Candidate Index Number				

Anglo - Chinese School

(Independent)

FINAL EXAMINATION 2022 YEAR 3 INTEGRATED PROGRAMME **CORE MATHEMATICS** PAPER 1

Friday 30th September 2022 1 hour 30 minutes

Candidates answer on the Question Paper. No additional materials are required.

INSTRUCTIONS TO CANDIDATES

- Write your index number in the boxes above.
- Do not open this examination paper until instructed to do so.
- You are not permitted access to any calculator for this paper.
- · Answer all questions in the spaces provided.
- · Unless otherwise stated in the question, all numerical answers must be given exactly or correct to three significant figures. For Examiner's Use
- The maximum mark for this paper is 80.

This question paper consists of 18 printed pages.

[Turn over

Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by working and/or explanations. Where an answer is incorrect, some marks may be given for a correct method, provided this is shown by written working. You are therefore advised to show all working.

Answer **all** the questions in the spaces provided.

	m mark: 3]						
Express	$\frac{1}{x^2 + 2x - 3}$	$-\frac{x^2+1}{2x^4-2} \text{ a}$	s a single fracti	on in its simpl	est form.		
•••••							• • • • •
		•••••••					
							• • • • • •
							• • • • •
							• • • • •
							• • • • • •
		• • • • • • • • • • • • • • • • • • • •					• • • • •
							• • • • • •
							• • • • •
		• • • • • • • • • • • • • • • • • • • •					• • • • •
••••••		•••••••			•••••	•••••	• • • • •
	•••••				••••••	•••••	• • • • • •
		• • • • • • • • • • • • • • • • • • • •			•••••	•••••	
							• • • • • •

2.	[Maximum	mark.	41
Z.	IIVIAXIIIIUIII	illain.	41

Given that $\begin{pmatrix} a & 3a \\ 3 & 4 \end{pmatrix} - 2 \begin{pmatrix} b & 2b \\ 1 & 2 \end{pmatrix} = \begin{pmatrix} 5 & 13 \\ 1 & 0 \end{pmatrix}$, find the value of a and of b .

A right cone has base diameter 6 cm and height of 4 cm.					
(a) Find, in terms of π , the total surface area of the cone	e. [3]				
(b) A solid hemisphere has the same surface area as the hemisphere in the form $a\sqrt{2}$ cm, where a is a constant					

3. [Maximum mark: 5]

4.	[Maximum mark:	51
┯.	INIAAIITIUITI ITIAIK.	VΙ

(a) Solve $27\left(\frac{1}{3}\right)^x = 81^{\frac{5}{4}}$.	[2]
(b) Simplify $\log_4 a \times \log_a 64 - \log_{\sqrt{2}} 4$.	[3]
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••

(a) Solve the simultaneous equations $xy = 16$ and $y = x^3$.	[3]
(b) On the same axes, sketch the graphs of $xy = 16$ and $y = x^3$, labelling the axe and point(s) of intersection clearly.	es-intercept(s) [3]
	••••••

5. [Maximum mark: 6]

(a) Simplify $\frac{2}{\sqrt{3}} - \frac{\sqrt{108}}{4} + \frac{5}{1+\sqrt{3}}$, leaving your answer in the form $a+b\sqrt{3}$, where a and b constants.	are [4]
(b) Given that $t = \frac{1}{\sqrt{3}}$, express $\frac{t-1}{2t-1}$ the form $p+q\sqrt{3}$, where p and q are constants.	[3]
	•••••
[Working may be continued next po	age1

[Continuation of working space for Question 6]

(a)		n that a and b are integers such that $-2 \le a < 5$ and $-3 \le b \le 7$, find the				
		greatest possible value of $a^2 - \frac{b^2}{2}$,	[2]			
	(ii)	smallest possible value of $\frac{ab}{(a-1)^2}$.	[2]			
(b)	Solv	ve the inequalities $4x-17 \le 5x-12 < 3x+50$.	[4]			
•••••	•••••					
••••	•••••					
••••	•••••					
••••	•••••		,			
••••	•••••					
•••••	•••••					
•••••	•••••					
••••	•••••					
••••	•••••					
• • • • •	•••••					
• • • • •	•••••					
• • • • •	•••••					
••••	•••••					
••••	•••••					
••••	•••••					
• • • • •	•••••					
• • • • •	•••••					
••••	•••••					
••••	•••••					
••••	•••••					
••••	•••••					
•••••	•••••					

8. [Maximum mark: 10]

		. 12	
(a)	If A is an obtuse angle and	$\cos A = -\frac{12}{12}$	find the value of each of following:
		13	

- (i) $\tan A$, [2]
- (ii) $\sin A + \cos A$. [2]
- **(b)** The diagram below shows an 8 metres by 14 metres rectangular assembly area where A, B, C and D are points on level ground. Two flagpoles stand at E and F, such that DE = FC and the flagpoles stand 2 metres apart from each other. The height of each flagpole is 7 metres and the top of the flagpole at F is denoted as G.

	Find (i)		[3]
	(ii)	$\tan \angle GBF$,	[1]
	(iii)	$\cos \angle DFB$.	[2]
	•••••		••••
• • • • •	•••••		••••

.....[Working may be continued next page]

[Continuation of working space for Question 8]

•••••	 	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •		
	 	,					
•••••	 •	••••••	• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • • • • • • • • • • • • • • • •		•••••
•••••	 ••••	••••••	• • • • • • • • • • • • • • • • • • • •	•••••	••••••	••••••	•••••
•••••	 	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•••••	•••••	•••••	
			• • • • • • • • • • • • • • • • • • • •				
•••••	 	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•••••	•••••	•••••	
	 		•••••				
	 	••••••	• • • • • • • • • • • • • • • • • • • •				
	 •••••	•••••	••••••				
•••••	 	••••••	•••••	•••••		••••••	
	 		• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •		
•••••	 •	•••••	• • • • • • • • • • • • • • • • • • • •				
•••••	 	••••••	•••••	•••••		•••••	
	 ••••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •		
	 		•••••				
	 ••••	•••••	• • • • • • • • • • • • • • • • • • • •				
	 		•••••				
	 	•••••	• • • • • • • • • • • • • • • • • • • •				
	 •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •				

	company uses the function $P = -n^2 + 10n - 21$ to model its profits, P , in thousands of doll ere n hundred units of Product A are produced and sold.	ars,
(a)	Explain the meaning of " -21 " in the context.	[1]
(b)	The company makes a profit by producing 400 units of Product A. A director suggedoubling the number of units produced. Explain if this is advisable, justifying your ansclearly.	
(c)	State the maximum profit and the corresponding number of units to produce.	[2]
(d)	Sketch the graph of $P = -n^2 + 10n - 21$, clearly labelling the coordinates of the axintercepts and turning point.	xes- [3]
The	meet demands, the company has to increase its production capacity to produce Produce costs, in thousands of dollars, C , of producing n hundred units of Product B is given $= kn^2 - 10n + 30$.	
(e)	If $k = 1.5$, explain why it is not possible to have a production cost of \$10,000.	[3]
(f)	Find the range of values of $\it k$, such that the production cost is always more than \$20,00	00. [4]
•••••		
•••••		
•••••		
•••••		
•••••		
•••••		•••••
•••••		•••••
•••••		
•••••		

	[Working may be continued next p	age]
[Ca]	ontinuation of working space for Question 9]	

	• • •
	•••
	•••
	• • •
	• • •
	• • •
	•••
	•••
	• • •
	• • •
	• • •
	• • •
	• • •
	• • •
	• • •
	• • •
[Working may be continued next pag	70 ⁻
[Continuation of working space for Question 9]	;e]

	•••••			•••••	 	
	•••••			• • • • • • • • • • • • • • • • • • • •	 	
	•••••	• • • • • • • • • • • • • • • • • • • •			 	
•••••	•••••	•••••		•••••	 	
				•••••	 	
	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •	 	
	•••••	•••••		• • • • • • • • • • • • • • • • • • • •	 	
				•••••	 	
				• • • • • • • • • • • • • • • • • • • •	 	
•••••	•••••	•••••		• • • • • • • • • • • • • • • • • • • •	 	
***************************************	•••••	•••••		• • • • • • • • • • • • • • • • • • • •	 	
	• • • • • • • • • • • • • • • • • • • •	•••••		• • • • • • • • • • • • • • • • • • • •	 	

. [Maximum						

The roots of the quadratic equation $9x^2 = kx - 1$ are $\frac{1}{\alpha^2}$ and $\frac{1}{\beta^2}$ where $\alpha, \beta > 0$. Show that
$\alpha + \beta = \sqrt{k+6}$.

11. [Maximum mark: 12]

Solutions to this question by accurate drawing will not be accepted.

In the diagram below, A(-1,1) and C(5,3) are two vertices of a parallelogram ABCD. AB has a gradient of 2 and the perpendicular bisector of AB passes through the center of ABCD.

Find

(a)	the equation of AB ,	[2]
(b)	the equation of the perpendicular bisector of AB ,	[2]
(c)	the coordinates of B ,	[3]
(d)	the coordinates of D ,	[2]
(e)	the area of <i>ABCD</i> .	[3]
•••••		
•••••		
•••••		••••
	[Working may be continued next pa	 19e]

[Continuation of working space for Question 11]....

[Working may be continued next page
[Continuation of working space for Question 11]

END OF PAPER 1

Answers

1.
$$\frac{1}{2(x+1)(x+3)}$$

2.
$$a = 3, b = -1$$

3. (a)
$$24\pi$$
 (b) $a = 2$

4. (a)
$$-2$$
 (b) -1

5. (a)
$$x = 2, y = 8$$

 $x = -2, y = -8$

(b)

6. (a)
$$a = -\frac{5}{2}, b = \frac{5}{3}$$
 (b) $p = -1, q = -1$

7. (a)(i) 16 (ii) -6 (b)
$$-5 \le x < 31$$

8. (a)(i)
$$-\frac{5}{12}$$
 (ii) $-\frac{7}{13}$

(b)(i)
$$\sqrt{149}$$
 (ii) $\frac{7}{10}$ (iii) $-\frac{3}{5}$

- 9. (a) Starting cost of \$21000 / Loss of \$21000 when no goods were produced yet
 - (b) The company makes a profit of \$3000 when producing 400 units, but a loss of \$5000 when producing 800 units. Hence, this not advisable.
 - (c) \$4000, 500 units

(d)

(e) $b^2 - 4ac = -20$. Since discriminant is negative, there are no real roots so it is not possible.

(f)
$$k > \frac{5}{2}$$

- 11. (a) y = 2x + 3
 - (b) $y = -\frac{1}{2}x + 3$
 - (c) B(1,5)
 - (d) D(3,-1)
 - (e) 20 units²

Qn	Worked Solutions
1a	$\frac{1}{x^2 + 2x - 3} - \frac{x^2 + 1}{2x^4 - 2}$
	$\frac{1}{x^2+2x-3} - \frac{1}{2x^4-2}$
	$= \frac{1}{x^2 + 2x - 3} - \frac{x^2 + 1}{2(x^2 + 1)(x^2 - 1)}$
	$= \frac{1}{(x+3)(x-1)} - \frac{1}{2(x+1)(x-1)}$
	$=\frac{2x+2-(x+3)}{2(x+1)(x+3)(x-1)}$
	$=\frac{x-1}{2(x+1)(x+3)(x-1)}$
	$\frac{1}{2(x+1)(x+3)}$
2	a-2b=5(1)
	3a - 4b = 13(2)
	$(2)-(1)\times 2: a=3, b=-1$
3a	Slant height = $\sqrt{3^2 + 4^2} = 5$ cm
	Total surface area of cone = $\pi(3^2) + \pi(3)(5) = 24\pi$
3b	$3\pi(r^2) = 24\pi$
	$r = \sqrt{8} = 2\sqrt{2} \text{ cm}$
4a	a=2
 a	$27\left(\frac{1}{3}\right)^{x} = 81^{\frac{5}{4}}$
	$3^3(3^{-x}) = 3^5$
	3-x=5
	x = -2
4b	$\log_4 a \times \log_a 64 - \log_{\sqrt{2}} 4$
	$= \frac{\lg a}{\lg 4} \times \frac{\lg 64}{\lg a} - 4$
	$=\frac{3\lg 4}{\lg 4}-4$
	=-1
5a	$y = \frac{16}{x}$
	Substitute into $y = x^3$.
	$\frac{16}{x} = x^3$ $x^4 = 16$
	$\begin{vmatrix} x^4 = 16 \\ x = 4 \end{vmatrix}$
	λ – τ

	x = 2, y = 8
	x = -2, y = -8
5b	$y = x^{3}$ (2,8) $(-2,-8)$ $y = \frac{16}{}$
	x = 0
6a	$\frac{2}{\sqrt{3}} - \frac{\sqrt{108}}{4} + \frac{5}{1 + \sqrt{3}}$ $= \frac{2\sqrt{3}}{3} - \frac{6\sqrt{3}}{4} + \frac{5(1 - \sqrt{3})}{1 + \sqrt{3}(1 - \sqrt{3})}$ $= \frac{2\sqrt{3}}{3} - \frac{6\sqrt{3}}{4} + \frac{5 - 5\sqrt{3}}{-2}$ $= \frac{8\sqrt{3} - 18\sqrt{3} - 30 + 30\sqrt{3}}{12}$ $= \frac{-30 + 20\sqrt{3}}{12}$ $= -\frac{5}{2} + \frac{5}{3}\sqrt{3}$ $a = -\frac{5}{2}, b = \frac{5}{3}$
6b	$ \frac{\frac{1}{\sqrt{3}} - 1}{\frac{2}{\sqrt{3}} - 1} $ $ = \frac{\frac{1 - \sqrt{3}}{\sqrt{3}}}{\frac{2 - \sqrt{3}}{\sqrt{3}}} $ $ = \frac{1 - \sqrt{3}}{2 - \sqrt{3}} $ $ = \frac{1 - \sqrt{3}}{2 - \sqrt{3}} \left(\frac{2 + \sqrt{3}}{2 + \sqrt{3}}\right) $

	$-\frac{2-\sqrt{3}-3}{}$
	$= \frac{2 - \sqrt{3} - 3}{4 - 3} \\ = -1 - \sqrt{3}$
	$=-1-\sqrt{3}$
	p = -1, q = -1
7ai	$4^2 - 0 = 16$
7aii	$\frac{(2)(-3)}{(2-1)^2} = -6$
	$(2-1)^2 = -0$
7b	$4x-17 \le 5x-12$ and $5x-12 < 3x+50$
	$x \ge -5 \text{ and } 2x < 62$ -5 \le x < 31
8ai	3 2 x \ 31
	12
	5 13
	A
	12
	$\tan A = -\tan(180^\circ - A)$
	$=-\frac{5}{12}$
8aii	$\sin A = \frac{5}{13}$
	$\sin A + \cos A = \frac{5}{13} - \frac{12}{13}$
	7
	$=-\frac{13}{13}$
01.	
8bi	$CF = \frac{14-2}{2} = 6$
	$BF = \sqrt{6^2 + 8^2}$
	$= 10 BG = \sqrt{10^2 + 7^2}$
	$= \sqrt{149}$
8bii	- V1+7
	$\tan \angle GBF = \frac{7}{10}$ $\cos \angle DFB = -\cos(180^\circ - \angle CFB)$
8biii	$\cos \angle DFB = -\cos(180^\circ - \angle CFB)$
	$=-\frac{6}{10}$
	$=-\frac{3}{5}$
9a	Starting cost of \$21000 / Loss of \$21000 when no goods were
	produced yet

9b	The company makes a profit of \$3000 when producing 400 units,
	but a loss of \$5000 when producing 800 units.
	Hence, this not advisable.
9c	Maximum profit of \$4000 when 500 units produced
9d	
	(5, 4)
	(3,0) $(7,0)$
	• (0, -21)
	•
9e	$10 = 1.5n^2 - 10n + 30$
	$1.5n^2 - 10n + 20 = 0$
	$b^2 - 4ac = 100 - 120 = -20$
	Since discriminant is negative, there are no real roots so it is not
	possible.
9f	$kn^2 - 10n + 30 > 20$
	$kn^2 - 10n + 10 > 0$
	$k > 0$ and $b^2 - 4ac = 100 - 40k < 0$
	$k > \frac{5}{2}$
	2
10	$9x^2 - kx + 1 = 0$
	$\frac{1}{\alpha^2} + \frac{1}{\beta^2} = \frac{\alpha^2 + \beta^2}{\alpha^2 \beta^2}$
	$\alpha^2 \beta^2 \alpha^2 \beta^2$
	$\alpha^2 + \beta^2 k$
	$\frac{\alpha^2 + \beta^2}{\alpha^2 \beta^2} = \frac{k}{9}$
	1 1
	$\frac{1}{\alpha^2 \beta^2} = \frac{1}{9}$
	$\alpha\beta=3$
	$\alpha\beta = 3$ $\alpha^2 + \beta^2 = k$
	$\left(\alpha + \beta\right)^2 = \alpha^2 + \beta^2 + 2\alpha\beta$
	=k+6
	$\alpha + \beta = \sqrt{k+6}$
11a	y-1=2(x+1)
	y = 2x + 3
11b	
	Midpoint of $AC = \left(\frac{-1+5}{2}, \frac{1+3}{2}\right) = (2,2)$
	Perpendicular gradient $-\frac{1}{2}$
	<u>L</u>

_	
	$y - 2 = -\frac{1}{2}(x - 2)$
	$y = -\frac{1}{2}x + 3$
11c	$y-2 = -\frac{1}{2}(x-2)$ $y = -\frac{1}{2}x+3$ $-\frac{1}{2}x+3 = 2x+3$
	x = 0
	x = 0 $y = 3$
	$\left(\frac{-1+b_x}{2}, \frac{1+b_y}{2}\right) = (0,3)$
	B(1,5)
11d	$\left(\frac{1+d_x}{2}, \frac{5+d_y}{2}\right) = (2,2)$
	D(3,-1)
11e	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	$= \frac{1}{2} -5+3-5+3-1-25-9-1 $
	$=20 \text{ units}^2$