
    

 

   
 
 

DYNAMICS 
 
 
Content 

 Newton’s Law of motion 

 Linear momentum and its conservation 
 

Learning Outcomes 

Candidates should be able to: 

(a) state each of Newton’s laws of motion. 

(b) show an understanding that mass is the property of a body which resists 
change in motion (inertia). 

(c) describe and use the concept of weight as the effect of a gravitational field on 
a mass. 

(d) define and use linear momentum as the product of mass and velocity. 

(e) define and use impulse as the product of force and time of impact. 

(f) Relate resultant force to the rate of change of momentum. 

(g) recall and solve problems using the relationship F = ma, appreciating that 
resultant force and acceleration are always in the same direction. 

(h) state the principle of conservation of momentum. 

(i) apply the principle of conservation of momentum to solve simple problems 
including inelastic and  (perfectly) elastic interactions between two bodies in 
one dimension. (Knowledge of the concept of coefficient of restitution is not 
required.) 

(j) Show an understanding that, for a (perfectly) elastic collision between two 
bodies, the relative speed of approach is equal to the relative speed of 
separation. 

(k) show an understanding that, whilst the momentum of a closed system is 
always conserved in interactions between bodies, some change in kinetic 
energy usually takes place. 

References: 
Physics for Scientists and Engineers.  Serway. 

College Physics.  Sears and Zemansky. 

Useful applet: 
Url :   
http://iwant2study.org/lookangejss/02_newtonianmechanics_3dynamics/ejss_model_Momentum1D01
/Momentum1D01_Simulation.xhtml 
 
Look under Collision Carts, Atwood Machines, Newton Cradle  
 
Or https://phet.colorado.edu/en/simulation/legacy/collision-lab  



    

 

   
 
 

Concept Map 

 
 

 
  

Newton’s Laws of Motion 

Newton’s 3rd Law Newton’s 1st Law 

 𝑭   𝒏𝒆𝒕 =
∆(𝒎𝒗   )

𝒕
 

 

𝑭   𝒏𝒆𝒕 = 𝒎𝒂    

𝑭 𝒏𝒆𝒕 = 𝟎 ⟺ ∆(𝒎𝒗) = 𝟎 
Newton’s 2nd Law 

𝒅𝑷   

𝒅𝒕
∝ 𝑭   𝒓𝒆𝒔𝒖𝒍𝒕𝒂𝒏𝒕 

Inelastic 

Collisions 

Elastic 

Collisions 

Collisions 

𝑽𝒓𝒆𝒍𝒂𝒕𝒊𝒗𝒆 𝒐𝒇 𝑨𝒑𝒑𝒓𝒐𝒂𝒄𝒉 = 𝑽𝒓𝒆𝒍𝒂𝒕𝒊𝒗𝒆 𝒐𝒇 𝑺𝒆𝒑𝒂𝒓𝒂𝒕𝒊𝒐𝒏 

 

 𝑷   𝒊 =  𝑷   𝒇 

 𝑬𝑲𝒊 =  𝑬𝑲𝒇 

 
 

& 

 𝑷   𝒊 =  𝑷   𝒇 

 𝑬𝑲𝒊 >  𝑬𝑲𝒇 

 

& 

Principle of Conservation of 
Momentum 

∆𝑷   =  𝑭𝒏𝒆𝒕 dt 

 



    

 

   
 
 

3.0  Introduction 

Dynamics is the branch of mechanics where the forces that act on a body are not in 

equilibrium. The vector sum of the forces gives a resultant force that causes the body to 

accelerate. This resultant force causes change in motion. In Kinematics, we learned how a 

body would move under constant acceleration, if we combine the knowledge from Dynamics 

and Kinematics, we will be able to predict the motion of a body when we know the forces 

acting on the body. In the seventeenth century, Sir Isaac Newton formulated the three 

Newton’s laws of motion and it is the basis behind Newtonian Mechanics. Today, Newtonian 

mechanics is useful for many engineering efforts in our everyday scale, like how an artillery 

shell travels in air, and it explains many phenomena observed.  

 

3.1  Newton’s 3rd Law of Motion 

Newton’s Third Law of Motion states that when body A exerts a force on body B, body B 

will exert an oppositely directed force of equal magnitude on body A. 

 

It should be noted that: 

1. Newton’s Third Law of Motion involves two different bodies; the ‘action and reaction’ 

pair of forces as stated within the law acts on separate bodies (if the ‘action’ acts on 

body A, then the ‘reaction’ must act on body B). 

2. The pair of forces is equal in magnitude and opposite in direction; they must also be of 

the same type/nature. In other words, if the force that A exerts on B is a gravitational 

force, then the equal and opposite force exerted by B on A is also a gravitational force. 

 

In summary: 

The action and reaction pair must 

 act on different bodies 

 be of the same type/nature 

 have equal magnitude and act in opposite direction to one another 

 

 

 

Examples of Newton’s Third Law ‘Action and Reaction’ Pair of Forces 

 

 

 

 



    

 

   
 
 

 

Magnetic Force 

 

 

 

 

FA by B: Magnetic force on magnet A due to 

magnet B.  

 

FB by A : Magnetic force on magnet B due to 

magnet A. 

Electrostatic force 

 

 

 

 

 

FA by B : electrostatic force on electric 

charge A due to electric charge B.  

 

FB by A  :  electrostatic force on electric 

charge B due to electric charge  A. 

Gravitational force 

 

 

 

 

FE by M, Gravitational force on Earth due to 

Moon.  

 

FM by E, Gravitational force on Moon due to 

Earth. 

 

 

Contact force 

 

 

 

 

Block resting on a slope. 

Consider contact forces only: 

 

 

 

 

 

 

 

 

The resultant of the frictional force and the 

normal contact force acting on a body is 

known as contact force.  

 

 

 

 

 

 

              

A B 

FA by B FB byA 

N N S S 

+
+ 

+
+ 

A B 

  

FE by M FM by E 

N, normal contact force on 
block due to floor 
 

f, frictional force on block 
due to floor 

N, normal contact force 
on floor due to block. 

f, frictional 
force on floor 
due to block 

FA by B FB byA 

Earth
g 

Moon 



    

 

   
 
 

3.1.1 Identifying Action-Reaction Forces 

 

For a book which is lying flat on a table, is the weight of the book and the force which 

the table acts on the book an action-reaction pair, and why? 

 

 

 

 

 

 

 

So, what is the action-reaction pair for weight of the book? 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

What is the action-reaction pair for force on book due to the table, F B by T? 

 

 

 

 

 

 

 

 

Force on book due to 
table, FB by T 

Weight of Book, WB 

Ans:  No 
1) WB and FB by T are both acting on the same single 

body, i.e. the book itself! (Not on 2 different 
bodies) 

2) WB = gravitational force, and FB by T = contact 
force. (Not same type of force) 

 

Weight of book or  
Force on book due 
to earth FB by E 

Force on earth due to 
earth, F E by B 

Action-Reaction Pair 

By Newton’s 3rd law, the action-
reaction pair must be a 
gravitational force also,  
 
Force on earth by book, FE by B 

 

In this context, by Newton’s 3rd law, the action and reaction pair must also be a 
contact force, that is the Force on table by book, FT by B. 
 

Force on table due to book, F T by B 



    

 

   
 
 

Key Question 

Although weight of the book is not force by book on table, can their magnitudes be 

the same? Why? 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.2  Newton’s First Law of Motion 

 

Newton’s First Law of Motion states that an object continues to be in a state of rest or in 

motion with a constant velocity, unless acted upon by a net external force. 

 

This law gives rise to the idea inertia as the resistance to change in the condition of rest or 

motion of a body. The inertia of a body can be considered as the reluctance of the body to 

start moving, as well as its reluctance to stop once it has begun moving. The mass of a body, 

quantified with a SI unit of kilogram (kg) is a measure of its inertia; the larger the mass, the 

larger the inertia of the body. 

 

The weight of a body is defined as the force acting on it due to gravitational attraction by 

another body. Mathematically, the weight of a body at a point in space is given by W = m g, 

where m is the mass of the body and g the gravitational field strength at that point in space. 

Hence, the mass of a body will remain constant throughout the universe but its weight is 

dependent on the value of g at the point at which it is placed. 

 

 

 

Yes: From FBD of book, when the book is in equilibrium, WB = FB by T . 
 
 
 
 
 
No: When you throw the book onto the table, the force by the book on table (on impact) 
is more than the weight of the book,  
i.e. FBT > WB !  

 

Thinking question 

The magnitude of the force by the table on book may not always be the same as the weight 

of the book.   Imagine a book placed on the floor of a lift that is accelerating. 

 

 

 

 

 

  



    

 

   
 
 

3.2.1 Linear Momentum 

Linear momentum of a body is defined as the product of its mass and its velocity. 

 

𝑃  = 𝑚𝑣  

 

Linear momentum is a vector quantity and it takes the same direction as the velocity of the 

body.  

 

Momentum is the property of a body by virtue of its mass and velocity. For a body to gain a 

larger momentum, it will require more effort to accelerate it. Conversely, the more 

momentum a body possesses, the harder it will be to stop it. 

 

3.3  Newton’s 2nd Law of Motion 

Newton’s Second Law of Motion states that 
1
[the rate of change of momentum of a body is 

directly proportional to the net external force acting on it] and 
2
[takes place in the direction of 

the net external force]. 

 

𝑑𝑃  

𝑑𝑡
∝ 𝐹 𝑛𝑒𝑡 

 

*  Since momentum (and hence change in momentum) is a vector quantity, Newton’s 2
nd

 

Law as stated above can be interpreted in 2 parts as marked with the first part of the 

statement giving the magnitude of rate of change of momentum (how fast the change in 

momentum is taking place) while the second part provides the direction in which the 

change in momentum takes place. 

 

Mathematically, 

𝑑𝑃  

𝑑𝑡
∝ 𝐹 𝑛𝑒𝑡 

𝑑𝑃  

𝑑𝑡
= 𝑘𝐹 𝑛𝑒𝑡, where 𝑘 is the proportionality constant  

In the case where SI units are used, k = 1. (since 1 N is defined as the force which produces 

an acceleration of 1 m s
-2

 when it is applied to a mass of 1 kg.) Hence, 

 

𝑑𝑃  

𝑑𝑡
= 𝐹 𝑛𝑒𝑡 

 

 

 

 

 



    

 

   
 
 

 

Thus force may be defined as the rate of change of momentum. 

 

𝐹 𝑛𝑒𝑡 =
𝑑𝑃  

𝑑𝑡
 

=
𝑑(𝑚𝑣 )

𝑑𝑡
 

= 𝑚
𝑑𝑣 

𝑑𝑡
, 𝑓𝑜𝑟 𝑎𝑛𝑎𝑙𝑦𝑠𝑖𝑠 𝑤ℎ𝑒𝑟𝑒 𝑡ℎ𝑒 𝑚𝑎𝑠𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑏𝑜𝑑𝑦 𝑟𝑒𝑚𝑎𝑖𝑛𝑠 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

∴ 𝐹 𝑛𝑒𝑡 = 𝑚𝑎  

 

In analyzing situations in which the mass of the body remains constant, the recommended 

procedure is as follows: 

 

1. Draw a free body diagram, identify and label all forces acting on the body. 

2. Determine the net force acting on the body in the direction of acceleration. 

3.  Equate the net force to mass × acceleration to determine the unknowns. This mass is the 

mass of the free body considered. 

*  If a system is moving with velocity v and acceleration a, all bodies in that system will 

also move with velocity v and acceleration a. 

  



    

 

   
 
 

 

Example 1a 

A car of mass 800 kg is moving up a hill inclined at 30
o
 to the horizontal. The total frictional 

force on the car is 1000 N. Calculate the force F due to the engine on the car when the car is 

(a) accelerating up the plane at 2.0 m s
-2

. 

(b) moving with a steady velocity of 15 m s
-1

. 

 

Considering a free body diagram of the car: 

 
(a)  Considering forces acting along the slope, taking the direction up the slope to be 

positive: 

        Using Newton’s 2
nd

 Law:  Fnet = ma 

𝐹𝑒𝑛𝑔𝑖𝑛𝑒 − 𝑓 − 𝑊𝑠𝑖𝑛 30𝑜 = 𝑚𝑎 

𝐹𝑒𝑛𝑔𝑖𝑛𝑒 = 𝑚𝑎 + 𝑓 + 𝑊𝑠𝑖𝑛 30𝑜 

= (800)(2.0) + 1000 + (800)(9.81) sin 30𝑜 

= 6520 N 

 

(b)  Considering forces acting along the slope, taking the direction up the slope to be 

positive: 

                                                     Using Newton’s 2
nd

 Law:  Fnet = ma 

𝐹𝑒𝑛𝑔𝑖𝑛𝑒 − 𝑓 − 𝑊𝑠𝑖𝑛 30𝑜 = 0 

𝐹𝑒𝑛𝑔𝑖𝑛𝑒 = 𝑓 + 𝑊𝑠𝑖𝑛 30𝑜 

= 1000 + (800)(9.81) sin 30𝑜 

= 4920 N 

 

 

 

 

 

 

 

 

30o 

Fengine 

friction, f 
Weight, W 

Normal 

Contact, N 

motion 

Wsin30o 



    

 

   
 
 

Example 1B 

A 1000 kg block hangs on a rope. Find the tension in the rope if 

(a) the block is stationary; 

(b) the block is moving upward at a constant speed of 5.0 ms
-1

; 

(c) the block is accelerating upward at 5.0 ms
-2

. 

 

You should identify the forces acting on the block, draw a free-body diagram then explicitly make use 

of Newton’s 2
nd

 Law. 

(a) 9810 N 
 
 
(b) 9810 N 
 
 
 
 
(c)  Taking upwards as positive and using Newton’s 2nd law: 
 
 
Fnet = ma 
T – W = ma 
T = ma +W 
   = (1000)(5.0) + (1000) (9.81) 
   = 14810 N 
 

weight of block W 

tension in the rope T 



    

 

   
 
 

Example 2 

Two blocks X and Y, of masses m and 3m respectively, 

are accelerated along a smooth horizontal surface by a 

force P applied to block X as shown.  What is the 

magnitude of the force exerted by block X on block Y 

during this acceleration? 

 

Note: To solve this problem, you have to consider the free body diagram of X or Y depending 

on which one will give you the answer in shortest number of steps. 
 
STEP 1: 

 Considering the free body of the 2 blocks as 1 system: 

 

 

Considering the horizontal direction, 

By Newton's 2
nd

 Law:  Fnet = ma 

:  ammP 3  

  
m

P
a

4
  

 

STEP 2: 
 
 

 Considering a free body of block X 

 

 

 

 

 

 

 

 

 

 

 

 

Considering the horizontal direction, 

By Newton's 2
nd

 Law 

: Fnet = ma 

XbyY xP F m a   

  XbyY xF P m a   

  









m

P
mP

4
 

  
4

3P
  

 

By Newton's 3
rd

 Law 

3

4
XbyY YbyX

P
F F   

 Considering a free body of block Y 

 

 

 

 

 

 

 

 

 

 

 

 

Considering the horizontal direction, 

By Newton's 2
nd

 Law 

: Fnet =ma 

YbyX yF m a  

 









m

P
m

4
3  

 
4

3P
  

 
X 

 
Y P 

+ 
 
X 

 
Y 

P 

a 
N (Normal contact force or FS by G: Force on system by ground) 

W = (mX+mY)g  

(FS by E: Gravitational Force on system by earth) 

+ + 

 
X 

P 
FX  by Y: Force on X by Y 

a 
NX (FX  by  G: Force on X by ground G) 

W = mxg  

(FX by E: Gravitational Force on X by earth) 

 
Y FY  by X: Force on Y by X 

a 
NY (FY by G: Force on Y by ground G) 

W = myg  

(FY by E: Gravitational Force on Y by earth) 



    

 

   
 
 

Example 3 

 

In the figure shown, masses 4 kg and 6 kg are connected by an inextensible thread looped 

over a smooth pulley. 

 

Calculate the acceleration of the masses and the tension in the thread. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Free Body Diagrams 

 

 

 

 

 

 

 

 

 

 

 

 

 

By Newton's Second Law, 

4 kg mass : (taking upwards positive):     6 kg mass : (taking downwards positive): 

Fnet = ma               Fnet = ma 

T – (4)(9.81) = 4a … (1)            (6)(9.81) – T = 6a … (2) 

 

Solving (1) and (2) 

a = 1.96 m s
-2

 

T = 47.1 N 

 

 

 

 

The directions of acceleration should also be “continuous”, i.e. if m1
 

accelerates upwards, m2 accelerates downwards, and vice versa. 

Apply “General Approach to Solving Problem” 

 

Key question to solving question: 

What does “connected by an inextensible thread” and “smooth” imply? 

It means that m1 and m2 share the same acceleration. The tensions acting on m1 

and m2 are the same 

 

Is the acceleration of the masses g? Why? 

No. Since m1 and m2 are not free-falling masses (i.e. acted only by their own 

weights), they do not fall at free-falling acceleration g. 
 

4 kg 

6 kg 

4 kg 

T 

m1g 

a 

6 kg 

T 

m2g 

a 

In order to move 
upwards, the 
tension must be 
larger than the 4 kg 
weight. The net 
force acting on the 
4 kg mass is 
upwards.  Hence 
acceleration of the 4 
kg mass is 
upwards. 

In order to move 
downwards, the 6 
kg weight must be 
larger than the 
tension. The net 
force acting on the 
6 kg mass is 
downwards.  Hence 
acceleration on the 
6 kg mass is 
downwards. 



    

 

   
 
 

Example 4 
Three blocks are connected as shown in the figure below on a horizontal frictionless table 

and pulled to the right with a force T1 = 60 N. If m1 = 30 kg, m2 = 20 kg and m3 = 10 kg, find 

the tensions T2 and T3. 

 

 

 

Clue: All the blocks must be accelerating at the same rate.  

Consider a free-body consisting of m1, m2 and m3: 

Apply Newton’s 2
nd

 Law → Fnet = T1 = (60) a → a = 1.0 m s
-2 

 

Consider a free-body consisting of m2 and m3: 

Apply Newton’s 2
nd

 Law → Fnet = T2 = (30)(1.0) = 30 N 

 

Consider a free-body consisting of m3: 

Apply Newton’s 2
nd

 Law → Fnet = T3 = (10)(1.0) = 10 N 

 

 

3.4  What is “weightlessness”? 

We do not experience our weight or the gravitational force by the Earth directly. Instead, it is 

through the contact force that the ground exerts on us that we feel our weight. Normally, 

when we are on stationary ground, we feel our weight as constant. 

 

However, if we are in an accelerating lift, we begin to feel funny. This is due to the 

acceleration of the lift. The contact force that the floor exerts on us changes and we feel our 

‘weight’ has changed. 

 

If the lift cable was cut and the lift falls freely, the person then feels the sensation of 

‘weightlessness’. When a person experiences “weightlessness”, it does not mean that the 

person has no weight. ‘Weightlessness’ refers to the state where the body does not 

experience the effects of contact forces. In this case, the lift floor exerts zero contact force 

on the person. 

 

If that person in the falling lift was to stand on a weighing scale, the reading on the scale 

would read zero. This is because weighing scales do not measure our weight directly. 

Instead, they measure the contact force or pressure our bodies exert on the weighing scale.  

 

Remember your actual weight does not change. However, the contact force exerted on the 

weighing scale can change and hence the reading on the weighing scale changes giving you 

an apparent weight. (i.e. for calculation purposes the apparent weight is equal to the 

contact force on the weighing scale) 

 

 

 
T1 = 60 N T2 T3 m3 

10 kg 
m2 

20 kg 
m1 

30 kg 



    

 

   
 
 

 

Example 5 

A man of mass 80 kg stands on a platform scale in a lift. 

(a) Draw a free-body diagram to show the forces acting on the man. 

 

 
 

(b)  Calculate the reading on the scale during the motion of the lift: 

i. Lift is stationary 

 

Lift is going up to a higher level: 

ii. accelerating at 2.0 m s
-2

. 

iii. moving at a constant speed of 5.0 m s
-1

. 

iv. decelerating at 2.0 m s
-2

. 

 

Lift is going down to a lower level:     

v.    accelerating downwards at 2.0 m s
-2

. 

vi.  moving at constant speed of 5.0 m s
-1

. 

vii.  decelerating at 2.0 ms
-2

. 

 

viii. Lift is faulty and free-falling: 

 

 

Taking vectors in the upward direction to be positive: 

i.  

𝑵 − 𝑾 = 𝟎  

𝑵 = 𝑾 = 𝒎𝒈 = 𝟕𝟖𝟓 𝐍 

 

ii. 

𝑵 − 𝑾 = 𝒎𝒂 

𝑵 = (𝟖𝟎)(𝟐. 𝟎) + 𝑾 

= 𝟗𝟒𝟓 𝐍 

 

NMan by Scale:  Normal contact force on man by scale 

WMan by earth , Gravitational force on man by earth= 

(80)(9.81)=785 N 

*│NMan by scale│ = │– Fscale by Man│ 

 

* Fscale by Man gives the reading on 

the scale 



    

 

   
 
 

iii.  

𝑵 − 𝑾 = 𝟎  

𝑵 = 𝑾 = 𝟕𝟖𝟓 𝐍 

 

iv. 

𝑵 − 𝑾 = 𝒎𝒂 

𝑵 = (𝟖𝟎)(−𝟐. 𝟎) + 𝑾 

= 𝟔𝟐𝟒 𝐍 

 

OR: 

 

Taking vectors in the downward direction to be positive: 

iv. 

𝑾 − 𝑵 = 𝒎𝒂 

𝑵 = 𝑾 − (𝟖𝟎)(−𝟐. 𝟎) 

= 𝟔𝟐𝟒 𝐍 

 

v.  W- N = ma  

 N = W-ma 

 

vi.  W – N = 0 

N = W 

 

vii.  N- W = ma 

N = ma +W 

 

 

viii.  N – W = ma 

Free fall => a =g 

N – mg = mg 

N = 0 

 

 

 

 

 

 

 

 

 

 

 

  



    

 

   
 
 

 

3.5 Air resistance and Terminal velocity 

 

If there was no air resistance or drag, all objects close to the 

earth should fall with the same acceleration g.  

 

With air resistance, the resultant force experienced by the 

object is reduced. In this case, it’s W - Fdrag. Since, the mass 

of the object does not change, from Newton’s 2
nd

 law, a reduction in the resultant external 

force will cause the acceleration to be lower. This is why with air resistance an object takes a 

longer time to fall.  

 

With air resistance: 

Using Newton’s 2
nd

 law, 

Fnet = ma’ 

W- Fdrag = ma’ 

a’= (mg - Fdrag )/m 

  = g - Fdrag/m 

 

Therefore a’< a or a’<g. 

Now, air resistance increases with speed. The faster the object moves, the greater the amount 

of air resistance it experiences. Initially, when an object falls from rest, it has zero speed and 

it experiences an acceleration of g. However, as it accelerates, it increases in speed and the 

air resistance increases.  

 

This in turn reduces the resultant force experienced by the object until the air resistance is 

equal to the weight of the object. At this point, the object has zero resultant force and zero 

acceleration. The velocity of the object stops increasing and achieves a final value which we 

call the terminal velocity. 

Weight (W) 

Drag (Fdrag) 

Without air resistance: 

Using Newton’s 2
nd

 law, 

Fnet = ma 
 
mg = ma 

a = g 



    

 

   
 
 

 
 
Examples of “weightlessness” 

 A free-falling parachutist before parachute is deployed (ignoring air resistance) 

 A free-falling bungee jumper before the cord experiences tension 

 An astronaut in a spacecraft which is in orbit around the Earth 

Note: In all the examples above, the person is accelerating with g. Their weight is constant. 

The gravitational force exerted on them is constant.  

Thinking Question: 

Are these examples illustrate “weightlessness” as well? 

a) A parachutist falling to earth with his parachute opened.  The harness of the parachute 

pulling on him. 

b) A scuba diver floating underwater. No. He feels the upthrust of water. 

c) A bungee jumper when the cord is under tension. No. He feels the tension of the cord. 

 

3.6 Impulse 

Problems in Newtonian mechanics that have been analyzed thus far using concepts of 

kinematics and forces are generally limited to situations involving a constant net force (and 

thus a constant acceleration). In the real world, this is seldom the case. Understanding the 

concept of impulse will allow a better analysis of real world phenomena which usually 

involves forces that vary with time. 

 

Object at rest – Resultant force is its 
weight, acceleration is g. 

Object accelerates or increases in velocity –  
Resultant force is W - Fdrag , 

Acceleration is (W - Fdrag)/m. Acceleration is reduced! 

Weight (W) 

Weight (W) 

Drag 
(Fdrag) 

Weight (W) 

Drag 
(Fdrag) 

Object stops accelerating, reaches terminal velocity –  
Resultant force is W - Fdrag, W = Fdrag so Resultant force = 0 N 
Acceleration is 0 m s-2. 



    

 

   
 
 

When we exert a force F on a body for a time period t, it is can be said that an impulse is 

exerted by the force on the body. The impulse of a force is defined as the integral of a force 

over the time interval during which the force acts.  

 

Mathematically, the impulse of the force F acting on the object between times t1 and t2 is 

given by  

 𝐢𝐦𝐩𝐮𝐥𝐬𝐞 = ∫ 𝑭
𝒕𝟐

𝒕𝟏
dt 

Graphically, impulse is given by the area under the F-t graph. 

 

3.6.1 Impulse-Momentum Theorem 

Considering Newton’s Second Law of Motion, 

𝑑𝑃  

𝑑𝑡
= 𝐹 𝑛𝑒𝑡 

⟹  𝐹 𝑛𝑒𝑡

𝒕𝟐

𝒕𝟏

𝑑𝑡 = ∆𝑃  |
𝑓𝑟𝑜𝑚 𝒕𝟏 𝒕𝒐 𝒕𝟐

 

The above relationship gives rise to the impulse-momentum theorem which states that the 

impulse of the net force acting on a body between times t1 and t2 is equal to the body’s 

change in momentum within this time interval. 

 

Example 6 
When a force F, varying as shown, is applied to a 

mass of 10 kg, the gain in momentum in 5 s is 40 

kg m s
-1

. 

 

Determine the value x. 

Change in Momentum = Area under F – t graph 

                                  40 = ½(5+3) x 

                                    x = 10 N 

 

 

 

3.6.2 Average Force 

In situations where forces act only briefly on a body (e.g. the force of the ground on a 

bouncing ball, impact of a bullet on its target), it is difficult and sometimes impractical to 

ascertain the variation of the forces with time.  

 

For ease of analysis in such situations, the average force that causes the same change in 

momentum is usually considered instead.  

𝐹 𝑛𝑒𝑡 =
𝑑𝑃  

𝑑𝑡
 



    

 

   
 
 

 𝐹 𝑛𝑒𝑡 =
∆𝑃  

∆𝑡
 

∴  𝐹 𝑛𝑒𝑡 ∆𝑡 = ∆𝑃  |
𝑓𝑜𝑟 𝑡ℎ𝑒 𝑡𝑖𝑚𝑒 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 ∆𝑡

 

Graphically, this method of analysis ensures that the area under the F-t graph is equal to the 

area under the  𝐹𝑛𝑒𝑡 -t graph for the time interval ∆t in which F acts. 

 

Hence it should be noted that the  𝐹𝑛𝑒𝑡  determined will, in general, be smaller than the 

peak force experienced by the body. 

 

Example 7 

A basketball of mass 0.62 kg is bounced horizontally off a flat vertical surface. The 

basketball has an initial speed of 9.0 m s
-1

 and rebounds with a speed of 6.0 m s
-1

. If the 

basketball is in contact with the surface for 15 ms, determine the magnitude of the average 

force the surface exerts on the basketball.  

 

Taking upwards as positive. 

𝑹𝒆𝒔𝒖𝒍𝒕𝒂𝒏𝒕 𝒇𝒐𝒓𝒄𝒆 𝒐𝒏 𝒃𝒂𝒍𝒍, 𝑭𝒏𝒆𝒕 =
∆𝑷𝒃𝒂𝒍𝒍

∆𝒕
 

=
𝒎𝒃𝒂𝒍𝒍∆𝑽𝒃𝒂𝒍𝒍

∆𝒕
 

=
(𝟎. 𝟔𝟐)[𝟔. 𝟎 − (−𝟗. 𝟎)]

𝟏𝟓 × 𝟏𝟎−𝟑
= 𝟔𝟐𝟎 𝐍 

 

Favg – mg = Fnet =  620 

Favg = 620 + (0.62)(9.81) = 626 N 

 

 

Example 8 

A conveyor belt is used to transfer luggage at an airport. It consists of a horizontal 

 𝐹𝑛𝑒𝑡  

Vi=9.0 ms-1 

Vf =6.0 ms-1 



    

 

   
 
 

endless belt running over driving rollers, moving at a constant speed of 1.5 m s
-1

. The 

rate at which baggage is placed on the belt is 20 kg s
-1

. What is its value of the driving 

force F needed? 

 

In 1 s, the change in horizontal momentum experienced by the baggage 

= m∆v  

= 20 (1.5 – 0) 

= 30 kg m s
-1

 

 

Hence the average force needed (to change the horizontal momentum of the 

baggage)  

=
∆𝑷𝒃𝒂𝒈𝒈𝒂𝒈𝒆

𝒕
 

=
𝟑𝟎 

𝟏
= 𝟑𝟎 𝐍 

 

 

 

 

 

 

Example 9 

A jet of water leaves the nozzle of a hose of diameter 5.0  10
-2

 m with a speed of    0.400 m 

s
-1

. The water is directed perpendicularly to the wall and it can be assumed that the water does 

not rebound. The density of water is 1000 kg m
-3

.  

Calculate the force exerted on the wall by the water.            [0.314 N]  

 

 

 

 

 

 
 
 
 
 
 

Using Newton’s 2nd Law, 

Given: 
Diameter of hose, d =5.0 x 10-2 m 
Speed of water, v = 0.400 m s-1 
Density of water, ρ = 1000 kg m-3 
 
 

d = 5.0 x 102 
m 

L Taking: 
Horizontal distance travelled by water, L 
Time taken, t 
Volume of water, V 
 



    

 

   
 
 

2

2 2 2

2

2

2

2

1000 5 0 10 0 400

4

0

net

2

2

2

2

-

Force by wall on water= F   mass per  unit  time  v  

m ρ(Vol)
Δv Δv          since m ρ(Vol) 

Δt Δt

d
ρ ( ) L

Δv
t

d
=ρ ( ) vΔv

d
ρ ( ) v(0 - v)

d
= - ρ ( ) v              

( ) ( . ) ( . )

.

    

  

 



 

 



 
 

  314 N 

 

 By Newton’s 3rd Law, Force on wall by water = Force by water by wall = 0.314 N 
 

General Equation:   Force on wall by water = Av2   [water does not rebound]  
 
 
Example of moving air mass: 
 
Helicopter hovering at constant height: 
Taking downwards as positive, 
 
Rate of gain in momentum of air =dp/dt  , downwards 
(Force on air by helicopter) 
 
By Newton’s 3rd law, 
Force imparted on helicopter by air,  = dp/dt        , upwards 
                                                = Mg, weight of helicopter 
when the helicopter is hovering. 
 

3.7  Principle of Conservation of Linear Momentum 

Considering Newton’s Second Law of Motion, 

dP   

dt
= F  net 

and the situation in which  no net force acts on a body, then it must follow that that the body 

will experience no change of linear momentum. This is consistent with Newton’s First Law 

of Motion (which is usually seen as a special case of Newton’s Second Law of Motion) and 

this idea gives rise to the Principle of Conservation of Linear Momentum. 

 

The Principle of Conservation of Linear Momentum states that the total linear momentum 

of a system of interacting particles remains unchanged provided no net external force acts on 

the system. 

 

 
v = 0 

v 

 

(Since v=L/t) 



    

 

   
 
 

Considering body A with mass MA and velocity UA colliding head-on with body B with mass 

MB and velocity UB along a frictionless surface. The duration of impact is ∆t. After the 

collision, body A and B move off with velocities VA and VB respectively. 

 
By Newton’s Third Law of Motion: 

𝐹 𝐴 𝑜𝑛 𝐵 = −𝐹 𝐵 𝑜𝑛 𝐴 

In the absence of other forces, 𝐹 𝐴 𝑜𝑛 𝐵 =
𝑑𝑃  𝑜𝑓 𝐵

𝑑𝑡
 and 𝐹 𝐵 𝑜𝑛 𝐴 =

𝑑𝑃  𝑜𝑓 𝐴

𝑑𝑡
 

∴
𝑑𝑃  𝑜𝑓 𝐵

𝑑𝑡
= −

𝑑𝑃  𝑜𝑓 𝐴

𝑑𝑡
 

∆𝑃  𝑜𝑓 𝐵

∆𝑡
= −

∆𝑃  𝑜𝑓 𝐴

∆𝑡
 

𝑚𝐵𝑉𝐵 − 𝑚𝐵𝑈𝐵 = −(𝑚𝐴𝑉𝐴 − 𝑚𝐴𝑈𝐴) 

𝑚𝐴𝑈𝐴 + 𝑚𝐵𝑈𝐵 = 𝑚𝐴𝑉𝐴 + 𝑚𝐵𝑉𝐵 

 

The final relationship shows that the total initial momentum before collision is equal to the 

total final momentum before collision, implying that momentum is conserved! 

 

Do note that although the total momentum of the system (consisting of bodies A and B) 

remains unchanged, the momenta of body A and body B individually has changed due to the 

net force that they exert on one another during the collision. 

 

Example 10 
The diagram shows two trolleys, X and Y, about to collide and gives the momentum of each 

trolley before the collision. 

 
After the collision, the directions of motion of both trolleys are reversed and the magnitude 

of the momentum of X is then 2 N s. What is the magnitude of the corresponding 

momentum of Y? 

 

 

UA UB 

MA MB 

VA VB 

MA MB MA MB 

Before collision After collision During Collision 

(duration: ∆t) 



    

 

   
 
 

By Conservation of Momentum: 

 

 𝑷   𝒊 =  𝑷   𝒇 

 

→ +𝒗𝒆:    𝟐𝟎 + (−𝟏𝟐) = (−𝟐) + 𝑷𝒀𝒇 

 

𝑷𝒀𝒇 = 𝟏𝟎 𝐍𝐬 

to the right 

 

 

 

 

Even as the Principle of Conservation of Linear Momentum is used to analyze collisions, 

different collisions have their specific characteristics which will in turn yield other 

relationships that can aid in their analysis. 

 

  



    

 

   
 
 

 

3.7.1 Elastic Collisions 

A collision in which no mechanical energy is lost is called an elastic collision. As such, 

kinetic energies of the colliding bodies are conserved.  

 

 Considering an elastic head on collision between body A and body B along a frictionless 

surface: 

 Note: In head-on collisions, the velocity/velocities of the colliding objects are collinear 

(directed along the same straight line) both before and after the collision. 

 
Before      After 

 

 

 

 

 

 Since no external force acts on the 2 body system,  

 by Conservation of Linear Momentum, 

𝑚𝐴𝑈   𝐴 + 𝑚𝐵𝑈   𝐵 = 𝑚𝐴𝑉  𝐴 + 𝑚𝐵𝑉  𝐵 

𝑚𝐴(𝑈   𝐴 − 𝑉  𝐴) = 𝑚𝐵(𝑉  𝐵−𝑈   𝐵) … . . . (1) 

 

 Since the collision is elastic, 

by Conservation of Kinetic Energy 

1

2
𝑚𝐴𝑈   𝐴

2
+

1

2
𝑚𝐵𝑈   𝐵

2
=

1

2
𝑚𝐴𝑉  𝐴

2
+

1

2
𝑚𝐵𝑉  𝐵

2
 

𝑚𝐴 (𝑈   𝐴
2

− 𝑉  𝐴
2
) = 𝑚𝐵 (𝑉  𝐵

2
− 𝑈   𝐵

2
) 

𝑚𝐴(𝑈   𝐴 − 𝑉  𝐴)(𝑈   𝐴 + 𝑉  𝐴) = 𝑚𝐵(𝑉  𝐵 − 𝑈   𝐵)(𝑉  𝐵 + 𝑈   𝐵) … . . (2) 

 

(2)

(1)
:          (𝑈   𝐴 + 𝑉  𝐴) = (𝑉  𝐵 + 𝑈   𝐵)  

𝑈   𝐴−𝑈   𝐵 = 𝑉  𝐵 − 𝑉  𝐴 

 

This equation is known as the relative speed relation between two bodies undergoing elastic 

collision.  Hence, for an elastic collision, the relative speed of approach is always equal to the 

relative speed of separation, regardless of the masses of the bodies. 

 

Elastic collisions are ideal and the only real example is the collision of molecules. In reality, 

collisions between everyday objects will normally result in a loss of mechanical energy 

typically through thermal energy, sound and plastic deformation of the bodies. 

 

 

 

 

UB 

mA mB 

UA
 VB 

mA mB 

VA
 



    

 

   
 
 

1.2 m s
-1 

1.5 m s
-1 

 
A B 

0.20 kg 0.30kg 

Initial 

 

3.7.2 Inelastic Collisions 

In real life, everyday situations, collisions are usually inelastic. An inelastic collision is a 

collision where kinetic energy is not conserved (more specifically kinetic energy is lost). In a 

perfectly inelastic collision, the colliding bodies will coalesce with one another and move off 

with the same velocity. 

 
General Approach to Solving Problems involving Collisions of Two Bodies or Separation of Two 

Bodies from a Single Body. 

 

1. Identify whether the question is a separation, elastic collision or inelastic collision. 

 

2. Draw diagrams of what happens before and after the collision / separate (velocity and mass 

of object to be included). 

 

3. In the absence of external forces acting on the system of colliding bodies, use the Principle 

of Conservation of Linear Momentum to form an equation. Take note that the direction of 

motion is important. 

 

4. a. If collision is known to be elastic, use the fact that kinetic energy is conserved in the 

collision or that relative speed of separation = relative speed of approach to form 

another equation. 

 

   b.  If collision is perfectly inelastic collision, the two bodies will stick/coalesce together 

move with a common velocity.  Account for the loss in KE. 

 

Note: The solving of simultaneous equations involving Conservation of KE may lead to 

complicated quadratic equations. This can be avoided by using the method of Relative Speeds 

of Approach and Separation shown below. 
 
 
Example 11 
 
Two balls A and B collide with each other head-on and elastically. Their masses and initial velocities 

are as shown:  

 

 

 

 

 

Determine their velocities after collision.          [VA = 2.04 m s
1

 left; VB = 0.660 m s
-1

 right] 

 

 

 

 

 

 

 

Using principle of conservation of momentum (taking right direction to be positive) 

Sum of initial momentum = Sum of final momentum 

 

MAUA + MB UB = MA VA + MBVB 

Take note that direction of 

final velocities are randomly 

assumed to be to the right. 

VB
 

0.20 kg 0.30 kg 

VA
 A B 

The positive signs in the generic 

equation should not be changed.  

But, VA and VB adopted different signs 

based on their directions when 

substituted into the equation. 



    

 

   
 
 

 

(0.20)(1.2) + (0.30)(1.5) = (0.20)(VA)+ (0.30)VB  

 

 

0.21 = 0.20VA + 0.30VB             … (1) 

 

 

Method 1 

 

As Collision is Elastic, Kinetic energy is conserved 

 

Sum of initial kinetic energy = Sum of final kinetic energy 

 

½ MA UA
2
 + ½ MB UB

2
 = ½ M VA

2
 + ½ MB VB

2
 

 

½(0.20)(1.2)
2
 + ½ (0.30)(-1.5)

2
 = ½ (0.20)VA

2
 + ½ (0.30)VB

2
 

 

0.4815 = 0.10VA
2
 + 0.15VB

2
      … (2) 

 

Solving (1) and (2) Simultaneously 

 

VA = -2.04 m s
-1

 (leftwards) 

VB = 0.660 m s
-1

 (rightwards) 

 

 

Method 2: 

 

 

As Collision is Elastic, 

  

Relative speed of separation = Relative speed of approach 

 

VB –VA = 1.2 +1.5  

            = 2.7      … (2) 

 

Solving Eqn (1) and (2) Simultaneously 

 

VA = -2.04 m s
-1

 (leftwards) 

VB = 0.660 m s
-1

 (rightwards) 
 
 

  

Take note that if the 

assumed directions of 

velocities were wrong, the 

final values calculated will 

be negative. There is no 

need to re-calculate, just 

take note when describing 

the direction, if necessary. 

Take note that if the assumed directions of 

velocities were wrong, the final values calculated 

will be negative. There is no need to re-calculate, 

just take note when describing the direction, if 

necessary. 



    

 

   
 
 

 

Example 12 
 

A particle of mass m moving with speed u makes a head-on collision with an identical particle which 

is initially at rest. The particles coalesce and move off with a common velocity. 

 

(a) Determine the common speed of the particles after the collision. 

(b) Determine the ratio of the kinetic energy of the system after the collision to that before. 

(c) Explain what happens to the kinetic energy that is 'lost'. 

 

 

Initial      Final 

 

 

 

 

 

(a)  Using the principle of conservation of momentum, 

Sum of initial momentum = Sum of final momentum  

  mu = 2mv 

  
1

  
2

v u  

 

(b)  Initial Kinetic Energy of system  = 21

2
mu  

 Final Kinetic Energy of system  =   21
2

2
m v

 

      
= mv

2
 

      = 
   

   
   

2
1 1

As   
2 2

m u v u  

      = 21

4
mu

 

2 

2

1
14Ratio of Final KE to Initial KE    =

1 2

2

mu
 

mu

  

 (c) This kinetic energy of the system has become an increase in internal energy in the particles as 

well as sound. 

 

 

 

 

 

 

 

 
 
 
 

u 

m m 

v 

2m 



    

 

   
 
 

vB 

mR+mB 
mR 

mB 

vR 

3.7.3 Special Case: Separation of Objects 
 
 Problems involving separation of objects involve a single mass which separates, such as 

‘explodes’ or splits up.  

 

 By using the principle of conservation of momentum, the directions and the velocities of the 

different pieces may be analyzed.  

 

Example 13 (Separation of Objects)  

 

a) Calculate the recoil velocity of a 5.0 kg rifle that shoots a 0.020 kg bullet out with a velocity of 

620 m s
-1

. [2.5 m s
1

] 

b) Explain whether the rifle or the bullet has a higher kinetic energy. 

  

 

 
a) Initial      Final 
 
 
 
 

where mR is the mass of the rifle and mB the mass of the bullet. 
 

By principle of conservation of momentum,  

(Taking right direction to be positive), 

 

Sum of initial momentum = Sum of final momentum 

       (mR + mB)  0 = mR (vR) + mB vB 

        0 = mR vR + mB vB 

            mR vR = mB vB 

     (5.0)(vR) = (0.020)(620) 

                vR = 2.5 m s
-1

 (Notice how small the velocity of the rifle really is) 

 

 

b) Since KE = ½ mv
2
 and p = mv, KE = p

2 
/ 2m. Since the magnitude of the momentum of the rifle and the 

bullet is the same, and the mass of the bullet is smaller than that of the rifle, the bullet has a larger kinetic 

energy. 

 

 
 

LOSS OF ENERGY DURING COLLISIONS 

 

In most collisions, provided the time of interaction is rather short, momentum is usually conserved. 

However some loss in kinetic energy usually takes place. The loss of kinetic energy is usually 

converted to sound, heat or other forms of electromagnetic energy. 

 

 

 

 
 
 
 
 
 

Note that 

another useful 

method of 

determining KE 

is by the 

following 

formula:
2

2

p
KE

m
  



    

 

   
 
 

Summary 
 

 Elastic Collisions Perfectly Inelastic 
Collisions 

Before & After 
Collision 

During 
Collision 

Before & 
After 

Collision 

During 
Collision 

Total Linear 
Momentum* 

Conserved Conserved 

Total Energy of 
System 

Conserved Conserved 

Total k.e. of the 
System 

Conserved 

Not 
conserved, 

converted to 
pe 

Not 
conserved 

Not 
conserved 

Relative Speed 
Relation 

Applicable Not applicable Not 
applicable 

Not 
applicable 

 

 

Appendix 
 

(I)  Special Examples of Totally Elastic Collision 

 

1) Masses and speed of the particles are the same 

 

   

  u u    
 

By Principle of conservation of momentum, 

mu + m(-u)  =  m(-v1) + mv2 

v1 = v2 

By Principle of conservation of energy, 

          ½ mu
2
 + ½ mu

2
 = ½ mv1

2
 + ½ mv2

2
 

         u
2
 = v1

2
          

         u = v1 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 

+ve 

v1
 v2

 

m m 

m m 

Before        After 

Conclusion: 

Under totally elastic condition, the two objects of the after collision will move off in the opposite direction to one 

another, each with the same speed as before. 



    

 

   
 
 

 
2)  Masses of particles are the same with one particle at rest 

 

   

  u
stationary

  v  
 
By Principle of conservation of momentum, 

mu + m(0) =  mv1 + mv2 

                                    u = v1 + v2   ---  [1] 
By Principle of conservation of energy, 

½ mu
2
 + ½ m(0)

2
 = ½ mv1

2
 + ½ mv2

2
 

                                   u
2
 = v1

2
 + v2

2   
                 --- [2] 

 
Subst eqn[1] in eqn [2]:  (v1 + v2)

2
= v1

2
 + v2

2
 

                             2v1v2 = 0,  
  therefore v1 = 0 

From eqn [1]:      v2 = u 
 
 
 
 
 
 
3) Mass of the incoming particle being much smaller than the stationary particle 
 ( M >> m ) 
   

 

u

m
M

   
 
By Principle of conservation of momentum, 

mu + M(0) =  mv1 + Mv2 

              m(u-v1) = Mv2             ---[1] 
 
By Principle of conservation of energy, 

½ mu
2
 + ½ M(0)

2
 = ½ mv1

2
 + ½ Mv2

2
 

               m(u
2
-v1

2
)= Mv2

2
        --- [2] 

 
Eqn[2]/Eqn[1] :                                    u + v1 = v2              --- [3] 
 
From Eqn[1]:                                        u - v1 = v2 M/m  --- [4] 
 
Eqn[3]+ Eqn[4] :                                       2u = v2 [1+(M/m)] 
                                                                    v2 = 2u [m/(M+m)] 

                                                    M>>m,    v2  0 

Therefore, from Eqn [3],                              u  -v1 
 
 
 
 
 
 
 
 

v1 = 0 v2
 

v1
 m 

M 

+ve 

+ve 

m m m 

m 

Before        After 

Before        After 

Conclusion: 

Under totally elastic condition, after collision the stationary particle will move off with a speed of the initial 

particle while the initially moving particle will come to rest. 

 

Conclusion: 

Under totally elastic condition, after collision the stationary particle of much bigger mass will remain stationary 

while the incoming particle will move off in the opposite direction of it’s initial motion with it’s speed 

approximately unchanged. 


