RVHS 2015 Y6 H2 MA Prelim Paper 2 (Solutions)

Section A: Pure Mathematics [40 marks]

By observation, the graphs intersect twice when $k < -2$.	
Furthermore, when $k = -2$, equation becomes:	
$(x+1)^{2}(x-2)^{2} = x-2$	
$(x-2)[(x+1)^{2}(x-2)-1] = 0$	
x = 2 or $x = 2.10380$	
$\therefore k = -2$ is an answer as well.	
Ans: $k \leq -2, k \in \square$	

Quest	ion 2 [9 Marks]	
(i)	$y = f(x)$ $(1, \sqrt{2})$	
	Any horizontal line $y = k$ will cut the graph of $y = f(x)$ at most once. Therefore, f is one-one.	
(ii)	Let $y = f(x)$. Then:	
	$y = \sqrt{x^2 + 4x - 3}$	
	$y^2 = (x+2)^2 - 7$	
	$x = -2 \pm \sqrt{y^2 + 7}$ (Rej negative $\therefore x \ge 1$)	
	Thus,	
	$f: x \mapsto -2 + \sqrt{x^2 + 7}, x \ge \sqrt{2}$	
(iii)	fg exists iff $R_g \subseteq D_f$ $r = 1$	
	i.e. $R_{g} \subseteq [1,\infty)$	
	So $R = [12 \infty)$ (0, 12)	
	$\Rightarrow D = (-11)$	
	$\rightarrow \nu_{\rm g} - (1,1)$	
	y =g(x)	

Question 4	4 [12 Marks]

Quest	Question 4 [12 Marks]			
(a)	$y = ux + 2 \implies \frac{dy}{dx} = x\frac{du}{dx} + u$			
	Substituting into DE:			
	$\frac{dy}{dx} - \sqrt{4 - \left(y - 2\right)^2} = 0$			
	$\frac{dy}{dx} - \sqrt{4 - (y^2 - 4y + 4)} = 0$			
	$\frac{dy}{dx} = \sqrt{4y - y^2} \text{(shown)}$			
	$\therefore \int \frac{1}{\sqrt{4y - y^2}} dy = \int 1 dx$			
	$\int \frac{1}{\sqrt{4 - (y - 2)^2}} dy = \int 1 dx$			
	$\sin^{-1}\left(\frac{y-2}{2}\right) = x+c$			
	$y-2=2\sin(x+c)$			
	$u = 2\sin(x+c)$			
(b)	From part (i), $s = 2\sin(t+c)+2$			
(1)	when $t = \frac{5\pi}{6}$, $s = 1$:			
	$\sin\left(\frac{5\pi}{6}+c\right) = -\frac{1}{2}$			
	$\frac{5\pi}{6} + c = -\frac{\pi}{6}$			
	$c = -\pi$ $\therefore s = 2\sin(t - \pi) + 2$			
	S			
	$\frac{1}{2\pi}$ 4π			
(11)	The object oscillates about the starting point which is $2m$ from O , with an amplitude of $2m$.			
	The motion assumes the absence of resistance whereby the amplitude remains constant which is unrealistic in real-life.			

Section B: Statistics [60 marks]

Question 5 [3 Marks]		
(i)	No. of ways = $[(i + j + k) - 1]!$	
(ii)	No. of ways = $3!i!j!k! = 6i!j!k!$	

Quest	Question 6 [6 Marks]			
(a)	A <i>population</i> is the			
	want to study while	a <i>sample</i> is a <u>subset of</u> the units in		
	the population having	g the same characteristics that we		
	want to measure.			
(b)	This procedure will	not result in a random sample as		
(i)	each of the 120 teach	hers does not have an equal chance		
	of being selected, e.	g. P(a Humanities teacher chosen) =		
	10 mbile D(e Lener	10		
	$\frac{1}{21}$ while P(a Lange	$age (eacher chosen) = \frac{1}{33}$.		
(ii)	We calculate the	number of teachers from each		
. ,	department based or	simple ratio and proportion:		
	Department	Number of teachers selected		
	Humanities	21 10 7		
		$\frac{1}{120} \times 40 = 7$		
	Language	33		
	0	$\frac{1}{120} \times 40 = 11$		
	Mathematics	27		
	withematics	$\frac{27}{120} \times 40 = 9$		
	0.	120		
	Science	$\frac{39}{} \times 40 = 13$		
		120		
	7 Humanities teache	rs, 11 Language teachers, 9		
	Mathematics teacher	rs and 13 Science teachers are		
	chosen randomly fro	om each department.		

Question 7 [7 Marks]	
Let <i>X</i> denote the number of correct answers gotten by	
someone totally clueless of Singapore's history.	
Then $X \sim B(8, p)$, where p is the probability of getting	
a correct answer by mere guessing.	
Given $P(X \le 1) = 0.50331648$	
$\Rightarrow (1-p)^8 + \binom{8}{1} p(1-p)^7 = 0.503$	
$(1-p)^8 + 8p(1-p)^7 - 0.503 = 0$	
y = $(1-x)^8$ + $8x(1-x)^7 - 0.503$ Zero X=.200107B1 Y=0 From the graph, $p \approx 0.200 = \frac{1}{5}$. Therefore, there are 5 options for each of the question.	
$\frac{(\text{shown})}{\text{So } X \sim B(8,0.2)}$	
P(X = 0) = 0.1678	
P(X = 1) = 0.3355	
P(X=2) = 0.2936	
The mode is 1.	
$\overline{X} \sim N\left(\overline{1.6, \frac{1.28}{50}}\right)$ approx. by CLT, since n = 50 is	
large	
$\therefore P(\overline{X} \ge 2) = 0.00621$ (to 3 s.f.)	

Quest	Question 8 [7 Marks]		
(i)	The average number of calls requiring ambulance		
	assistance is constant throughout the operating hours of		
	the hospital in <u>a day</u> .		
	OR		
	For any time interval within the operating hours of the		
	hospital in <u>a day</u> , the mean number of calls requiring		
	ambulance assistance is proportional to the time		
	interval.		
(ii)	Let X denote the number of calls requiring ambulance		
	assistance in 1 week.		
	Then $X \sim Po(7)$.		
	Required probability		
	$= \hat{P}(X < \hat{5}) = P(X \le 4) = 0.172992 = 0.173 \text{ (to 3sf)}$		

(iii)	Let <i>Y</i> denote the number of weeks (out of 52) with more
	than 4 calls requiring ambulance assistance. Then $Y \sim B(52.1-0.172992)$
	i.e. $Y \sim B(52, 0.827008)$
	Since y 50 is large
	Since $n = 52$ is large, nn = 43.004416 > 5 and $na = 8.995584 > 5$
	$\therefore Y \sim N(43.004416, 7.439419933)$ approx.
	Required probability
	$= P(40 < Y \le 45)$
	= P(40.5 < Y < 45.5) C.C.
	= 0.641 (to 3sf)

Quest	ion 9 [8 Marks]	
(i)	Let <i>X</i> denote the time required by the machine to	
	complete a task and μ be the mean time.	
	Test $H_0: \mu = 47.0$	
	against $H_1: \mu > 47.0$	
(ii)	$\bar{x} = 48.1$	
	$s^{2} = \frac{n}{n-1}\sigma_{n}^{2} = \frac{12}{11}(1.9)^{2} = 3.938181818$	
	Test statistic:	
	Under H ₀ , $T = \frac{\overline{X} - 47.0}{\sqrt{\frac{3.938181818}{12}}} \sim t(11)$	
	Using GC,	
	<i>p</i> -value = 0.0405659745 > 0.03 (level of significance)	
	\therefore do not rej. H_0 .	
	There is insufficient evidence at 3% level of	
	significance that the mean time required by the machine	
(to complete the task is understated.	
(111)	Given: $\sigma = 2.1$	
	Test statistic:	
	Under H ₀ , $Z = \frac{\overline{X} - 47.0}{2.1/\sqrt{12}} \sim N(0,1)$	
	For H_0 to be rejected,	
	$Z_{\rm cal} > Z_{\rm critical}$	
	i.e. $\frac{x - 47.0}{2.1/\sqrt{12}} > 1.88079361$	
	$\Rightarrow \overline{x} > 48.14017053$	
	$\therefore \bar{x} > 48.1$ (or $\bar{x} \ge 48.2$)	

Quest	uestion 10 [8 Marks]		
(i)	P(all 3 balls have different colours)		
	$= {}^{4}P_{3} \times \left(\frac{1}{4}\right)^{3}$		
	$=\frac{3}{8}$ or 0.375		
(ii)	P(the 3 balls have diff. colours and nos '0,0,0' or '0,1,1')		
	P(all 3 balls have different colours)		
	$=\frac{{}^{4}P_{3}\times\left(\frac{1}{8}\right)^{3}+{}^{4}P_{3}^{3}C_{2}\times\left(\frac{1}{8}\right)^{3}}{2}$		
	$\frac{3}{2}$		
	8		
	$=\frac{1}{2}$		
	$P(A B) = -\frac{1}{2} $ (from part (11))		
	P(A) = P(0,0,0) + P(0,1,1)		
	$=\left(\frac{1}{2}\right)^{3} + {}^{3}C_{1} \times \left(\frac{1}{2}\right)^{3}$		
	$=\frac{1}{2}=\mathrm{P}(A\mid B)$		
	\therefore A and B are independent.		
	ALTERNATIVE METHOD		
	$P(B) = \frac{3}{8}$ (from part (i))		
	P(A) = P(0,0,0) + P(0,1,1)		
	$=\left(\frac{1}{2}\right)^{3} + {}^{3}C_{1} \times \left(\frac{1}{2}\right)^{3}$		
	$=\frac{1}{2}$		
	: $P(A) \cdot P(B) = \frac{1}{2} \times \frac{3}{8} = \frac{3}{16}$		
	In addition, $P(A \cap B) = \frac{3}{16}$ (from (ii))		
	$= \mathbf{P}(A) \cdot \mathbf{P}(B)$		
	Hence, A and B are independent.		

Question 11 [9 Marks]

Let A and B denote the masses of a random mobile (i) phone sold by Company A and B respectively. $B \sim N(\mu, \sigma^2)$ Given P(B < 134) = P(B > 146) By symmetry, $\mu = \frac{134 + 146}{2} = 140$ Method 1 P(B < 134) = 0.234 $P\left(Z < \frac{134 - 140}{\sigma}\right) = 0.234$ $\frac{-6}{\sigma} = -0.7257370278$ $\sigma = 8.267457453 \approx 8.27$ Method 2 Sketch graph of y = normalcdf(-1E99, 134, 140, x) and y = 0.234, and find intersection: 'Intersection X=8.2674603 _Y=.234 Method 3 P(B > 146) = 0.234 $P\left(Z < \frac{146 - 140}{\sigma}\right) = 0.766$ $\frac{6}{\sigma} = 0.7257370278$ $\frac{\sigma = 8.267457453 \approx 8.27}{A \sim N(130, 6^2)} = B \sim N(136, 8^2)$ (ii) $2B \sim N(272, 256)$ $A - 2B \sim N(-142, 292)$ $\therefore P(|A-2B| < 150) = P(-150 < A - 2B < 150)$ = 0.6801665426≈ 0.680

(iii)	Required probability	
	$= P(A_1 \le 135) \times P(A_2 \le 135) \times \times P(A_{10} \le 135)$	
	$= \left[P(A \le 135) \right]^{10}$	
	= 0.1042897699	
	≈ 0.104	
(iv)	The masses of the mobile phones sold by Company A	
	are all independent of each other.	

(iii)	We can determine which of these 2 formulae is a better model by calculating the <i>r</i> -value of each of these 2 formulae and then choose the formula whose $ r $ is	
	closer to 1.	
(iv)	For $I = c + dt^2$, $r = -0.7940683332 \approx -0.794$ For $I = e + f \ln t$, $r = -0.9838669707 \approx -0.984$	
	Hence, $I = 14.06964212 - 7.3415026611nt$ is used.	
	When $I = 2.5$, $t = 4.835201938 \approx 4.84$	
	The estimate is reliable because:	
	• $I = 2.5$ is within the data range provided	
	• $ r \approx 0.984$ is close to 1 suggesting a strong	
	linear correlation	
	• The appropriate regression line (<i>I</i> on <i>t</i>) is used, since <i>t</i> is the independent/ fixed variable	