

2024 JC2 H2 Chemistry 9729 Prelim Exam Paper 2

Suggested Solutions

1 (a) (i) Proton and deuterons are <u>deflected to the negative plate</u>, but hydrogen atoms is <u>not deflected</u>. This is because protons and deuterons are <u>positively charged</u>, whereas hydrogen atoms are <u>electrically neutral</u>.

The mass of a proton is <u>half of</u> the mass of a deuteron (1 neutron and 1 proton), thus <u>angle of deflection for proton doubled</u> to that of deuterons.

(ii) +1310 kJ mol⁻¹ (Same value as first IE for hydrogen.)

The electron to be removed from deuterium atom and hydrogen atom experience the <u>same nuclear charge</u> and <u>no shielding effect</u>. They are of <u>similar/same distance from the nucleus</u>. Thus, the <u>attraction of positive nucleus for the (1s) electrons to be removed is the same</u>.

Or

Hydrogen and deuterium have the <u>same electronic configuration</u>. Although deuterium has an <u>additional neutron</u>, it has <u>no charge</u>, therefore <u>does not affect the attraction of nucleus for the electrons to</u> <u>be removed</u>.

[2]

[2]

(b) (i) $1s^2 2s^2 2p^6 3s^2 3p^6 3d^8 4s^2$

(ii) For all atoms, there is an <u>increase in successive ionisation energies</u> as the <u>electron is removed from an ion of increasing positive charge</u>.

The significant jump from 2nd to the 3rd ionisation energy for element A is due the <u>removal of the 3rd/3p electron from an inner principal quantum shell</u> which is more strongly attracted to the positive nucleus compared to a 3s electron.

3d and 4s electrons are very close in energy. Similar amount of energy is required to remove the 4s/2nd and 3d/3rd electron from Ni.

- (iii) Element **B** is Mg.
- (c) (i) $2NO + 2CO \rightarrow N_2 + 2CO_2$ Or $NO_2 + 2CO \rightarrow \frac{1}{2}N_2 + 2CO_2$
 - (ii) During <u>adsorption</u>, the formation of <u>weak bonds between the NO_x</u> <u>molecules and the active sites on rhodium</u> surface <u>weakens/breaks</u> <u>the bonds within the NO_x molecules</u>.

<u>Reaction</u> occurs more readily as the NO_x particles are held on rhodium surface in <u>close proximity</u> and in the <u>correct orientation</u>.

During <u>desorption</u>, the <u>weak bonds between the product particles</u> and the rhodium surface are broken. The products formed <u>diffuse</u> <u>away</u> from the surface of the catalyst and the <u>active sites become</u> <u>available</u> again.

[3]

[2]

[1]

[1]

(d) (i) First order with respect to C_xH_y at low concentration, but zeroth order at high concentration.

At high $[C_xH_y]$, adding more substrates cannot accelerate the reaction as all the active sites on the catalyst surface are saturated/ occupied.

[2]

A catalyst provides an <u>alternative reaction pathway with a lower</u> <u>activation energy</u>. As a result, <u>more reactant particles possess</u> <u>energy \geq activation energy required for an effective collision</u> and the <u>frequency of effective collisions increases</u>. Thus, <u>rate constant is</u> <u>increased</u>.

(e) NO₂ forms <u>photochemical smog</u> which causes respiratory problems. [1]

(d) The tertiary <u>carbocation</u> intermediate in the formation of **G** is <u>more stable</u> as there are <u>3 electron-donating alkyl groups</u> to spread out the positive charge.

[1]

[2]

(e) Test: add acidified KMnO₄ (or K₂Cr₂O₇), heat.

Observations: $KMnO_4$ remains purple (or $K_2Cr_2O_7$ remains orange) for **C**, while purple $KMnO_4$ decolourises (or orange $K_2Cr_2O_7$ turns green) for **J**.

or

Test: add NaOH, heat; followed by add I₂(aq), warm.

Observations: no pale yellow ppt formed for **C**, while pale yellow ppt formed for **J**.

3 (a) An Arrhenius acid is a compound that dissolves in water to yield hydrogen ions.

(ii) When 30.0 cm³ of NaOH has been added, the solution contains excess NaOH and conjugate base of the amino acid.

Amount of excess NaOH = $\frac{10.0}{1000} \times 0.100 = 1.000 \times 10^{#3}$ mol Concentration of OH[#] = $1.000 \times 10^{#3} \div \frac{40.0}{1000} = 2.500 \times 10^{#2}$ mol dm^{#3} pOH = 1.602

(iv) CH_3 $+H_3N - C - CO_2^-$

-CO₂H is a stronger acid than H_2CO_3 so $-CO_2^{\#}$ will not be protonated by H_2CO_3 .

 $-NH_3^+$ is <u>weaker acid</u> than H_2CO_3 so $-NH_2$ will be protonated by H_2CO_3 . [2]

- NH_2 is a stronger base than $CO_2^{\#}$, so - NH_2 is protonated.

[2]

[3]

4 (a) Lactide has <u>more electrons</u> than lactic acid. <u>More energy is needed to overcome the stronger instantaneous dipole-induced dipole interactions between lactide molecules</u> than the <u>hydrogen bonds between lactic acid molecules</u>.

Since O is more electronegative than N, <u>O–H bond is more polar than N–H</u> bond. More energy is needed to overcome the <u>stronger</u> <u>hydrogen bonds</u> between lactic acid molecules than that between 1,4-butanediamine molecules.

(b) (i) π bond: overlap between p orbitals of C and O

 σ bond: overlap between sp^2 orbitals of C and O

[1]

р

(ii) $\Delta G = \Delta H - T \Delta S$

Since $\Delta H < 0$, $\Delta S < 0$, $-T\Delta S > 0$, so as temperature increases, $|-T\Delta S| > |\Delta H|$, ΔG becomes positive.

Therefore, the polymerisation becomes less spontaneous.

- [2]
- (c) (i) Increasingly positive/ decreasingly negative due to the increase in disorder in the system as the number of ways to arrange the polymer [1]

chain/ greater flexibility in the rotation of bonds in the open chain increases.

(ii)
$$\Delta H = 2(360) + 2(390) - 2(305) - 2(460)$$

= -30.0 kJ mol⁻¹ [2]

(d) The <u>sp² C₁ in norbornene becomes sp³ hybridised</u> in **B**. The sp² orbital is <u>closer to the nucleus/ smaller in size</u>, so C₁ – H bond is <u>shorter</u> in norbornene.

- (ii) The sp² <u>carbocation is trigonal planar</u>. The <u>bromide ion/ nucleophile</u> <u>attack from both sides</u> of the plane, which give rise to a pair of stereoisomers.
- (iii) Br

There is an <u>internal plane of symmetry</u> the <u>mirror images of</u> <u>stereoisomer are superimposable</u>, thus this structure is optically inactive. [2]

- 5 (a) (i) A transition element is a d-block element which forms at least one stable ion with a partially filled d subshell. [1]
 - (ii) In the presence of (H₂O) ligands, the degenerate partially filled 3d orbitals are split into 2 sets of orbitals with a (small) energy difference (ΔE) .

This ΔE is different for V²⁺ and V³⁺ because these ions have different oxidation states/ charges on ions/ number of electron/ electronic configuration.

Radiation from visible light spectrum is absorbed to promote an electron from a lower energy d-orbital to another d-orbital of higher energy.

The green colour observed for V^{3+} corresponds to the complement of the red colours absorbed.

The violet colour observed for V^{2+} corresponds to the complement of the yellow colours absorbed.

(b) (i) Electrode A (through external circuit) to electrode B. [1]

(ii)
$$E_{\text{cell}}^{\ominus} = E^{\ominus}(VO_2^+ | VO^{2+}) - E^{\ominus}(V^{3+} | V^{2+})$$

= (+1.00) - (-0.26) = +1.26V [1]

(iii) As the pH increased, [H⁺] decreased.

$$VO_2^+(aq) + 2H^+ + e = VO^{2+}(aq) + H_2O(I) ----- (1)$$

The <u>position of equilibrium of (1) shifts to the left</u> and $E(VO_2^+(aq)/VO^{2+}(aq))$ becomes <u>less positive</u>. Thus, *E*_{cell} becomes <u>less positive</u>. [2]

When the cell becomes flat, 76.9% of yellow VO_2^+ is converted to blue VO^{2+} . The colour is green as the solution contains a mixture of yellow VO_2^+ and blue VO^{2+} .

(ii)
$$VO_{2^{+}} \equiv V^{2_{+}} \equiv e^{-}$$

Amount of electrons, n = $5.00 \times 2.00 \times \frac{76.9}{100}$ = 7.69 mol
Capacity = Q = nF = 7.69 × 96500 = 7.421 × 10⁵ C [2]

(iii) Capacity = Q = 7.42×10^5 C = current × time taken Current = $600 \times 10^{-3} \times 50 = 30$ A Time taken = $\frac{7.42 \times 10^5}{30} = 24737$ s = 6.87 h [2]

- (d) (i) Electrode in Tank **A**: $VO^{2+}(aq) + 2H^{+}(aq) + 2e \rightarrow V^{2+}(aq) + H_2O(I)$ Electrode in Tank **B**: $VO^{2+}(aq) + H_2O(I) \rightarrow VO_2^{+}(aq) + 2H^{+}(aq) + e$ Ratio of charge required for tank **A** to tank **B**: 2:1 [3]
 - (ii) <u>Electrode in Tank B</u>.

When VO^{2+} is depleted tank **B**, water is oxidised to oxygen gas at electrode in Tank **B**. [2]