acute angle between the 
normal vector n  and the direction vector d  using the scalar product formula  

              cos 
n d
n d
  

Since  

                                  90
90

 

 





 

 
 

 
Therefore, we have  

                             

cos

cos 90

sin











 



n d
n d

n d
n d

n d
n d







 

 
In conclusion, the acute angle   between line l and plane   can be found using the formula 
                                                                

sin 
n d
n d
  
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Example 10 

Find the acute angle between the line l  and the plane  , where 

  
1 2

: 1 4 ,
2 1

l  
   
        
      

r  ,     and     : 2 0x y z    . 

Solution: 

: 2 0x y z   
2
1 0

1

 
     
 
 

r   

Let   be the acute angle between l and  . 
 
 

2 2
1 4

1 1 1sin sin   5.1
6 21 126

  

   
      
            

n d
n d


  

 
 
 
 
  

Convert to scalar product form first 
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§4 Foot of the Perpendicular from Point to Plane 
 
Example 11 

Find the foot of the perpendicular from the point  1, 3,3P   to the plane 
1

: 1 6
0


 
   
 
 

r .   

Solution: 
 
Let F be the foot of the perpendicular from the point P to  .  
 
 
 
 

 
 
 
 

Line PF:   
1 1
3 1 ,  

3 0
 

   
         
   
   

r        ----- (1)                           

          
1

: 1 6
0


 
   
 
 

r         -----(2)  

 
Find intersection of line PF  and plane  : 
Substituting (1) in (2) , 

                            
1 1
3 1 6
3 0




   
         
   
   

   1 3 6        4   

 
 
 
 
 
Thus the position vector of the foot of the perpendicular from P to   is: 

1 1 5
3 4 1 1

3 0 3
OF

     
             
     
     


 

 
 

 P 

  

line PF 

What do you observe from the 
diagram?  
 
F is the point of intersection of 
the line PF and the plane  . 

Step 1: Find PFl  

Step 2: Substitute PFl  into  

Step 3: Solve for   

Step 4: Substitute   into PFl  
to find foot of perpendicular 

Key idea: to solve equations of 
PFl  and   simultaneously 

Sketch a diagram with relevant details to help with visualisation. 
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§5 Perpendicular Distance from a Point to a Plane 
 
Example 11 (Continued) – where the foot of perpendicular is found (“Hence” method) 

Find the foot of the perpendicular from the point  1, 3,3P   to the plane 
1

: 1 6
0


 
   
 
 

r .  

Hence find the shortest distance from P  to the plane . 
 
Solution: 
 
Let F be the foot of the perpendicular from the point P to  .  
 

 
 
Since we have already found the position vector of the foot of the perpendicular from P to   

to be 
5
1
3

OF
 
   
 
 


, the shortest distance from P  to the plane  is none other than PF


.  

 
5 1 4
1 3 4
3 3 0

PF OF OP
     
               
     
     

  
  

 
Thus the shortest distance from P to the plane  PF


 2 2 24 4 0               

                                                                                         32 4 2  units   
 
 
 
  

 P 

 

line PF 

F

From pg. 19 
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Example 12 (Using the concept of length of projection – “Otherwise” method) 
 
Find the shortest distance from  2,3, 4P   to the plane   with equation 2 2 9 0x y z    .  
 
Solution: 
 

2 2 9 0x y z      
2
1 9
2

 
    
  

r  ---------- (1)  

 

First, observe that point  0, 9,0A   lies in  , since 
0 2
9 1 9

0 2

   
         
      

. 

Next, observe that finding the shortest distance from P  to the plane   which is PF


 is same 

as finding the length of projection of PA


 onto n.  

 

Let 
0
9

0
OA

 
   
 
 


.   

0 2 2
9 3 12

0 4 4
PA OA OP

     
                
          

  
 

 
Shortest distance from P to the plane                                                                         
= length of projection of PA


 onto n  

ˆ

2 2
12 1
4 2 4 12 8 24 8 units

32 9
1
2

PA

   
      
            

 
 
 
  

n

 





 

 
 
 
 
 
 
 

 
P 

 
 

 

Convert to scalar product form first Aim: To find PF without find OF


 

Choose an easy 
random vector that 
satisfies the 
equation 

Recall 
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§6 Relationship Between Two Planes 
 
Consider the planes 1 1 1: D  r n   and 2 2 2: D  r n .  Again, there are 3 possibilities. 
 

1 2 and    intersect do not intersect 

Parallel 
1 2(i.e. 
)

n n





 

 
1 2 and    are in fact the same plane  

not parallel 
1 2(i.e. 
)

n n





 

 
1 2 and    intersect in a line l  

Impossible 
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6.1 Non-Parallel Planes: Line of Intersection 
 
Two distinct planes are either parallel or intersecting. If the two planes are non-parallel, they 
always intersect in a line. 
 
 
 
 
 
 
 
 
 
Example 13 [numbers in vectors: use GC] 

Find the line of intersection of the planes  1 : 5 3 0    r i j k  and  2 : 3 8    r i j k . 
 
Solution: 
 

It is good to observe that since 
1 1
5 1 ,
3 3

 
   
         
       

 , 1  and 2  are not parallel, 

therefore they are intersecting.  
 

 1 : 5 3 0    r i j k        
1
5 0
3

x
y
z

   
       
      

        5 3 0x y z    

 

 2 : 3 8    r i j k        
1
1 8
3

x
y
z

   
       
      

        3 8x y z    

 
 
 
Using GC (Polysmlt2) (refer to steps on next page)   
 

    
10 3
2

x z
y
z z

   
       
   
   

 

 
 

 

 

Line of intersection  

Step 1: Convert the equations to Cartesian form 

Step 2: Use GC to solve simultaneous equations  
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Let  z  ,  :  
10 3 10 3

2 2 0 , .
0 1

x
y
z


 



       
                 
       
       

  

  the planes intersect in the line 
10 3
2 0 , .
0 1

 
   
        
   
   

r   

 
 

 
  
 
 
 
 
Example 14 [unknowns in vectors] 

Find the line of intersection of the planes 1

1
: 2 0



 
   
 
 

r  and 2

4
: 5 0

0


 
   
 
 

r  in terms of the 

constant  . 
 
 
 
 
Solution: 
 

1 2

1 4 5
2 5 4

0 3
n n






     
             
          

 

 
Since the origin  0, 0, 0  is a common point on the planes 1 2 and    , the line of intersection 

of the planes 1 2 and    is 
0 5
0 4  ,  
0 3

r


  
   

        
      

 . 

 
 
 
 
 
  

Important Note: 
Given the two planes 1 1 1:r.n D  and 2 2 2: D r.n  
The line of intersection of the planes 1 2 and    has direction vector parallel to 1 2.n n   

Step 3: Let z   

Direction vector of the line of 
intersection can be found by 

21 d n n  

Unknown: cannot use GC Notice that RHS=0: 

 it means that 
0
0
0

 
 
 
 
 

lies on both planes 

Note: If a common point between the 2 planes cannot be easily observed, simply equate one of 
the coordinates (either x or y or z) in both equations to 0, and solve the resulting pair of 
simultaneous equations to obtain a common point between the 2 planes. 
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6.2 Non-Parallel Planes: Angle Between Two Planes  
 
Recall from Vectors 1 that the angle   between two vectors a and b is found by  

cos 


a b
a b  

 
Consider the two planes 1 1 1: D  r n  and 2 2 2: D  r n . 
 
Recall by convention, we want to find the acute angle   between 1  and 2 .  
 
To find the acute angle between 1  and 2  , we first consider the acute angle between the 
two normal vectors 1n and 2n  using the scalar product formula  

              cos  1 2

1 2

n n
n n
  

 
 
 
 
 
 
 

 
 

 
 
 
 
 
 
 
 
From the “cross-section view”, observe that the acute angle between the planes 1 2 and    is 
also the acute angle between their normal vectors 1 2 and n n , i.e.   .  
 
In conclusion, the acute angle   between planes 1  and 2  can be found using the formula 
                                                                

cos  1 2

1 2

n n
n n
  

 
 
Special Case: Two planes 1 2 and    are perpendicular if and only if 01 2n n . 
 

 
  

 

 

 

 

 

 

 

 

“cross-section view” 

o90   

1  
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Example 15 

Find the acute angle between the planes 1 : 3x y z    and 2 : 2 2 1x y z    . 
 
Solution: 

1

1
: 1 3

1


 
   
 
 

r and 2

2
: 2 1

1


 
    
 
 

r  

 
Let   be the acute angle between 1  and 2 . 
 

1 2
1 2
1 1 1cos cos

3 9 3 3
78.9

 



   
      
   
      

  

1 2

1 2

n n
n n


  

 
  

Convert to scalar product form first 



Chapter 6B 3D Vector Geometry                                            TMJC 2024 

Page 27 of 28 

 

6.3 Parallel Planes: Distance Between Two Planes  
 
Example 16 

The plane 1p  has equation 
7
2 4
3

 
    
  

r . The plane 2p  passes through  2, 4,5  and is parallel 

to 1p . Find the equation of 2p and determine the distance between the two planes.  
 
Solution: 

The equation of 2p  is 
7 2 7
2 4 2 14 8 15 7
3 5 3

     
              
           

r    i.e. 
7
2 7
3

 
   
  

r  

 
Method 1: (Using the concept of length of projection) 

First, observe that the point  0, 2,0A   lies in 1p  and  1,0,0B  lies in 2p .  

 

 
Next, observe that finding the distance between the two planes is the same as finding the length 
of projection of AB


 onto n.  

 
1 0 1
0 2 2
0 0 0

AB OB OA
     
               
     
     

  
 

Distance between 1p  and 2p                                                                       
= length of projection of AB


 onto n  

ˆ

1 7
2 2
0 3 7 4 11 units

7 62 62
2
3

AB

   
   
   
         
 
 
 
  

n




 

 
  

 
A 

 
 

Step 1: Find a point on each plane to form vector AB


 

Step 2: Find length of projection of AB


onto n 
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Method 2: (Using distance from origin to plane 1p  and 2p ) 
 
To find the distance between 1p  and 2p , we first convert the equations into the form ˆ '.D r n  

7
2 4
3

 
    
  

r      
7

1 42
62 62

3

 
       

r     

7
2 7
3

 
   
  

r      
7

1 72
62 62

3

 
      

r  

 Distance between the two planes 7 4 11 units
62 62 62

     . 

 
In general, given 2 parallel planes 1 1 1: D  r n  and 2 2 2: D  r n , the distance between 

them can be found using the formula  

                                                                

1 2D DDistance between two parallel planes = 
n n

 

 
 
 
 
 

 

 

 

2p  

O  4
62

  

7
62
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 H2 Mathematics (9758)  

 Chapter 6B 

 3D Vector Geometry (Lines & Planes) 

 Discussion Questions 
Level 1 

 

1 Find the equation of the following planes in parametric form, scalar product form and 

Cartesian form.  

(a) The plane passing through the points A(0, 1, 1), B(1, −3, 2) and C(1, 0, 1). 

(b) The plane containing the lines 3
2

1
,3 −=

+
= z

y
x  and 

3 2

1 4

3 3

, −

   
   

= + 
   
   
   

r . 

(c) The plane that includes the line ( )2 4 2 3 6= − − + + −r i j k i j k and the point with 

position vector 2 5 6 .+ −i j k  

 

In each case, find the coordinates of the point of intersection of the plane and the line 

1 1

2 5

1 3

, − −

   
   

= + 
   
   
   

r . 

 

2 Find the coordinates of the point where the line ( )r i i k= + −  intersects the plane with 

equation 2x – 3y + z = 1. 

 

3 Find the equation of the line of intersection between the two planes with equations 

3

2 10

1

 
 

= 
 − 

r  and  

5

1 6

2

 
 
− = 
 
 

r  respectively. 

 

4 Find the acute angle between 

(a) the line 

1 3

2 5

1 2

, −

   
   

= + 
   
   
   

r , and the plane 3 2x y z− + = ; 

(b) the planes 

2

3

4

6−

 
 

=
 
 
 

r  and 2 5 8x y z+ − = . 
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Level 2 

5 Find the position vector of F, the foot of the perpendicular from B(2, 3, –4) to the plane 

p, whose equation is 2 2 9 0x y z+ − + = .  

 

6 Find the perpendicular distance from point ( )4,5,6A  to the plane 2=r k . 

 

 

7 The plane   contains the point ( )2,2,4P  and the line 
1

1 1

1 2

1 1

: ,l  −

   
   

= + 
   
   
   

r . 

(i) Find the vector equation of the plane   in scalar product form. 

(ii) Find the position vector of the foot of the perpendicular from the point ( )1,0, 4S −  

to  . 

(iii) Verify that ( )1,0, 4S −  lies on line 
2

1 0

1 1

1 5

: ,l  −

−

   
   

= + 
   
   
   

r .  

(iv) Find the equation of the image obtained by reflecting the line 2l  in the plane  . 

 

8 2011(9740)/I/11 

The plane p passes through the points with coordinates ( )4, 1, 3− − , ( )2, 5,2− −  and 

( )4, 3, 2− − . 

(i) Find the Cartesian equation of p.  [4] 

The line 
1l  has equation 

1 2 3

2 4 1

x y z− − +
= =

−
 and the line 

2l  has equation

2 1 3

1 5

x y z

k

+ − −
= = , where k is a constant. It is given that 

1l  and 
2l  intersect. 

(ii) Find the value of k. [4] 

(iii) Show that 
1l  lies in p and find the coordinates of the point at which 

2l  intersects p.

 [4] 

(iv) Find the acute angle between 
2l and p. [3] 
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9 2013(9740)/II/4 (modified) 

 The planes 1p  and 2p  have equations 

2

2 1

1

 
 
− = 
 
 

r  and 

6

3 1

2

− 
 

= − 
 
 

r  respectively, and 

meet in the line l. 

(i)  Find the shortest distance from the origin to plane 2p . [2] 

(ii) Find the acute angle between 1p  and 2p . [3] 

(iii) Find a vector equation for l. [4] 

(iv) The point ( )4, 3,A c  is equidistant from the planes 1p  and 2p . Calculate the two 

possible values of c.  [6] 

 

10 2016(9740)/I/11 

 The plane p has equation 

1 1

3 2 4

2 0 2

a

 

     
     

= − + +     
     −     

r , and the line l has equation 

1 2

1

1 2

a

a t

a

− −   
   

= +   
   +   

r , where a is a constant and  ,  and t are parameters. 

(i) In the case where 0a = , 

(a) show that l is perpendicular to p and find the values of  ,  and t which give 

the coordinates of the point at which l and p intersect, [5] 

(b) find the cartesian equations of the planes such that the perpendicular distance 

from each plane to p is 12. [5] 

(ii) Find the value of a such that l and p do not meet in a unique point. [3] 
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Level 3 

11 2019(9758)/I/12   

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A ray of light passes from air into a material made into a rectangular prism. The ray of 

light is sent in direction 

2

3

6

− 
 
− 

 − 

 from a light source at the point P with coordinates  

(2, 2, 4). The prism is placed so that the ray of light passes through the prism, entering at 

the point Q and emerging at the point R and is picked up by a sensor at point S with 

coordinates (−5, −6, −7). The acute angle between PQ and the normal to the top of the 

prism at Q is θ and the acute angle between QR and the same normal is β (see diagram). 

 

It is given that the top of the prism is a part of the plane 1x y z+ + = , and that the base of 

the prism is a part of the plane 9x y z+ + = − . It is also given that the ray of light along 

PQ is parallel to the ray of light along RS so that P, Q, R and S lie in the same plane. 

 

(i) Find the exact coordinates of Q and R. [5] 

(ii) Find the values of cos  and cos . [3] 

(iii) Find the thickness of the prism measured in the direction of the normal at Q. [3] 

 

Snell’s law states that sin sink = , where k is a constant called the refractive index. 

(iv) Find k for the material of this prism. [1] 

(v) What can be said about the value of k for a material for which   ? [1] 

  

 

 

β 

θ 

Q 

R 

P (2, 2, 4) 

S (−5, −6, −7) 

NORMAL 
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12 2017(9758)/I/6 

 (i) Interpret geometrically the vector equation t= +r a b , where a  and b  are constant 

vectors and t  is a parameter.  [2] 

(ii) Interpret geometrically the vector equation d =r n , where n  is a constant unit 

vector and d  is a constant scalar, stating what d  represents. [3] 

(iii) Given that 0 b n , solve the equations t= +r a b  and d =r n  to find r  in terms 

of a , b , n  and d . Interpret the solution geometrically. [3] 

 

13 2008/HCI/I/12(b) (modified) 

 

 Referring to the origin O, two planes 1  and 2  are given by  

1

1

: 2 13

4

r

 
 

= 
 − 

 and 
2

1

: 3 8

3

r

 
 

= − 
 
 

. 

Find an equation of the plane which is the image of 2  when 2  is reflected in 1 . [9] 

 

 

Answer Key 

1(a) , 1 4 , 1 , where ,x y z= + = − − = +   ; r

1

1 4

3

 
 

= 
 
 

; 43 =++ zyx ; 

7 11
, 4,

5 5

 
− 

 
 

 

1(b) 3 2 , 1 2 4 , 3 3 , where ,x y z= +  = − +  +  = + +    ; 

1

. 1 4

2

 
 

= − 
 − 

r ; 

2 4x y z+ − = − ; 
11 5 13

, ,
10 2 10

 
− 

 
 

1(c) 1 2 , 2 3 7 , 4 6 2 , where ,x y z= + − = − + −  = − − +    ; 

36

2 4

11

 
 
− = − 
 
 

r ; 

36 2 11 4x y z− + = − ; 
24 117 86

, ,
79 79 79

 
− 

 
 

2 (0, 0, 1) 

3 

22
13 3

32 11
13

130

r  

 
−  
  = +   
     

 

,   

4 (a) 29.3  (b) 35.5  



Chapter 6B 3D Vector Geometry   TMJC 2024 

Page 6 of 6  

 5 

10
1

1
3

4

− 
 
 
 
 

 

6 perpendicular distance from A to plane is 4 

7(i) 

3

2 6

1

 
 
− = 
 
 

r     (ii) 

5
1

2
2

7

 
 
− 
 − 

   (iii) ( )1,0,4S   (iv) 

1 3

1 1 ,

1 4

   
   

= − + −    
   −   

r  

8(i) 2 3x y z+ + = −     (ii) 7k = −     (iii) ( )1,6, 4− −    (iv) 22.2  

9(i) 
1

7
  (ii) 40.4   (iii) 

1 7

6 6

2 5
,

3 3

0 1

 

   
−   
   
   = − + 
   
   
   
   
   

r    (iv) 
35

49 and 
13

−  

10(ia) 
8 19 5

,     and  
9 18 9

t = − = = −   (ib) 2 2 35x y z− + + =  and 2 2 37x y z− + + = −  (ii) 
9

2
 

11(i) 
8 1 2

, ,
11 11 11

Q
 
 
 

, 
37 39 23

, ,
11 11 11

R
 
− − − 
 

 (ii) 
11

3
21

 , 
11

510
255

 (iii) 
10

3
3

   

(iv) 1.86    (v) 0 1k   

12(iii) 
d − 

= +  
 

a.n
r a b

b.n
 

13 

3 18 29

1 7 10

6 1 3

 

−     
     

= − + − + −     
     −     

r   where   and   
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   H2 Mathematics (9758) 

   Chapter 6 3D Vector Geometry 

   Extra Practice Questions 
 

1 Show that the line 

2 1

2 1

3 4

: ,l  − −

   
   

= + 
   
   
   

r , is parallel to the plane : 5 5.x y z + + =  

Find the shortest distance between the line l and the plane  . 

 

 

2 2007/IJC/I/5 

The position vectors of the points A, B, and C are given by + +i j k , 4 3 2+ +i j k  and 

–7 –  2 –i j k  respectively. 

(i) Prove that the points A, B and C are not collinear.  [2] 

(ii) Find a vector which is perpendicular to the plane ABC.  [2] 

(iii) Deduce the exact length of projection of PQ on the plane ABC, given that  

 OP = 2i + 4j + 7k and OQ =4i + 4j + 6k. [3] 

 

 

3 2007/PJC/I/6  

The line 1l  has equation 

1

3 1 ,

7 0

p

 

   
   

= +    
   
   

r . The line 2l  passes through points A 

and B with position vectors 3 3+j k  and 3 5q + +i j k  respectively, where p and q are 

constants.  

(i) If 1q =  and 4p = , find the position vector of the point C on 1l  such that A is the 

foot of perpendicular from C to 2l . [4] 

(ii) If the acute angle between 1l  and 2l  is 60 , find the possible value(s) of q. [3] 

 

 

4 2008/JJC/I/3  

The lines 1l  and 2l  have equations 

   1l :  ( 3 2 ) ( 7 )= + + + − +r i j k i j k  , 

   2l :  
3 2

1,
4 3

y z
x

− −
= =

−
 , 

where   is a real parameter. The point P lies on the line 1l  with position vector 

16a + +i j k .  The point Q lies on the line 2l  such that PQ is perpendicular to the line 2l . 

(i) Prove that a = 3. [1] 

(ii) Find the position vector of the point Q. [3] 

(iii) Find, in degrees, the acute angle between the lines 1l  and 2l .  [2] 
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5 2008/HCI/I/12b 

Referring to the origin O, two planes 1  and 
2  are given by  

1

1

: 2 13

4



 
 

= 
 − 

r     and 2

1

: 3 8

3



 
 

= − 
 
 

r . 

(i) Given that a point ( )1,7, 10A −  lies on 
2 , show that the perpendicular distance 

from A to 1  is 2 21 .  [2] 

(ii) Hence or otherwise find OB  where B is the image of A when reflected in the plane 

1 .  [2] 

(iii) Write down the Cartesian equations of both 1  and 
2 .  [1] 

 Find a vector equation of the line of intersection of 1  and 
2 . [1] 

(iv) Find a vector equation of the plane which is the image of 
2  when 

2  is reflected 

in 1 . [3] 

 

6 2010 DHS Prelim/P2/Q4 

The planes 1Π

 

and 2Π  are defined by 

 1

2

: 4 10,

1

Π

 
 

= 
 
 

r  

1

: r 3 8.
2

1

Π

 
 

= 
 
 

 

(i) Find the acute angle between the two planes. [3] 

(ii)  Obtain a vector equation of l1, the line of intersection of the two planes. [4] 

The Cartesian equation of another line, l2, is given by 
2 7

, ,
6 3

x z
y m

− −
= =  where m is a 

real constant. 

(iii)  If the plane 1Π and line l2 intersect at the point (6, m, 5), find the value of m.  [2] 

(iv)  Show that the lines l1 and l2 are perpendicular for all values of m. [2] 
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7 2009/CJC/I/11 (Modified) 

The planes p1 and p2, which meet in the line l, have vector equations 

r = 1 1

2 1 0

4 0 1

6 1 1

 

     
     

+ +     
     −     

 , 

r = 2 2

2 2 1

4 3 0

6 0 1

 

     
     

+ +     
     
     

 

respectively, where 1 2 1, ,    and 
2  are real constants. 

(i) Show that l is parallel to the vector 5i + 6j + k.  [3] 

(ii) Calculate the acute angle between p1 and p2.  [2] 

(iii) Find, in exact form, the perpendicular distance from the point with coordinates  

(4, 2, 2) to p2. [2] 

The plane p3 has equation ax – 2y + 2z = b, where a, b . 

(iv) Given that a = 2, find the values of b, such that the distance between the planes p1 

and p3 is  units.  [3] 

 

8 2009/MJC/I/9 

The equations of two planes  1 and  2,  

3 8,

3 0.

x y az

x y bz

+ + =

+ + =
 

 respectively, where a, b, p and q are constants. 

(i) If the point ( ), ,0   lies on both  1 and  2, find the values of   and  . [2] 

(ii) Given that the line l1 lies on both  1 and  2, find a vector equation of l in terms 

of a and b.  [2] 

The line l2 has equation  r = 

5

2

2

 
 
 
 
 

 + 

4

1

0



 
 
 
 
 

, where   is a parameter. 

(iii) Given that l1 and l2 intersect at a point and 0a b+ = , find the values of a and b. [4] 

 

  

3

1
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9 2014 SRJC P2 Q1 

The line l with Cartesian equation 
4

, 1
4 3

x z
y

−
= =  contains the point B with position 

vector 3+j k . 

 A point A, not lying on l, has position vector ( )2 1 5+ + −i j k . 

(i) Given that c denotes a unit vector parallel to l, find AB c  and give a geometrical 

interpretation of this quantity. [3] 

(ii) Hence find the shortest distance from A to l. [2] 

 The foot of perpendicular from A to l is denoted by F and the foot of perpendicular 

from F to AB is denoted by G. 

(iii) Write down the ratio between the area of AGF  and area of BGF . [1] 

(iv) Hence, deduce the ratio :AG GB  and find the position vector of G. [2] 

 

Answer Key 

No Year JC/CI Answers 

1   

10
3

9
 

2 2007 IJC 

(ii)

 

1

2

7

 
 
 
 − 

 

(iii) 
14

2
 

3 2007 PJC 

(i) 8 9 7OC = − − +i j k  

(ii) 2q =   

4 2008 JJC 

(ii) 

1

5

8

OQ

 
 

= − 
 
 

 (iii) 45.6  

5 2008 HCI 

  

(bii)

3

1

6

OB

− 
 

= − 
 
 

;  

(biii) 1  :  x + 2y − 4z = 13;  

2  :  x + 3y + 3z = −8; 

l  : 

55 18

21 7 ,  

0 1

 

   
   

= − + −    
   
   

r  

(biv) 

3 18 29

1 7 10

6 1 3

 

−     
     

= − + − + −     
     −     

r   where   and   
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6 2010 DHS 

(i) 9.3  (ii) 

1 1

3 1

0 2



−   
   

= + −   
   
   

r  (iii) 
7

4
m = −   

7 2009 CJC 

(ii) 75.7o 

(iii) 22  
(iv) b = 6 or 10 

8 2009 MJC 

(i)  1, 3 = − =     

(ii) 1

1 3

: 3 3 ,

0 8

b a

l a b 

− −   
   

= + −    
   −   

r    

(iii) 2, 2a b= = −    

9 2014 SRJC 

(i) 4  (ii) 3  (iii) 
9

16
  (iv) 

32
1

25 16 5
25

11

 
 

+ 
 
 

 

 


