

Raffles Institution Year 6 H2 Chemistry 2023 Lecture Notes 20 – Solubility Equilibria

	ontents	B Learning Outcomes
(a) So		
(4) 00	olubility product	At the end of the lectures, you should be able to:
	ommon ion effect omplex ion formation	 (a) show understanding of, and apply, the concept solubility product, <i>K</i>_{sp} (b) calculate <i>K</i>_{sp} from concentrations and <i>vice versa</i>
1. So	ecture Outline blubility blubility product	 (c) discuss the effects on the solubility of ionic salts by the following: common ion effect
3. Ion 4. Co 5. Foi	nic product and precipitation ommon ion effect ormation of complex ions	 formation of complex ions, as exemplified by the reactions of halide ions with aqueous silver ions followed by aqueous ammonia
	fect of pH	D References
7. Lin	mitations to solubility product concept	 Chemistry in Context by Hill & Holman A level Chemistry by Ramsden
		3. Chemistry: The Molecular Nature of Matter and Change by Martin S. Silberberg

1.1 Defining solubility

- The <u>maximum amount of solute</u> which can <u>dissolve</u> in a given amount of solvent at a <u>particular</u> <u>temperature</u> is called the **solubility** of the solute in that solvent.
- A solution containing the maximum amount of solute that can be dissolved in the given amount of solvent is called a **saturated solution**.
- The solubility of a salt at a stated temperature can be expressed in various units, e.g.

Solubility may be expressed as:	Units
number of moles of solute dissolved in 1 dm ³ of solution	mol dm ⁻³
mass of solute dissolved in 1 dm ³ of solution	g dm ⁻³
mass of solute dissolved in 100 g of solvent	g per 100 g solvent
mass of solute dissolved in 10 ⁶ g of solution	ppm (parts per million)

Worked example 1

If the solubility of Ag_2CrO_4 is 6.05 x 10⁻⁵ mol dm⁻³, what is the concentration of each of its constituent ions in a saturated solution?

Solution

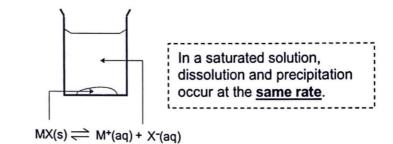
 $Ag_2CrO_4(s) \rightleftharpoons 2Ag^+(aq) + CrO_4^{2-}(aq)$

In a saturated solution of Ag₂CrO₄, [Ag⁺] = (2)(6.05 x 10⁻⁵) = $\frac{1.21 \text{ x } 10^{-4} \text{ mol dm}^{-3}}{1.21 \text{ x } 10^{-4} \text{ mol dm}^{-3}}$

[CrO₄²⁻] = <u>6.05 x 10⁻⁵ mol dm⁻³</u>

1.2 Dissolution as an Equilibrium Process

Soluble salts


Soluble salts dissociate <u>fully</u> in solution into their constituent ions.

Example: NaCl(s) \longrightarrow Na⁺(aq) + Cl⁻(aq)

Sparingly soluble salts

- When a small amount of a sparingly soluble ionic solid, MX, dissolves in water at a given temperature, an aqueous solution containing M⁺ and X⁻ ions is formed.
- As more solid MX is added to the solution, the concentrations of the ions increase.
- Eventually, the solution becomes saturated, i.e. it contains the <u>maximum amount of dissolved solute</u> at that <u>particular temperature</u> in the <u>presence of undissolved solute</u>.
- At this point,
 - ⇒ The ions in the saturated solution are in <u>dynamic</u> <u>equilibrium</u> with the excess undissolved solid:

$$MX(s) \rightleftharpoons M^{+}(aq) + X^{-}(aq)$$

⇒ The rate of the forward reaction equals rate of the backward reaction, and there is no net change in concentration of the ions.

2 Solubility Product

2.1 Defining the Solubility Product

The equilibrium established in a <u>saturated solution of a sparingly soluble salt</u> with the general formula M_aX_b is:

$$M_aX_b(s) \rightleftharpoons aM^{b+}(aq) + bX^{a-}(aq)$$

• By applying the equilibrium law, the equilibrium constant, K_c, is given by

$$K_{c} = \frac{[M^{b+}(aq)]^{a}[X^{a-}(aq)]^{b}}{[M_{a}X_{b}(s)]}$$

 The concentration of a pure solid, which is proportional to its density, is constant at a particular temperature. Since [M_aX_b(s)] is constant at a given temperature,

$$K_{c}[M_{a}X_{b}(s)] = [M^{b+}(aq)]^{a}[X^{a-}(aq)]^{b} = constant$$

Hence, we may define a new equilibrium constant called solubility product, K_{sp}.

 $K_{sp} \text{ of } M_a X_b(s) = [M^{b+}(aq)]^a [X^{a-}(aq)]^b$ units: (mol dm⁻³)^{a+b}

- The solubility product, K_{sp}, for the sparingly soluble salt M_aX_b is the equilibrium constant for the
 equilibrium established between the undissolved salt and its constituent ions in a <u>saturated solution</u>.
- Like other values of equilibrium constants, the value of K_{sp} varies only with temperature.

The solubility products of some common compounds at 25 °C are shown below.

Compound	Solubility Product		
BaSO₄	1.1 x 10 ⁻¹⁰ mol ² dm ⁻⁶		
BaCO ₃	2.6 x 10 ⁻⁹ mol ² dm ⁻⁶		
CaSO₄	5.0 x 10 ⁻⁵ mol ² dm ⁻⁶		
CaCO ₃	3.4 x 10 ⁻⁹ mol ² dm ⁻⁶		
PbBr ₂	6.6 x 10 ⁻⁶ mol ³ dm ⁻⁹		
PbCl ₂	1.7 x 10 ⁻⁵ mol ³ dm ⁻⁹		
PbI ₂	9.8 x 10 ⁻⁹ mol ³ dm ⁻⁹		

Compound	Solubility Product
AgC/	1.8 x 10 ⁻¹⁰ mol ² dm ⁻⁶
AgBr	5.4 x 10 ⁻¹³ mol ² dm ⁻⁶
AgI	8.5 x 10 ⁻¹⁷ mol ² dm ⁻⁶
NiS	4.0 x 10 ⁻²¹ mol ² dm ⁻⁶
ZnS	1.6 x 10 ⁻²⁴ mol ² dm ⁻⁶
PbS	1.3 x 10 ⁻²⁸ mol ² dm ⁻⁶
CuS	6.3 x 10 ⁻³⁶ mol ² dm ⁻⁶
PbS	1.3 x 10 ⁻²⁸ mol ² dm ⁻⁶

Worked example 2

Complete the table below.

Sparingly Equation for the solubility soluble salt equilibrium		Expression for K _{sp}	Units for <i>K</i> _{sp}
BaSO₄(s) BaSO ₄ (s) \rightleftharpoons Ba ²⁺ (aq) + SO ₄ ²⁻ (aq)		K _{sp} = [Ba ²⁺][SO ₄ ^{2–}]	mol ² dm ⁻⁶
Ag ₂ CrO ₄ (s)	$Ag_2CrO_4(s) \Rightarrow 2Ag^+(aq) + CrO_4^{2-}(aq)$	$K_{sp} = [Ag^+]^2 [CrO_4^{2-}]$	mol ³ dm ⁻⁹
Ca ₃ (PO ₄) ₂ (s)	$Ca_3(PO_4)_2(s) \rightleftharpoons 3Ca^{2+}(aq) + 2PO_4^{3-}(aq)$	K _{sp} = [Ca ²⁺] ³ [PO ₄ ^{3–}] ²	mol ⁵ dm ⁻¹⁵

2.2 Relationship between solubility and solubility product

The solubility and solubility product of some compounds are shown below:

Compound	AgCl	AgBr	AgI	Ag ₂ CrO ₄
K _{sp}	1.8 x 10 ⁻¹⁰ mol ² dm ⁻⁶	5.4 x 10 ⁻¹³ mol ² dm ⁻⁶	8.5 x 10 ⁻¹⁷ mol ² dm ⁻⁶	1.1 x 10 ⁻¹² mol ³ dm ⁻⁹
Solubility / mol dm ⁻³	1.34 x 10⁻⁵	7.35 x 10 ^{−7}	9.22 x 10 ⁻⁹	6.50 x 10 ⁻⁵

Note that:

Solubility product	Solubility
$K_{sp} (AgCl) > K_{sp} (AgBr)$	Solubility of AgCl > Solubility of AgBr
K_{sp} (AgBr) > K_{sp} (AgI)	Solubility of AgBr > Solubility of AgI
$K_{sp} (AgCl) > K_{sp} (Ag_2CrO_4)$	Solubility of AgC l < Solubility of Ag ₂ CrO ₄

The information above illustrate the following points:

Solubility products give a direct comparison of the solubility of two salts only if the total number of ions per unit formula of the compound produced in solution is the same in both cases, e.g. AgC/ and AgBr (or AgBr and AgI).

 \Rightarrow In this case, the higher the K_{sp} value, the higher the solubility of the ionic compound.

☑ If the total number of ions produced is <u>different</u>, as in the case of AgCl and Ag₂CrO₄, then the <u>solubility products may not give a direct comparison of the solubility of the two salts</u>. For such cases, the solubility of the two salts should be used for comparison.

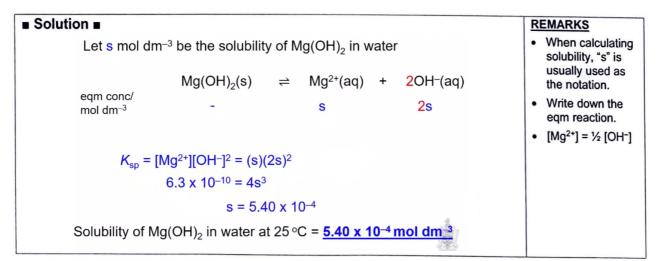
2.3 Calculations of Solubility and Solubility Product

• The solubility of a sparingly soluble salt at a given temperature can be determined experimentally and the data obtained can be used to calculate the solubility product of the salt.

Worked Example 3 – Calculating K_{sp} from solubility

The solubility of silver sulfide, Ag₂S, is 2.48 x 10⁻¹⁵ mol dm⁻³ at 25 °C. Calculate its solubility product.

■ Solution ■						REMARKS
	Ag ₂ S(s)	#	2Ag⁺(aq)	+	S²-(aq)	Write down the eqm equation.
eqm conc / mol dm ⁻³	-		2(2.48 x 10 ⁻¹	15)	2.48 x 10 ⁻¹⁵	 Ag₂S : Ag⁺ : S²⁻ = 1 : 2 : 1
			= 4.96 x 10 ⁻¹	15		• [Ag ⁺] = 2[S ^{2–}]
K _{sp} = [Ag ⁺] ² [S ^{2−}] = (4.96	x 10 ⁻¹⁵) ² (2	.48 >	(10 ⁻¹⁵)			 K_{sp} of a sparingly soluble compound it
= <u>6.10</u>	x 10 ⁻⁴⁴ mo	l ³ dr	n ⁻⁹			very small.


Worked Example 4 – Calculating K_{sp} from solubility

The pH of a saturated solution of $Fe(OH)_2$ is found to be 9.50 at 25 °C. Calculate the solubility product of $Fe(OH)_2$ at 25 °C.

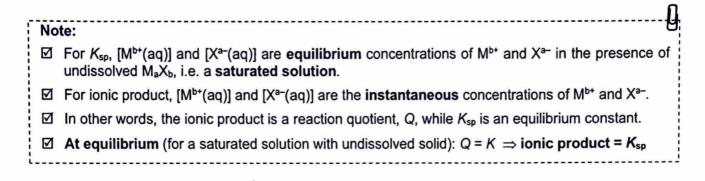
■ Solution ■ pOH = 14 – pH	 REMARKS Recall that pH + pOH = 14 					
[OH ⁻] = 10 ^{-4.50} =	= 3.16 x 10⁻⁵ m	ol dm ⁻³		at 25 °C.		
	Fe(OH) ₂ (s) ≓ Fe²+(aq) +	2OH⁻(aq)	Write down the eqm reaction.		
eqm conc/ mol dm ⁻³	-	(3.16 x 10 ⁻⁵)/ 2 = 1.58 x 10 ⁻⁵	3.16 x 10 ⁻⁵	 Fe(OH)₂: Fe²⁺: OH⁻ = 1 : 1 : 2 [Fe²⁺] = ½ [OH⁻] 		
K _{sp}						
	$\mathcal{K}_{sp} = [Fe^{2+}][OH^{-}]^2 = (1.58 \times 10^{-5})(3.16 \times 10^{-5})^2$ $= \frac{1.58 \times 10^{-14} \text{ mol}^3 \text{ dm}^{-9}}{1000}$					

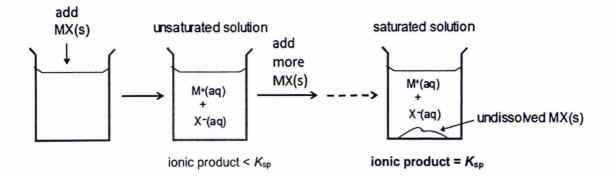
Worked Example 5 – Calculating solubility from K_{sp}

Calculate the solubility of Mg(OH)₂ in water if the value of its K_{sp} at 25 °C is 6.3 x 10⁻¹⁰.

3 Ionic Product and Precipitation

3.1 Ionic Product


4

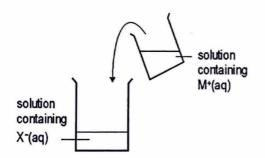

Consider a sparingly soluble ionic compound, M_aX_b(s):

 $M_aX_b(s) \rightleftharpoons aM^{b+}(aq) + bX^{a-}(aq)$

The ionic product is the product of the concentration of the constituent ions in the solution at that instant raised to the powers of the stoichiometric coefficients:

lonic product = [M^{b+}(aq)]^a[X^{a-}(aq)]^b

- Consider the gradual addition of a sparingly soluble salt M_aX_b(s) to water to form a solution. Before the solution becomes saturated with the salt, the added salt will dissolve and dissociate to form M^{b+}(aq) and X^{a-}(aq) ions.
- As more and more M_aX_b(s) is added, the value of the ionic product for M_aX_b increases until it eventually reaches the value of the solubility product i.e. the solution becomes *just saturated* and further amount of M_aX_b(s) added to the solution will no longer dissolve.


3.2 Predicting Precipitation using Ionic Product

- When a known volume of a solution containing M⁺ ions of known concentration is mixed with a • known volume of a solution containing X⁻ ions of known concentration, we can predict whether precipitation will occur.
- This is done by calculating the value of the ionic product, $[M^+]$ [X⁻], and comparing it with the K_{sp} value of the salt. In this case, [M*] and [X-] in the ionic product expression refer to the initial concentrations of M⁺ and X⁻ respectively in the resultant mixture upon mixing, assuming no precipitation occurs.

ionic product = [M ⁺][X ⁻]	Remarks	Precipitation?
ionic product < K_{sp}	Below saturation point. The solution is <i>unsaturated</i> .	No
ionic product = K_{sp}	At saturation point The solution is <i>just saturated</i> .	No
ionic product > K _{sp}	Beyond saturation point, precipitation of MX(s) occurs.	Yes Precipitation occurs until ionic product = K _{sp} .

The possible outcomes are summarised in the table below.

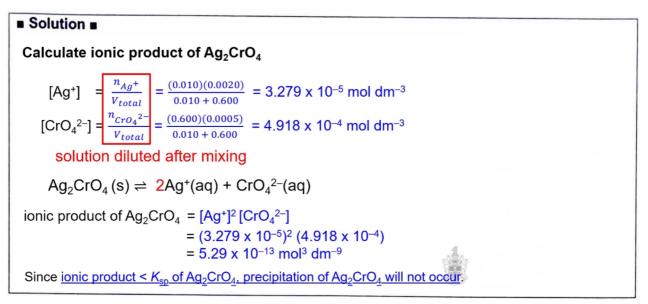
Summary

When mixing two solutions of known volumes and concentrations, e.g. M⁺(aq) and X⁻(aq),

1. Calculate the initial [M⁺] upon mixing initial [X⁻] upon mixing

use these values to calculate ionic product of the salt Note: total volume has increased

2. Precipitation will occur only if ionic product > K_{sp}


Worked Example 6 – Predicting the formation of a precipitate given the Ksp value

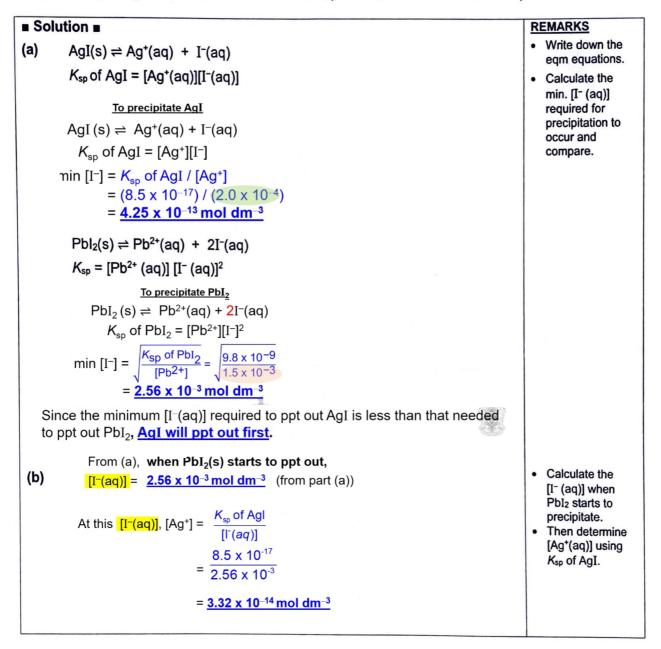
50 cm³ of 0.010 mol dm⁻³ AgNO₃ solution is added to 50 cm³ of 0.020 mol dm⁻³ HCl solution. Will precipitation occur? (K_{sp} of AgCl = 1.8 x 10⁻¹⁰ mol² dm⁻⁶)

■ Solution ■	REMARKS
In the resultant solution immediately after mixing and assuming no reaction,	Calculate the concentrations of
[Ag ⁺] = (½) (0.010) = 5.00 x 10 ⁻³ mol dm ⁻³	both ions after mixing, taking
$[CT] = (\frac{1}{2}) (0.020) = 1.00 \times 10^{-2} \text{ mol dm}^{-3}$	into account the
Ionic product AgC/ = $[Ag^+][C/-] = (5.00 \times 10^{-3})(1.00 \times 10^{-2})$	total volume of solution.
= 5.00 x 10 ⁻⁵ mol ² dm ⁻⁶	 Use the initial concentrations to calculate ionic
Since ionic product > K_{sp} of AgC/, precipitation of AgC/ will occur.	product.

Worked Example 7 – Predicting the formation of a precipitate given the Ksp value

10 cm³ of 0.0020 mol dm⁻³ AgNO₃ solution is added to 600 cm³ of 0.0005 mol dm⁻³ K₂CrO₄(aq). Will precipitation occur? (K_{sp} of Ag₂CrO₄ = 1.1 x 10⁻¹² mol³ dm⁻⁹)

Worked Example 8 – Minimum concentration of ions required for precipitate formation


Wash water from a factory was suspected to contain Pb^{2+} ions. 1 cm³ of 0.50 mol dm⁻³ KI(aq) was added to 10 cm³ of the wash water. What is the concentration of Pb^{2+} ions in the wash water which when exceeded would cause yellow $PbI_2(s)$ to be observed? (K_{sp} of $PbI_2 = 9.8 \times 10^{-9} \text{ mol}^3 \text{ dm}^{-9}$)

■ Solution ■	REMARKS
Let the minimum concentration of Pb ²⁺ (aq) be s mol dm ⁻³ .	Define unknown concentration.
$[Pb^{2+}(aq)] = \frac{10 \times 10^{-3} \times s}{(1+10) \times 10^{-3}} = 0.9091 \text{ s mol dm}^{-3}$	Remember to take into account the
$[I^{-}(aq)] = \frac{1 \times 10^{-3} \times 0.5}{(1+10) \times 10^{-3}} = 0.04545 \text{ mol dm}^{-3}$	total volume of solution when calculating the initial
$PbI_2(s) \rightleftharpoons Pb^{2+}(aq) + 2I^{-}(aq)$	concentrations upon mixing.
lonic product = $[Pb^{2+}][I^{-}]^2 = (0.9091s)(0.04545)^2 = (1.878 \times 10^{-3}) \text{ s mol}^3 \text{ dm}^{-9}$	Use the initial concentrations to calculate ionic
For yellow Pbl ₂ (s) to be observed	product.
ionic product > $K_{\rm sp}$	
(1.878 x 10 ⁻³) s > 9.8 x 10 ⁻⁹	
s > 5.22 x 10 ⁻⁶	
For yellow $PbI_2(s)$ to be observed, the concentration of $Pb^{2+}(aq)$ that has to be exceeded is 5.22 x 10 ⁻⁶ mol dm ⁻³ .	

Worked Example 9 – Given two ions which can form a precipitate on the addition of another ion, predict which ion will form a precipitate first.

A solution contains 2.0 x 10⁻⁴ mol dm⁻³ Ag⁺ and 1.5 x 10⁻³ mol dm⁻³ Pb²⁺.

- (a) If a small amount of solid sodium iodide is carefully added, show that AgI precipitates before PbI₂ precipitates out.
- (b) Calculate the concentration of Ag⁺(aq) in the solution when PbI₂ starts to precipitate out. (Given K_{sp} of AgI = 8.5 x 10⁻¹⁷ mol² dm⁻⁶ and K_{sp} of PbI₂ = 9.8 x 10⁻⁹ mol³ dm⁻⁹)

4 Common Ion Effect

- The common ion effect refers to the <u>reduced solubility</u> of a salt in a solution that already contains an ion common to that salt.
- Consider the dissolution of silver chloride, a sparingly soluble ionic compound, in water. The following equilibrium is established in a saturated solution of silver chloride.

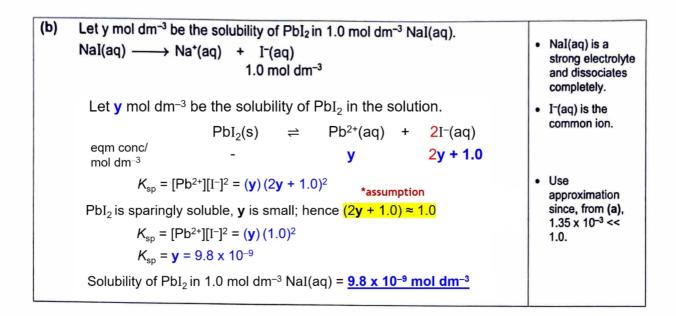
 $AgCl(s) \rightleftharpoons Ag^{+}(aq) + Cl^{-}(aq),$

(1) What happens when some NaCl(s), a soluble salt, is added to the saturated solution of AgCl?

- The added NaCl(s) dissolves in the solution and dissociates completely.
- Thus, the [CI⁻] in the solution increases momentarily.
 (Note: In this case <u>CI⁻ is the common ion</u>. It is common to both the AgCI and the NaCI.)
- This causes the equilibrium position of the above reaction to <u>shift left</u> in accordance to Le Chatelier's principle.
- This leads to the precipitation of some AgCl and a decrease in the [Ag⁺].
- Hence, the solubility of AgCl decreases in the presence of NaCl.

2 What happens when some AgNO₃(s), a soluble salt, is added to a saturated solution of AgC*l*?

- The added AgNO₃(s) dissolves in the solution and dissociates completely.
- Thus, the [Ag⁺] in the solution *increases momentarily*.
 (Note: In this case <u>Ag⁺ is a common ion</u>. It is common to both the AgCl and the AgNO₃.)
- This causes the equilibrium position of the above reaction to <u>shift left</u> in accordance to Le Chatelier's principle.
- This leads to the precipitation of some AgCl and a decrease in the [Cl-].
- Hence, the solubility of AgCl decreases in the presence of AgNO₃.


Worked Example 10 - Calculation of solubility in the presence of a common ion

Lead iodide, PbI₂, is a yellow precipitate and its K_{sp} value is 9.8 x 10⁻⁹ at 25 °C.

(a) Calculate the solubility of lead iodide in water at 25 °C.

(b) Calculate the solubility of lead iodide in 1.0 mol dm⁻³ NaI(aq).

Sc	REMARKS	
(a)	Let x mol dm ⁻³ be the solubility of PbI ₂ in water. PbI ₂ (s) \rightleftharpoons Pb ²⁺ (aq) + 2I ⁻ (aq)	Define unknown.Write down the egm reaction.
	$K_{sp} = [Pb^{2+}][I^{-}]^2 = x(2x)^2$ 9.8 x 10 ⁻⁹ = 4x ³	• [Pb ²⁺] = ½ [I [−]]
	x = <u>1.35 x 10⁻³ mol dm⁻³</u>	

5 Formation of complex ions

5.1 Solubility Product and Complex ion formation

- In some instances, the solubility of a sparingly soluble salt in aqueous solution is increased if a
 reagent added reacts with one of its constituent ions to form a complex ion.
- A <u>complex ion</u> contains a central metal ion linked to one or more surrounding ions or molecules (called <u>ligands</u>) by <u>dative covalent bonds</u>. (Refer to the lectures notes on Transition Metals for more details.)

Examples of some common complex ions:

[Zn(OH)₄]²⁻	[Ag(NH ₃) ₂] ⁺	[CuC14] ²⁻
[A <i>l</i> (OH)₄]⁻	[Zn(NH ₃) ₄] ²⁺	[Cu(NH ₃) ₄] ²⁺

Worked Example 11

Explain why the sparingly soluble salt AgC*l* is soluble in aqueous ammonia. (*Refer to section 5.2 for comparison of solubility of silver halides in aqueous ammonia.*)

Solution =

When AgCI(s) is added to water to form a saturated solution, the following equilibrium is established:

 $AgCl(s) \rightleftharpoons Ag^{\dagger}(aq) + C\Gamma(aq) \dots (1)$

When aqueous ammonia is added, a complex ion, $[Ag(NH_3)_2]^+$ is formed and the following equilibrium is established:

 $\begin{array}{l} \mathsf{Ag}^{*}(\mathsf{aq}) + 2\mathsf{NH}_{3}(\mathsf{aq}) \rightleftharpoons [\mathsf{Ag}(\mathsf{NH}_{3})_{2}]^{*}(\mathsf{aq}) \dots \dots \dots (2) \\ \mathsf{diamminesilver}(\mathsf{I}) \text{ ion} \end{array}$

The formation of [Ag(NH₃)₂]⁺ decrease the concentration of uncomplexed Ag⁺ ions in the solution.

To counteract the decrease in [Ag⁺], the equilibrium position of reaction (1) shifts right, resulting in AgC*l* dissolving. With more aqueous ammonia added, the equilibrium position of reaction (2) shifts right. This in turn causes the equilibrium position of reaction (1) to shift right.

With sufficient NH₃(aq) added, the <u>ionic product</u>, $[Ag^+][Cl^-]$, will be less than K_{sp} and hence all the AgCl eventually dissolves.

Worked Example 12

When dilute hydrochloric acid was added to a saturated solution of lead(II) chloride containing undissolved solid lead(II) chloride, more PbCl₂ solid was formed. However, when concentrated hydrochloric acid was added until in excess to the same solution, all the PbCl₂ dissolved. Explain these observations.

Solution

٩

In a saturated solution of PbCl₂ with undissolved PbCl₂(s), the following equilibrium was established:

When dilute HCl was added, the Cl⁻ ions from HCl (a strong acid) exerts a <u>common ion effect</u> and caused the equilibrium position of reaction (1) to shift left. Hence, some PbCl₂ solid was formed, as the solubility of PbCl₂ is reduced.

However, when concentrated hydrochloric acid was added to the saturated solution, the high [C*I*⁻] present led to the **formation of the complex ion**, [PbCI₄]²⁻, and the following equilibrium was established:

 $Pb^{2+}(aq) + 4Cl^{-}(aq) \rightleftharpoons [PbCl_4]^{2-}(aq) \dots (2)$

The formation of [PbCl₄]²⁻ decreased the concentration of uncomplexed Pb²⁺(aq) ions in the solution.

To counteract the decrease in $[Pb^{2+}]$, the equilibrium position of reaction (1) shifts right, resulting more $PbCl_2$ dissolving. With more hydrochloric acid added, the equilibrium position of reaction (2) shifts right. This in turn caused the equilibrium position of reaction (1) to shift right.

With sufficient HCl added, the ionic product, $[Pb^{2+}][Cl^{-}]^2$, will be less than K_{sp} and hence all the PbCl₂ eventually dissolved.

Worked Example 13

When aqueous ammonia is added gradually to a solution of Cu²⁺ ions, a blue precipitate of Cu(OH)₂ is first formed and this dissolves in excess aqueous ammonia to form a dark blue solution. Explain these observations.

Solution =

NH₃(aq) is a weak base which undergoes hydrolysis to produce OH⁻ ions.

 $NH_3(aq) + H_2O(l) \rightleftharpoons NH_4^+(aq) + OH^-(aq)$

When NH₃(aq) is added to Cu²⁺(aq), the [OH⁻] in the Cu²⁺ solution is <u>Increased</u> and this makes the ionic product of Cu(OH)₂ <u>Exceed</u> the K_{sp} of Cu(OH)₂. Therefore, a blue precipitate of Cu(OH)₂ is formed and the following equilibrium is established:

 $Cu^{2+}(aq) + 2OH^{-}(aq) \rightleftharpoons Cu(OH)_{2}(s)$ (1)

When excess $NH_3(aq)$ is next added, the complex ion, $[Cu(NH_3)_4]^{2+}$, is formed and the following equilibrium is established:

 $Cu^{2+}(aq) + 4NH_3(aq) \rightleftharpoons [Cu(NH_3)_4]^{2+}(aq) \dots (2)$ dark blue solution

The formation of $[Cu(NH_3)_4]^{2+}$ <u>Decreases</u> the concentration of uncomplexed Cu²⁺ ions in the solution.

To counteract the decrease in $[Cu^{2+}]$, the equilibrium position of reaction (1) shifts ^{Left}, resulting in more $Cu(OH)_2$ dissolving, i.e. the blue precipitate dissolves.

With sufficient NH₃(aq) added, the <u>ionic product</u>, $[Cu^{2+}][OH^{-}]^2$, will be <u>Less than</u> K_{sp} and hence, all the Cu(OH)₂ eventually dissolves to form the dark blue solution containing $[Cu(NH_3)_4]^{2+}$ ions.

Note: Refer to lecture notes on Transition Metals for more details of this example.

5.2 Solubility of Silver Halide Precipitates

• The behaviour of halide ions in AgNO₃(aq) followed by NH₃(aq) or conc. NH₃ is summarised here (you can also refer to Section 9.2 of The Periodic Table II notes).

		C/⁻(aq)	Br (aq)	I⁻(aq)
Step 1	Add AgNO ₃ (aq)	white ppt of AgCI	pale cream ppt of AgBr	yellow ppt of Agl
Step 2	Add excess NH ₃ (aq)	ppt soluble	ppt partially soluble	ppt insoluble
	Add conc. NH ₃	ppt soluble	ppt soluble	ppt insoluble

- In the qualititative analysis of halides (CI⁻, Br⁻ and I⁻), AgNO₃(aq) is added to the halide to form the silver halide ppt. NH₃ is subsequently added to test the solubility of the silver halide ppt in NH₃ (dilute or concentrated).
- Why do silver halides have different solubility in excess NH₃(aq)?

		K _{sp} values at 25°C / mol ² dm ⁻⁶				
	AgCl	1.8 x 10 ⁻¹⁰	Note:			
	AgBr	5.4 x 10 ⁻¹³	AgF is very soluble in water.			
	AgI	8.5 x 10 ^{−17}	·'			
	2	AgX(s) ≓ Ag⁺(aq) + X⁻(aq)	K _{sp} of AgX = [Ag⁺(aq)][X⁻(aq)]			
	2	Ag⁺(aq) + 2NH₃(aq) ⇔ [Ag(NH₃)₂]⁺(ac))			
Tł	ne <i>K</i> so value	of AgI(s) is extremely low \Rightarrow easily e	exceeded.			
Ev ac	ven though [Ided, the add	Ag ⁺] is decreased (due to the forma	tion of [Ag(NH₃)₂]⁺) when NH₃(aq) is being r [Ag⁺] to the extent where the ionic product			
⇒	⇒ Hence, AgI(s) remain insoluble even if excess NH ₃ (aq) is added.					
	The K_{sp} value of AgC <i>I</i> (s) is much higher than that of AgI(s). When excess NH ₃ (aq) is added, [Ag ⁺ (aq)] decreases and the ionic product of AgC <i>I</i> <u>becomes smaller</u> than its K_{sp} .					
⇒	\Rightarrow Hence, AgC <i>I</i> (s) becomes <u>soluble</u> in excess NH ₃ (aq).					
	Since K_{sp} of AgBr is in between that of AgCl and AgI, AgBr is only <u>partially soluble</u> in excess NH ₃ (aq).					

6 Effect of pH

Ā,

The solubility of sparingly soluble salts containing basic anions (i.e. conjugate bases of weak acids) are affected by the pH of the solution.

For a sparingly soluble salt containing the conjugate base of a weak acid, the solubility of the salt in an aqueous solution is <u>often increased when a strong acid is added</u>.

Worked Example 14

Calcium phosphate, a sparingly soluble salt, is soluble in dilute hydrochloric acid. Explain.

Solution

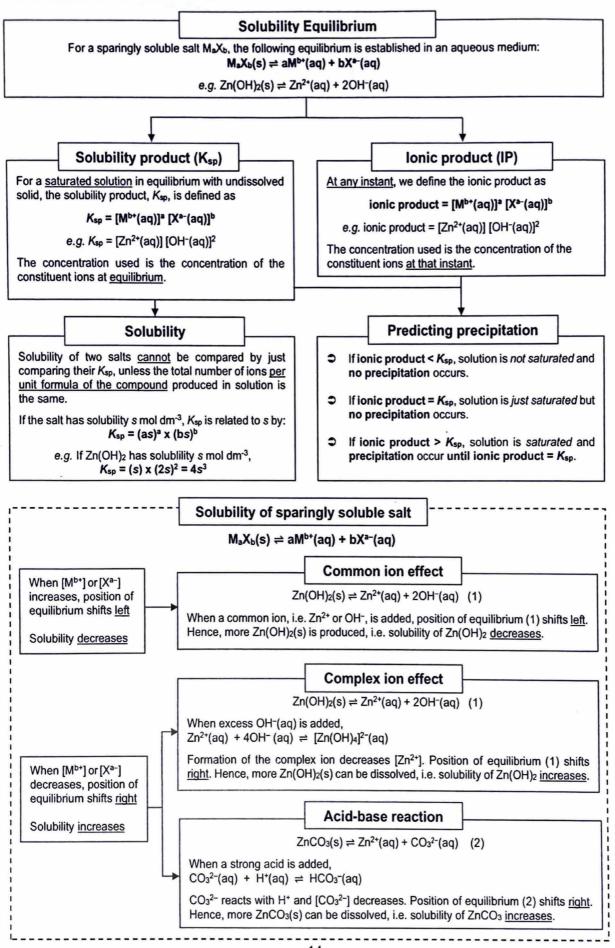
When calcium phosphate is added into water to form a saturated solution, the following equilibrium is established:

 $Ca_3(PO_4)_2(s) \rightleftharpoons 3Ca^{2+}(aq) + 2PO_4^{3-}(aq)$ (1)

Since PO_4^{3-} is a conjugate base of a weak acid, it reacts with H⁺ ions from HC*l* to establish the equilibria shown below, forming H₃PO₄, a weak acid.

PO₄³⁻(aq) + H⁺(aq) \rightleftharpoons HPO₄²⁻(aq)(2) HPO₄²⁻(aq) + H⁺(aq) \rightleftharpoons H₂PO₄⁻(aq) H₂PO₄⁻(aq) + H⁺(aq) \rightleftharpoons H₃PO₄(aq)

This decreases the concentration of PO43-(aq) ions in the solution.


To counteract the decrease in $[PO_4^3-(aq)]$, the equilibrium position of reaction (1) shifts right, resulting in the dissolution of Ca₃(PO₄)₂. With more hydrochloric acid added, the equilibrium position of reaction (2) shifts right. This, in turn, causes the equilibrium position of reaction (1) to shift right.

With sufficient HCl added, the <u>ionic product</u>, $[Ca^{2+}]^3$ $[PO_4^{3-}]^2$, will be less than K_{sp} and hence all the Ca₃(PO₄)₂ eventually dissolves.

7 Limitations to the Solubility Product Concept

- The solubility product concept is typically <u>only used for "insoluble" compounds</u>, i.e. the numerical value of solubility products is always very small, rarely exceeding 10⁻⁴. It is not appropriate to use the solubility product concept for soluble compounds such as NaCl, CuSO₄ and AgNO₃.
- The solubility product of a sparingly soluble salt is essentially an equilibrium constant. Like other equilibrium constants, its value will change with temperature. Consequently, the temperature at which a solubility product is measured should always be specified unless it relates to the temperature 298 K under standard conditions.
- Note: Unlike solubility product, solubility is affected by temperature and concentrations of ions which
 are affected by common ions, complex formation and pH.

-14-

Self-Check Questions

- (a) [IVY Solubility Equilibria Check Point 1 (Question 1)] The solubility of Ag₃PO₄ in pure water at 25 °C is 6.7 x 10⁻² g dm⁻³. Calculate its K_{sp} at 25 °C.
 - (b) [IVY Solubility Equilibria Check Point 1 (Question 2)] The K_{sp} of MgF₂ is 6.4 x 10⁻⁹ mol³ dm⁻⁹. Calculate its solubility in g dm⁻³.
 - (c) The numerical value of K_{sp} for calcium phosphate is 1.0×10^{-26} . Calculate the concentration of Ca²⁺ ions in a saturated solution of calcium phosphate.
- [IVY Solubility Equilibria Check Point 2]
 Predict whether precipitation will be observed when 0.5 dm³ of 0.005 mol dm⁻³ CaCl₂(aq) and 0.25 dm³ of 0.012 mol dm⁻³ Na₂SO₄(aq) are mixed. Explain your answer.
 (K_{sp} of CaSO₄ = 2.4 x 10⁻⁵ mol² dm⁻⁶)
- **3** Given that the numerical value of the K_{sp} for Ca(OH)₂ is 6.5 x 10⁻⁶, predict whether precipitation will be observed when each of the following solutions is added to separate test-tubes containing 2 cm³ of 0.50 mol dm⁻³ CaCl₂(aq).
 - (a) 1 cm3 of 2.0 mol dm-3 NaOH(aq),
 - (b) 1 cm³ of 2.0 mol dm⁻³ NH₃(aq). (K_b of NH₃ = 1.74 x 10⁻⁵ mol dm⁻³)

Practice Questions

- 4 (a) The solubility product of lead(II) iodide at 298 K is 7.1 x 10⁻⁹ mol³ dm⁻⁹. At 298 K, calculate the solubility of lead(II) iodide in
 - (i) water,
 - (ii) 0.10 mol dm⁻³ BaI₂ solution,
 - (iii) 0.20 mol dm⁻³ Pb(NO₃)₂ solution.
 - (b) When solid lead(II) iodide was shaken with a solution of potassium iodide, its solubility was found to be 1.0 x 10⁻⁴ mol dm⁻³.
 - (i) Calculate the concentration of the potassium iodide solution.
 - (ii) Suggest a reason for the increased solubility when lead(II) iodide was shaken with a large excess of potassium iodide as compared with water.

5 N16/I/13 (Modified)

Values of two solubility products are given.

$$K_{sp}$$
 (ZnF₂) = 3.2 x 10⁻² mol³ dm⁻⁹
 K_{sp} (BaF₂) = 1.6 x 10⁻⁷ mol³ dm⁻⁹

Solid zinc fluoride is shaken with water. The remaining solid is filtered off, leaving a saturated solution **X**. Drops of dilute aqueous barium nitrate are added to solution **X** until barium fluoride just precipitates.

- (a) Calculate the concentration of F⁻(aq) in the saturated solution X before the addition of barium nitrate.
- (b) Calculate the [Ba²⁺(aq)] in solution X when BaF₂ just precipitates.
- 6 The numerical values of the solubility products of some Group 2 fluorides, at 25 °C, are given in the table below.

Numerical values of A	
BaF ₂	1.84 x 10 ⁻⁷
CaF₂	3.45 x 10 ⁻¹¹

A student accidentally mixed 25.0 cm³ of 0.100 mol dm⁻³ CaCl₂ solution with 25.0 cm³ of 0.100 mol dm⁻³ BaCl₂ solution in the laboratory. To separate the two metal ions, he added just enough solid KF to precipitate the maximum amount of CaF₂ from the mixture, without precipitating BaF₂.

- (a) Determine the concentration of F⁻ in the solution at the end of the separation.
- (b) Determine the concentration of Ca²⁺ remaining in the solution.
- (c) Calculate the percentage of Ca²⁺ remaining in the solution and comment on the effectiveness of the separation.
- 7 Calcium hydroxide is a sparingly soluble ionic compound.
 - (a) Write an expression for the K_{sp} of calcium hydroxide.
 - (b) The K_{sp} of calcium hydroxide may be determined using a titrimetric method. In a particular experiment, an excess of solid calcium hydroxide was shaken with 0.010 mol dm⁻³ aqueous sodium hydroxide and allowed to reach equilibrium at 298 K. Then the mixture was filtered. 25.0 cm³ of the filtrate was completely neutralised by 20.0 cm³ of 0.050 mol dm⁻³ hydrochloric acid. Calculate, at 298 K,
 - (i) the concentration of OH⁻ in the filtrate.
 - (ii) the solubility product of calcium hydroxide.

- (c) Equal volumes of NaOH(aq) and 0.010 mol dm⁻³ Ca(OH)₂(aq) were mixed at 298 K. Using your answer in (b)(ii), determine the concentration of NaOH(aq) which, when exceeded, would bring about the precipitation of calcium hydroxide.
- (d) Solid calcium nitrate is added to a saturated solution of calcium hydroxide at 25 °C. State and explain the effect (if any) on the K_{sp} value and solubility of calcium hydroxide.
- (e) A saturated solution of calcium hydroxide is found to have a pH of 12.3 at 25 °C and a pH of 11.7 at 32 °C. [K_w (at 32 °C) = 1.70 x 10⁻¹⁴ mol² dm⁻⁶]
 - (i) Calculate the concentrations of OH⁻ ions present in the saturated solution of calcium hydroxide at 25 °C and 32 °C respectively.

Explain whether the dissolution of calcium hydroxide in water is exothermic or endothermic.

- (ii) Hence, state how the K_{sp} value of calcium hydroxide changes when temperature is increased.
- (iii) A saturated solution of calcium hydroxide was diluted at 32 °C to a volume V. Sketch a graph to show how the pH of the solution varies with the volume of water added. Include any relevant pH values in your graph.
- (f) State a use of calcium hydroxide which depends on its solubility in water.
- Explain each of the following observations using the concept of equilibrium. Include relevant 8 chemical equations in your answer.
 - (a) Explain why BaCO₃ is soluble in dilute hydrochloric acid but BaSO₄ is not.
 - (b) The addition of aqueous ammonia to aqueous magnesium chloride gives a white precipitate that is readily soluble in aqueous ammonium chloride.
 - (c) The gradual addition of aqueous ammonia to a solution of Zn²⁺ ions gives a white precipitate initially. When excess aqueous ammonia is added, the precipitate dissolves to form a colourless solution.
- When aqueous silver nitrate is added to aqueous potassium chloride, a white precipitate is formed which dissolves in an excess of aqueous ammonia. The subsequent addition of aqueous sodium bromide causes the precipitation of a pale cream solid. The pale cream precipitate dissolves when aqueous sodium cyanide is added.

Explain the above observations and write balanced equations for the reactions that occur.

9

10 N12/II/Q3(d)

Selective precipitation of sulfides may be used to separate the cations present in a solution containing Cu^{2+} , Ni^{2+} , and Zn^{2+} .

The reagent used is hydrogen sulfide which behaves as a dibasic (diprotic) weak acid when in aqueous solution.

	H₂S(g) + aq	≓	H⁺(aq) + HS⁻(aq)	K _a = 9.1 × 10 ^{−8} mol dm ^{−3}
and	HS⁻(aq)	₽	H⁺(aq) + S²⁻(aq)	$K_{a} = 1.0 \times 10^{-15} \text{ mol dm}^{-3}$

Metal sulfides are precipitated by the following reaction.

 $M^{2+}(aq) + S^{2-}(aq) \longrightarrow MS(s)$

Relevant K_{sp} values are given in the table.

salt	K _{sp} / mol ² dm ⁻⁶	
CuS	6.3 x 10 ^{−36}	
NiS	4.0 x 10 ⁻²¹	
ZnS	1.6 x 10 ⁻²⁴	

The results of passing hydrogen sulfide through separate solutions of Cu^{2+} , Ni^{2+} , and Zn^{2+} are shown in the table below.

M ²⁺ being tested	H ₂ S passed through an acidic solution of <i>M</i> ²⁺	H ₂ S passed through a neutral solution of <i>M</i> ²⁺	H_2S passed through an alkaline solution of M^{2+}
Cu ²⁺	black precipitate of CuS	black precipitate of CuS	black precipitate of CuS
Ni ²⁺	no precipitate	no precipitate	black precipitate of NiS
Zn ²⁺	no precipitate	white precipitate of ZnS	white precipitate of ZnS

Use the data above to give an explanation for each of the following questions. You should give equations where appropriate. You are **not** expected to do any calculations in this part.

- (a) Why is CuS the only sulfide of these three precipitated in acid solution? [2]
- (b) Why is NiS precipitated in alkaline solution and not in neutral or acidic solution? [2]
- (c) Why is ZnS precipitated in both neutral and alkaline solution? [2]