

ANDERSON SECONDARY SCHOOL Preliminary Examination Secondary Four Express

CANDIDATE NAME:			
CLASS:	/	INDEX NUMBER:	
CHEMISTRY			6092/01

Paper 1 Multiple Choice

23 August 2024 1 hour

Additional Materials: Multiple Choice Answer Sheet

READ THESE INSTRUCTIONS FIRST

Write your name, class and index number on all the work you hand in.

Write in dark blue or black pen.

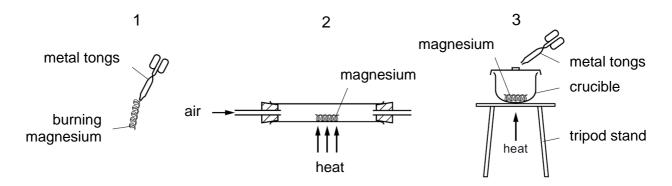
You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

There are **forty** questions on this paper.

Answer **all** questions. For each question there are four possible answers **A**, **B**, **C** and **D**. Choose the **one** you consider correct and record your choice in pencil on the separate Answer Sheet.

Read the instructions on the Answer Sheet very carefully.

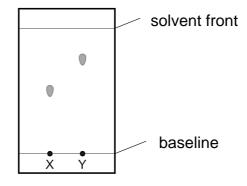

Each correct answer will score one mark. A mark will not be deducted for a wrong answer. Any rough working should be done in this booklet.

A copy of the Periodic Table is printed on Page 18.

The use of an approved scientific calculator is expected, where appropriate.

1 When heated, magnesium undergoes combustion to form magnesium oxide, a white powder.

A student investigates the change in mass that occurs during this reaction. The student is given a balance and three sets of apparatus as shown.



Which sets of apparatus are suitable for this investigation?

- A 1, 2 and 3
- **B** 1 and 3
- **C** 2 and 3
- D 2 only
- 2 The results of a paper chromatography experiment are shown, which is **not** drawn to scale.

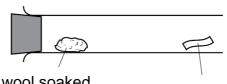
X is an aqueous solution of a salt of a Group 1 element.

Y is an aqueous solution of a salt of a transition element.

Which row is correct?

	larger Rf value	requires a locating agent
Α	Х	Х
В	Х	Y
С	Y	Х
D	Y	Y

3 A laboratory has a powdered mixture of solid iodine and solid carbon.


lodine is very soluble in hexane and slightly soluble in water. Carbon is insoluble in both solvents.

One sample of the mixture is shaken with hexane. This is P.

Another sample of the mixture is shaken with water. This is Q.

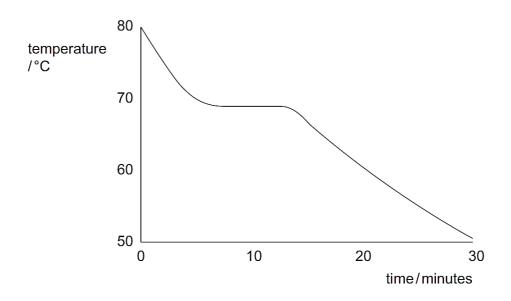
Which procedure is used to prepare a pure sample of iodine?

- **A** P is distilled and the distillate is evaporated to dryness.
- **B** P is filtered and the filtrate is allowed to evaporate to dryness.
- **C** P is filtered and the residue is allowed to evaporate to dryness.
- **D** Q is distilled and the distillate is evaporated to dryness.
- 4 Mineral wool soaked in aqueous ammonia is placed in the apparatus shown.

mineral wool soaked in aqueous ammonia

damp red litmus paper

After 5 minutes, the damp red litmus paper turns blue.


Which process led to this change?

- A condensation
- B crystallisation
- **C** diffusion
- **D** fractional distillation

4

5 Stearic acid has a melting point of 69°C.

A heated sample of pure stearic acid is cooled, and the temperature is recorded every minute for 30 minutes. A graph of the results is shown.

Which process occurs between 8 and 12 minutes?

- A boiling
- **B** condensing
- **C** freezing
- **D** melting
- 6 The number of electrons, protons and neutrons in four different particles are shown.

particle	electrons	protons	neutrons
1	19	19	20
2	18	19	20
3	20	20	20
4	19	19	22

Which particles are isotopes of the same element?

A 1 and 2 B 1 and 3 C 1 and 4	D 1, 2 and 3
--	---------------------

7 Element E and element G react together to form a compound.

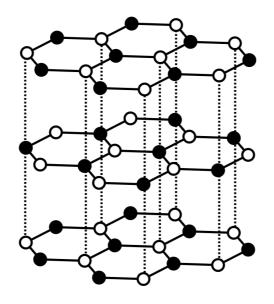
The electronic configurations of E and G are 2,8,3 and 2,6 respectively.

Which row is correct?

	element E	element G	type of compound
Α	2 atoms each loses 3 electrons	3 atoms each gains 2 electrons	covalent
В	2 atoms each loses 3 electrons	3 atoms each gains 2 electrons	ionic
С	2 atoms each gains 3 electrons	3 atoms each loses 2 electrons	covalent
D	2 atoms each gains 3 electrons	3 atoms each gains 2 electrons	ionic

- **8** Which substance has a giant covalent structure and contains atoms of more than one element?
 - A ammonia
 - **B** diamond
 - **C** graphite
 - **D** silicon dioxide
- **9** Three statements about the properties of metals are shown.
 - 1 All metals conduct electricity.
 - 2 All metals have 2 electrons in their innermost shell.
 - 3 All metals have high melting points.

Which statements are correct?


Α	1 and 2	B 1 and 3	C 2 and 3	D 1, 2 and 3
---	---------	------------------	------------------	---------------------

10 Element J forms a positive ion when it reacts with oxygen.

Using the Periodic Table, how many protons are in atom J?

A 6 **B** 10 **C** 16 **D** 20

11 The diagram shows the structure of boron nitride.

Which statement about boron nitride is correct?

- A It has a low melting point.
- **B** It has an ionic lattice.
- **C** It has the same structure as diamond.
- **D** It can be used as a lubricant.
- **12** Three compounds are listed.
 - calcium carbonate
 - potassium sulfate
 - zinc nitrate

Which row shows the element present in the greatest percentage by mass in each compound?

	element present in the greatest percentage by mass in calcium carbonate	element present in the greatest percentage by mass in potassium sulfate	element present in the greatest percentage by mass in zinc nitrate
Α	calcium	oxygen	oxygen
В	calcium	oxygen	zinc
С	oxygen	potassium	zinc
D	oxygen	potassium	oxygen

13 Samples of two hydrated compounds are weighed and then dehydrated by heating.

The anhydrous compounds are weighed and the results are shown.

3.97g FeSO₄.*x*H₂O gives 2.17g anhydrous FeSO₄.

2.88g CaSO₄. *y*H₂O gives 2.27g anhydrous CaSO₄.

What are the values of x and y? [$M_{f:}$ FeSO₄, 152; CaSO₄, 136; H₂O, 18]

	x	У
Α	5	2
	5	5
B C	7	5
D	7	2

14 50.0 cm³ of 0.100 mol/dm³ silver nitrate, AgNO₃, is added to 150.0 cm³ of 0.0500 mol/dm³ sodium iodide, NaI, in a beaker.

After the reaction, solid silver iodide is present in the beaker.

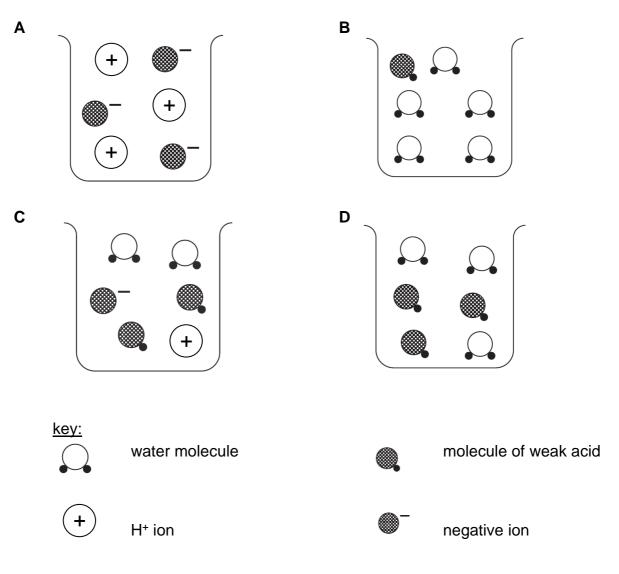
What else is present?

- A aqueous silver nitrate and aqueous sodium nitrate
- **B** aqueous sodium iodide and aqueous sodium nitrate
- **C** aqueous sodium iodide only
- **D** aqueous sodium nitrate only
- **15** Aqueous hydrogen peroxide, H₂O₂, decomposes slowly at 25°C.

$$2H_2O_2(aq) \rightarrow 2H_2O(l) + O_2(g)$$

The decomposition reaction takes place faster when a catalyst is added.

A student adds a small amount of catalyst to 10 cm³ of 1.00 mol/dm³ of aqueous hydrogen peroxide and collects the gas that is produced. The volume of gas collected is 90 cm³. All measurements are made at room temperature and pressure.

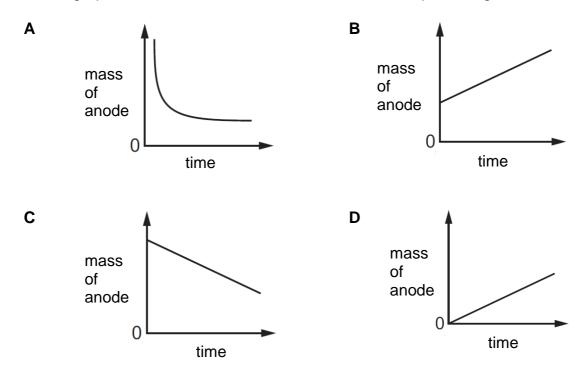

What is the percentage yield of oxygen?

A 28.1% **B** 37.5% **C** 56.3% **D** 75.0%

- 16 What is a chemical product of a hydrogen-oxygen fuel cell?
 - A electricity
 - B hydrogen
 - C oxygen
 - D water

17 Which method of preparation of magnesium sulfate is an example of redox reaction?

- $\textbf{A} \qquad Mg \textbf{+} H_2 SO_4 \rightarrow Mg SO_4 \textbf{+} H_2$
- $\textbf{B} \qquad MgO + H_2SO_4 \rightarrow MgSO_4 + H_2O$
- $\textbf{D} \qquad MgCO_3 + H_2SO_4 \rightarrow MgSO_4 + H_2O + CO_2$
- 18 Which diagram represents the ionisation of a weak acid?


19 A salt, H, dissolved in water to give a green solution. On adding chlorine, the green solution turned yellow. On addition of aqueous ammonia, the green solution gave a green precipitate and the yellow solution gave a red-brown precipitate. On addition of dilute nitric acid followed by aqueous barium nitrate, the green solution gave a white precipitate.

What is the formula of H?

A $CuCl_2$ **B** $CuSO_4$ **C** $FeCl_2$ **D** $FeSO_4$

- 20 Which reaction shows the most suitable reaction for making silver chloride?
 - **A** $2Ag + 2HCl \rightarrow 2AgCl + H_2$
 - **B** Ag₂CO₃ + 2HC $l \rightarrow$ 2AgCl + CO₂ + H₂O
 - **C** AgNO₃ + HC $l \rightarrow$ AgCl + HNO₃
 - **D** Ag₂O + 2HC $l \rightarrow$ 2AgCl + H₂O
- **21** Aqueous copper(II) sulfate is electrolysed using copper electrodes. The current is constant and the anode is weighed at regular time intervals.

Which graph is obtained when the mass of the anode is plotted against time?

22 Which reagent and observation describes the test for a reducing agent?

	reagent	colour change
Α	acidified aqueous potassium manganate(VII)	colourless to purple
В	acidified aqueous potassium manganate(VII)	purple to colourless
С	aqueous potassium iodide	colourless to purple
D	aqueous potassium iodide	purple to colourless

23 Electrolysis is used to plate a metal coin with silver. The coin is used as an electrode in a suitable electrolyte.

Which row is correct?

	coin	electrolyte
Α	anode	AgC <i>l</i> (aq)
в	anode	AgNO₃(aq)
С	cathode	AgC <i>l</i> (aq)
D	cathode	AgNO₃(aq)

24 Winkler method is used to determine the amount of dissolved oxygen in a water sample. The procedure involves the following sequence of reactions.

Step 1 $2Mn^{2+}(aq) + O_2(g) + 4OH^{-}(aq) \rightarrow 2MnO(OH)_2(s)$

Step 2 MnO(OH)₂(s) + 2I⁻(aq) + 4H⁺(aq) \rightarrow I₂(aq) + Mn²⁺(aq) + 3H₂O(aq)

Step 3 $I_2(aq) + 2S_2O_3^{2-}(aq) \rightarrow 2I^{-}(aq) + S_4O_6^{2-}(aq)$

When a 5.00 dm³ sample of water was analysed using the Winkler method, a total of 4.00×10^{-3} mol of thiosulfate (S₂O₃²⁻) was required in Step 3.

What concentration of oxygen was present in the original sample?

- **A** 3.20 mg/dm³
- **B** 6.40 mg/dm³
- **C** 12.8 mg/dm³
- **D** 32.0 mg/dm³

- **25** Five statements about different elements are given.
 - 1 proton number = 24
 - 2 cuts easily with a knife
 - 3 constituent of brass
 - 4 burns in oxygen with a dazzling white light
 - 5 catalyst in the Haber process

Which statement is correct for each element?

	К	Zn	Fe	Cr	Mg
Α	2	3	4	5	1
В	2	3	5	1	4
С	3	2	5	1	4
D	4	5	2	3	1

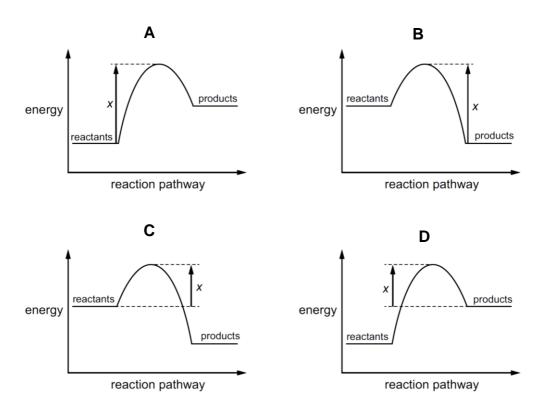
26 The addition of calcium hydroxide to soil reduces its acidity but also reduces the efficiency of fertilisers.

Which two equations explain this?

- 1 $Ca(OH)_2(s) + CO_2(g) \rightarrow CaCO_3(s) + H_2O(l)$
- 2 $Ca(OH)_2(s) + 2H^+(aq) \rightarrow Ca^{2+}(aq) + 2H_2O(l)$
- 3 $Ca(OH)_2(s) + 2NH_4NO_3(aq) \rightarrow Ca(NO_3)_2(aq) + 2NH_3(g) + 2H_2O(l)$
- 4 $Ca(OH)_2(s) + Cu^{2+}(aq) \rightarrow Cu(OH)_2(s) + Ca^{2+}(aq)$
- **A** 1 and 2 **B** 1 and 4 **C** 2 and 3 **D** 3 and 4
- 27 Which statement is correct?
 - A Group 1 elements are less reactive than the Group 2 element in the same period because they only need to lose one electron to have complete shells.
 - **B** Group 1 elements are stored under oil to avoid reaction with oxygen and water in the air.
 - **C** Group 1 elements become more reactive as the group is descended because the number of outer shell electrons increases.
 - **D** The melting point of Group 1 elements decreases as the group is descended because there is more attraction between positive ions and the 'sea' of delocalised electrons.

28 Copper(II) carbonate, calcium carbonate and zinc carbonate decompose when heated.

What is the correct increasing order for their decomposition?


	lowest temperature -	\rightarrow	highest temperature
Α	calcium carbonate	zinc carbonate	copper(II) carbonate
В	copper(II) carbonate	calcium carbonate	zinc carbonate
С	copper(II) carbonate	zinc carbonate	calcium carbonate
D	zinc carbonate	copper(II) carbonate	calcium carbonate

29 Zinc is used to galvanise iron, which prevents the iron from rusting.

Which statements are correct?

- 1 The layer of zinc forms a barrier between the iron and the oxygen and water in the atmosphere.
- 2 Zinc will oxidise before the iron does, even if the layer of zinc is scratched.
- 3 When iron rusts, atoms of iron gain electrons to form ions.
- **A** 1 and 2 **B** 1 and 3 **C** 2 and 3 **D** 1, 2 and 3
- **30** An endothermic reaction has an activation energy of *x*.

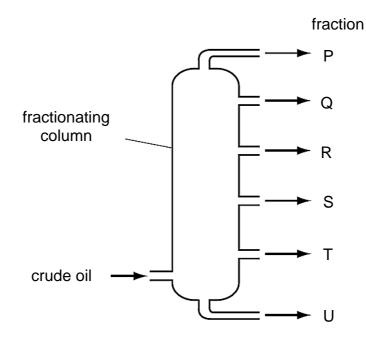
Which energy profile diagram is correct for this reaction?

PRELIM EXAM 4E CHEMISTRY P1 2024 6092/01

31 Two gases react inside a sealed vessel.

Which change in conditions would decrease the rate of reaction?

- 1 decreasing the pressure inside the vessel
- 2 decreasing the temperature inside the vessel
- 3 decreasing the volume of the vessel
- **A** 1 and 2 **B** 1 and 3 **C** 2 and 3 **D** 1, 2 and 3
- **32** The volume of gas produced by the reaction of 100 cm³ of hydrochloric acid with an excess of calcium carbonate is measured in two experiments.

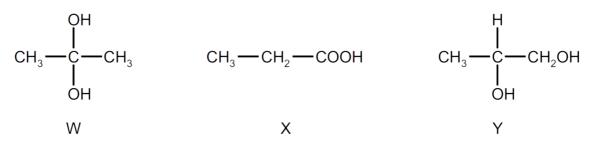

The volumes of gas are measured at room temperature and pressure, and the results are shown.

time / s	0	30	60	90	120	150	180	300
volume of gas in experiment 1 / cm ³	0	20	30	38	44	48	50	50
volume of gas in experiment 2 / cm ³	0	30	42	55	65	70	75	75

Which **one** change in conditions to experiment 1 gives the results for experiment 2? Assume all other conditions are unchanged.

- **A** A greater mass of calcium carbonate is added.
- **B** A higher concentration of acid is used.
- **C** Smaller pieces of calcium carbonate are used.
- **D** The temperature of the acid is higher.
- 33 Which statement about global warming is correct?
 - A Methane produced by digestion in animals has no effect on the rate of global warming.
 - **B** The products of burning fossil fuels have no effect on the rate of global warming.
 - **C** The products of decomposition of vegetation have no effect on the rate of global warming.
 - **D** The products of photosynthesis have no effect on the rate of global warming.

34 The diagram shows a fractionating column used in the separation of petroleum.

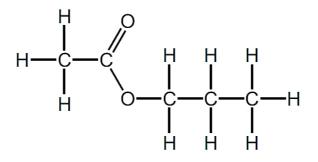

Which row explains why fraction R is collected above fraction S?

	boiling point of R	average molecular mass of R
Α	greater than S	greater than S
В	greater than S	smaller than S
С	smaller than S	greater than S
D	smaller than S	smaller than S

35 Which statements about the cracking of hydrocarbons are correct?

- 1 Cracking involves breaking down hydrocarbon molecules.
- 2 One of the products of cracking is always unsaturated.
- 3 Cracking is essential because of the demand for fractions containing smaller molecules.
- **A** 1 and 2 **B** 1 and 3 **C** 2 and 3 **D** 1, 2 and 3

36 The structures of three compounds, W, X and Y, are shown.


Which statements about these three compounds are correct?

- 1 W and Y are both alcohols and X is a carboxylic acid.
- 2 W, X and Y have the same molecular formula.
- 3 W and Y are structural isomers of each other.
- **A** 1 and 2 **B** 1 and 3 **C** 2 and 3 **D** 1, 2 and 3
- **37** Which equation shows the reaction of ethane with chlorine in the presence of ultraviolet light?
 - $\mathbf{A} \qquad \mathbf{C}_2\mathbf{H}_6 + \mathbf{C}l_2 \rightarrow \mathbf{C}_2\mathbf{H}_6\mathbf{C}l_2$
 - $\mathbf{B} \qquad \mathbf{C}_2\mathbf{H}_6 + \mathbf{C}l_2 \rightarrow \mathbf{C}_2\mathbf{H}_4\mathbf{C}l_2 + \mathbf{H}_2$
 - $\mathbf{C} \qquad \mathbf{C}_2\mathbf{H}_6 + \mathbf{C}_{l_2} \rightarrow \mathbf{C}_2\mathbf{H}_5\mathbf{C}_l + \mathbf{H}\mathbf{C}_l$
 - **D** $C_2H_6 + Cl_2 \rightarrow 2CH_3Cl$
- **38** Isoprene is an alkene which is commonly found in plants.

Which properties does isoprene have?

- 1 It burns in air.
- 2 It can form condensation polymers.
- 3 It decolourises aqueous bromine.
- A 1 and 2 B 1 and 3 C 2 and 3 D 1, 2 and 3

39 The structure of an organic compound is shown.

Which two reactants form the organic compound?

- **A** butanol and methanoic acid
- **B** ethanol and propanoic acid
- **C** propanol and ethanoic acid
- **D** propanol and methanoic acid
- **40** Which compound, without the addition of any other reagent, polymerises to produce a polyamide similar to nylon?
 - $\textbf{A} \quad C_2H_5CO_2H$
 - **B** C₂H₅NH₂
 - **C** H₂N(CH₂)₄NH₂
 - D H₂N(CH₂)₄CO₂H

END OF PAPER

BLANK PAGE

The Periodic Table of Elements

	18	4 He ^{helium}	10 20 Ne 20	18 Ar ^{argon}	36	krypton 84	54	Xe	131	86	Rn	radon	118	og							
	17		о П 100rine 19	17 C <i>l</i> chlorine 35.5	35	bromine 80	53	H .	127	85	At	astatine I	117	Ts		1	- n	175	103	2	lawrencium
	16		8 ^{oxygen} 0 8	16 Sulfur 32	34	Se selenium 79	52	Te	128	84	Ъ	polonium 	116	Lv	1	Ċ	° Å	ytterbium 173	102	No.	nobelium
	15		N N nitrogen 14	15 P phosphorus 31	33	AS arsenic 75	51	Sb	122	83	Ξ	bismuth 209	115	Mc		00	Tm eg	thulium 160	101	Md	mendelevium
	14		6 Carbon 12	14 Silicon 28	32	Ge germanium 73	50	Sn	119	82	Pb	lead 207	114	F1 ferriting		00	õц	erbium 167	100	Еm	fermium
	13		5 ^{boron} 11	13 A <i>l</i> aluminium 27	31	gallium 70	49	In	115	81	11	thallium 204	113	Nh minada	1	ľ	/9 HO	holmium 165	66	Еs S	einsteinium
				12	81	Zn ^{zinc} 65	48	B	112	80	Ъ	mercury 201	112	Cn		00	82	dysprosium	80	ថ	californium
				1	29	Cu opper 64	47	Ag	108	62	Au	gold 197	111	Rg	1	L	co qL	terbium 150	67	当	berkelium
Group				10	28	Dickel 29	46	Pd	106	78	£	platinum 195	110	Ds		2	4 2 2 2 2	gadolinium 1 도7	96	S S	curium
G				6	27	59 att	45	Rh	103	22	Ŀ	iridium 192	109	Mt	1	00	БU	europium 153	35	Am	americium
	- I	1 H hydrogen		œ	26 1	Г С 56 п	44	Ru	101	76	ő	osmium 190	108	Hs		00	Sm	samarium 150			-
				~	25	Mn ^{manganese} 55	43	Tc		75	Re	rhenium 186	107	Bh	-	- 1	Pm H	e -	93	dN	neptunium
			umber bol mass	9	24	chromium 52	42	Mo	mony podenum 96	74	≥	tungsten 184	106	Sg		00	Nd	n neodymium p	6	¦⊃	uranium
		Key	proton (atomic) number atomic symbol name relative atomic mass	5	23	vanadium 51	41	qN	93	73	Та	tantalum 181	105	Db	1		2 2 2	iu,	61	Pa	protactinium
			proton ato relativ	4	21	titanium 48	40	Zr	21rconium 91	72	Έ	hafnium 178	104	Rf		c L		cerium 140	06	ц	thorium
				ന	21	SC scandium 45	39	≻	т 89	57-71	lanthanoids		89-103	actinoids		[رد اع	lanthanum 130	80	Ac	actinium
	2		9 Beryllium	12 Mg ^{magnesium} 24	50	calcium 40	38	ې ا	88 88	56	Ba	barium 137	88	Ra	1	_		annanona		actinoids	222
	-		3 Li ⊓ithium	11 sodium 23	19	potassium 39	37	Rb	85	55	ഗ്	caesium 133	87	Fr fareiur			odtaol			actin	

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.). The Avogadro constant, $L = 6.02 \times 10^{23}$ mol⁻¹.