2012 H1 A Level Solution

1	Let $e^{2x} = u$
	$3u = 4(u^{-1} - 1)$
	$3u^2 = 4(1-u)$
	$3u^2 + 4u - 4 = 0$
	Solving,
	$\mu = -2$ or $\mu = \frac{2}{-2}$
	$e^{2x} = -2$ or $e^{2x} = \frac{2}{3}$
	(rejected) $2x = \ln \frac{2}{3}$
	$r = \frac{1}{10} \frac{2}{100}$
	$x - \frac{1}{2}m\frac{1}{3}$
2	3x + y + 20 + x + y = 100
	4x + 2y = 80
	2x + y = 40 - (1)
	(x+20)(y) = 3(20x)
	$y = \frac{60x}{x+20} - (2)$
	x + 20
	Solving (1) and (2):
	$2x + \frac{60x}{10} = 40$
	x + 20
	$2x^2 + 40x + 60x = 40x + 800$
	$2x^2 + 60x - 800 = 0$
	$x^2 + 30x - 400 = 0$
	Calmin a
	Solving, r = -40 or $r = 10$
	(rejected) $x = 10^{-10}$
	When $x = 10$, $y = \frac{60(10)}{10 + 20} = 20$
	Length of $HF = 10 + 20 = 30$
3(i)	$\frac{3}{4}k^2 = k^2 - x^2$
	$x^2 = \frac{1}{4}k^2$
	$x = \pm \frac{1}{2}k$

3(ii)	$\int_{-\frac{1}{2}k}^{\frac{1}{2}k} (k^2 - x^2) - \frac{3}{4}k^2 dx$
	$=2\int_{0}^{\frac{1}{2}k} \left(\frac{1}{4}k^{2}-x^{2}\right) dx$
	$=2\left[\frac{1}{4}k^{2}x-\frac{x^{3}}{3}\right]_{0}^{\frac{1}{2}k}$
	$=2\left[\frac{1}{8}k^3 - \frac{1}{24}k^3\right]$
	$=\frac{1}{6}k^3$
4(i)a)	$\frac{d}{dx}2\ln(3x+2)$
	$=2\times\frac{d}{dx}\ln(3x+2)$
	$=2\times\frac{3}{3x+2}$
	$=\frac{6}{3x+2}$
4(i)b)	<u>d</u> 4
	$dx \ 2x+1$
	$=\frac{d}{dx}4(2x+1)^{-1}$
	$=4(-1)(2x+1)^{-2}\times 2$
	8
	$-\frac{1}{(2x+1)^2}$
4(ii)	$\int_{2}^{4} \left(\sqrt{x} - \frac{1}{\sqrt{x}}\right)^{2} dx$
	$= \int_{2}^{4} (x - 2 + \frac{1}{x}) dx$
	$= \left[\frac{x^2}{2} - 2x + \ln x\right]_2^4$
	$= \left(\frac{16}{2} - 8 + \ln 4\right) - \left(\frac{4}{2} - 4 + \ln 2\right)$
	$= \ln 4 - (-2 + \ln 2)$
	$= 2 + \ln 4 - \ln 2$
	$=2+\ln\frac{4}{2}$
	$= 2 + \ln 2$

5(i)	
	Coordinates of axis intercepts = $(-0.767, 0)$, $(2, 0)$, $(4, 0)$, and $(0, 1)$.
5(ii)	When $x = 1.5$, gradient of C = -1.0395
5(iii)	When $x = 1.5$, $y = 0.57843$
	0.57843 = -1.0395(1.5) + c
	<i>c</i> = 2.1377
	$\therefore y = -1.0395x + 2.1377$
5(iv)	At A: $x = 0, y = 2.1377$
	At B: $x = y = 1.0481$
	Length of AB = $\sqrt{(1.0481 - 0)^2 + (2.1377 - 1.0481)^2} = 1.51(3s.f)$
6(i)	It is a method to obtain a sample of size n from a population of size N via systematic sampling, where we line up the population and <u>randomly</u> select a first member out of the
	first k members, where $k \approx \frac{N}{n}$. Then we <u>automatically</u> select every kth member
	following this first chosen member.
6(ii)	Advantage: This method is cost effective as it takes less time and effort to carry out.
. ,	Disadvantage: The sample may not be representative of the town people as it may not
	include adults from different strata in a correct proportion. E.g: Too many men.
6(iii)	Instead of standing outside the main supermarket, he can obtain a list of adults who use
	computers and choose 100 people from the list to do his survey.
7(1)	A and B independent => $P(A \cap B) = P(A)P(B)$
	$P(A) + P(B) - P(A \cup B) = P(A)P(B)$
	$p+p-\frac{5}{9}=p^2$
	$p^2 - 2p + \frac{5}{9} = 0$
(ii)	$p = \frac{5}{3}$ (rejected since $0)$
	or $p = \frac{1}{3}$
	$P(A \cap B) = p^2 = \frac{1}{9}$

	(b) when $x = 9$, $y = -19.213(9) + 183.12$
	=10.203
	Advertised price = $\$1\ 020$ (corrected to 3 s.f)
(V)	For (a), since $ r $ is close to 1 and $x = 4$ is within the data range, the estimate is reliable.
10(;)	For (b), $x = 9$ is outside the data range, thus the estimate is not reliable.
10(1)	Let S be the r.v. no of Sunbrite plants that will flower in one tray $S \sim B(12, 0.8)$
	P(S-10) = 0.283
(ii)	P(S < 8) = P(S < 7) = 0.0726
(iii)	Let X be the r y "no of Sunbrite plants that will flower in 8 travs"
(111)	$X \sim B(96, 0.8)$
	Since $n = 96 > 50$ is large, $np = 76.8 > 5$, $nq = 19.2 > 5$,
	$X \sim N(76.8, 15.36)$ approximately
	E(X) = 76.8
	V(X) = 15.36
	$P(X > 75) \xrightarrow{c.c} P(X > 75.5) = 0.62994 \approx 0.630$
(iv)	Let <i>Y</i> be the r.v. "no of gardeners out of 3 with more than 75 of their plants will flower"
	$Y \sim B(3, 0.62994)$
	$P(Y \ge 2) = 1 - P(Y \le 1)$
	= 0.691
11(i)	$\frac{1}{x} = \frac{\sum (x - 300)}{1} + 300$
	100
	$=\frac{-60}{100}+300$
	-299.4
	-255.7
	$s^{2} = \frac{1}{100 - 1} (1240 - \frac{(-60)}{100})$
	$=12.162 \approx 12.2$
(ii)	Let X be the r.v. "length and string" and μ be the population mean
(11)	$H : \mu = 300$
	$H_0:\mu = 0.00$ $H_1:\mu < 300$
	Under H_0 , since $n = 100 > 50$ is large,
	$\overline{X} \sim N(300 \frac{12.162}{2})$ approximately by CLT
	100 , "PP-011111111, 0, 0, 0121
	p-value = $0.0427 < 0.05$ Therefore, reject H and conclude that at 5% significance level there is sufficient.
	Therefore, reject H_0 and conclude that at 5% significance level, there is sufficient
(;;;)	evidence that the average length of string in a ball is at least 300m.
(111)	Under H_0 ,

	$\overline{X} \sim N(300, \frac{12.1}{100})$ approximately by CLT
	Do not reject H_0 , p-value > sign level
	$P(\bar{X} < k) > 0.10$
	Using GC,
	<i>k</i> > 299.554
	Hence, the least possible value of $k = 299.56$
12(i)	Let A be the r.v. "mass, in kg, of grapefruit of type A"
	Let B be the r.v. "mass, in kg, of grapefruit of type B"
	$A_1 + \ldots + A_{10} \sim N(2.5, 0.004)$
	$P(A_1 + \ldots + A_{10} < 2.4) = 0.0569$
(ii)	$D = (A_1 + \ldots + A_6) - (B_1 + \ldots + B_5) \sim N(-0.25, 0.0069)$
	P(-0.2 < D < 0.2) = 0.274
(iii)	Let W be the r.v. "amount that Mrs Woo pay"
	$W = 1.5(A_1 + A_2 + A_3) - 2.4(B_1 + B_2 + B_3) \sim N(3.645, 0.018252)$
	Let T be the r.v. "amount that Mr Tan pay"
	$T = 1.5(A_1 + \ldots + A_{10}) \sim N(3.75, 0.009)$
	$W - T \sim N(-0.105, 0.027252)$
	P(W - T > 0) = 0.262