1	2	3	4	5	6	7	8	9	10
С	С	С	В	В	А	С	В	D	В
11	12	13	14	15	16	17	18	19	20
В	Α	В	В	D	Α	А	С	С	А

1a)	From 0 to x, it is moving at constant deceleration	[1]
	from x to 2.5, it is moving at constant acceleration	[1]
b)	10 = 10/x	
,	x = 1.00 s	[1]
c)	dist = ½ x 1 x 10	[1] ecf
	= 5.00 m	[1]
d)	½ x 1.5 x 15 – 5	[1] ecf
	= 6.25 m	[1]
2a)	Draw a correct scaled diagram	[1]
,	Correct resultant force with label and double arrow	[1]
	magnitude = 1160 kN (1040 – 1280)	[1]
	direction= 15 degree from 600N (14 – 16)	[1]
b)	a = F/m	
	= 1160000/50379000	[1]
	= 0.0230	[1]
3a)	GPE = 500 x 10 x 30	
	= 150000 J	[1]
b)	$KE = \frac{1}{2} \times 500 \times 2^2$	
- /	= 1000 J	[1]
c)	1/2 (500)v ² = 151000	[1]
	v = 24.6 m/s	[1]
d)	E = 15100 - (500)(10)(25) = 26000	[1]
	F = 26000/150	
	= 173 N	[1]
4a	As d1 is much smaller than d2, force F will be greater than W at	
	equilibrium position.	[1]
b)	W x 35 = 1000 x 2	[1]
	W = 57.1 N	[1]

5a)	The transverse wave move perpendicular to the vibration of wave particle while longitudinal wave move parallel to the vibration of wave particle.	[1]
(b)	v = 5 x 3 = 15 cm/s	[1] [1]
(c)	The speed will increase. Since $v = f\lambda$, the frequency is constant while the wavelength in the deeper region increase. So the speed increases.	[1] [1]
6(a)	Magnified, inverted and real (Any two)	[1]
(b}	Correct lens position Correct F Correct ray with arrow	[1] [1] [1]
(c)	The image become more magnified as it shift towards the lens. After the distance is lesser than F, the image become virtual, magnified and upright	[1] [1]
7(a)	The angle of incidence is 0	[1]
b)	$c = \sin^{-1}(1/1.51) = 41.5$	[1]
c)	the angle of incidence is 45 which is greater than the critical angle, total internal reflection will occur	[1] [1]
8a)	Liquid molecules have strong forces of attraction and the molecules can slide pass each other.	[1]
b)	The internal kinetic energy remain the same while the internal potential energy increase	[1] [1]
c)	Air/vapour is not a good conductor of heat	[1]
9a)	A is negative terminal B is positive terminal	[1]
b)	$(1 + \frac{1}{2})^{-1} + 7 = 7.67 \Omega$	[1m for parallel circuit calculation] [1]
c)	$P = 9^2/7.67$ = 10.6 W	[1] [1]

d)	the current will decrease	[1]
10a	P = 3.3 x 230	
	= 759 W	[1]
b	$cost = 0.759 \times 4 \times 365 \times 0.195$	[1] ecf
	= \$216	[1]
c(i)	4 or 5A	[1]
(ii)	On the live wire. So that the air conditioner is disconnected from the live voltage and prevent electric shock	[1] [1]
(d)	Earth wire. or any relevant answer	[1]
	In case there is a fault, the current will flow through the earth wire which has low resistance into the earth.	[1]
(e)	230 230 0.02 0.04 time 230 - 230	correct label and value of x-axis [1] correct label and value of y-axis [1]
11a)	The wave will propagate through a series of compression and rarefaction The wave transfer energy as a longitudinal wave and it will move parallel to the vibration of wave particles.	[1] [1]
b)	(7.5 – 4.0) x 60 = 210 km	[1] [1]
c)	Human hearing frequency is 20 to 20kHz. P wave frequency is lower than 20 Hz	[1]
d)	$\lambda = 4/10$ = 0.4 km	[1]
e)	1.5 cm ² = 0.00015 m ² P = 15/0.00015	[1]

	= 100000 Pa	[1]
f)	half amplitude	[1]
	double frequency	[1]
12a)(i)	the Perspex rod loses electrons to the cloth. As there are more positive charges than negative charges, the rod becomes positively charged.	[1]
(ii)	The gold leaf will move away/deflect from the brass plate	[1]
	The electrons will be attracted and move to the top as unlike charges attract.	[1]
	The brass plate and gold leaf will become positively charged. Since	
	like charges repel, the gold leaf deflect away	[1]
b)(i)	$I = 0.025/(0.01 \times 10^{-3})$	[1]
	$= 2.5 \times 10^{-3} \text{ A}$	[1]
(ii)	V = 10/ 0.025	
(1)	= 400 V	[1]
c)(i)	Resistance of B will be 4 times of A	[1]
~/\'/		i t≠j
(ii)	Since V remains the same, the current through B will be ¼ of A	[1]