Suggested Marking Scheme for PSS 6091 Prelim 2024

- Correct units are expected for all questions, unless otherwise stated. Penalise units up to once in section A, and up to once in section B.
- Expect lowest sf after multiplication and division, condone 1 more sf than expected. Penalise dp/sf once for the entire paper.

	4.5				
	uestic	on	Marking point	Mark	Markers comments
1	а		The velocity is increasing from t		
			= 0 s to t = 80 s	B1	
			Since velocity is the rate of		
			change of displacement, the		
			displacement is increasing at an		
				D4	
			increasing rate.	B1	
	b		displacement		
			= area under graph		
			$=\frac{1}{2}[(190-90)+220)\times 25.0$	M1	
			= 4000 m		
			= 4000 m		
			4000		
			average velocity = $\frac{4000}{220}$	M1	
			= 18.2	IVII	
			= 18 m / s (2sf)	A1	
			20 21		
	С		$a = \frac{v-u}{t}$		
			$=\frac{0-25}{30}$ (or $\frac{0-13}{16}$ or $\frac{13-25}{14}$)	M1	
			$=-0.83 \text{ m/s}^2 \text{ (or } -0.81 \text{ or } -0.86)$		
			(
			d=0.83 m/s ²	A1	
				Λ1	
			penalize for units once with 2c		[4040]: 71
	I _	1			[total: 7]
2	а		resistive forces = 1200 N		
		•		B1 for	
				both	
			▼ W = 2500 N	forces	
	b		W=mg		
			2500 = m × 10		
				B1	
			m=250 kg	וטו	
<u> </u>	_		H 0500 4000		
	С		F _R =2500 - 1200	l	
			= 1300 N	M1	
			$F_R = ma$		
			1300 = 250 a	M1	
			$a = \frac{1300}{250}$		
			$= 5.2 \text{ m/s}^2$	A1 /	
			penalise for unit once with 1c	ECF1	
	l	1		l	

Ο	uestic	n .	Marking point	Mark	Markers comments
Q	d	JII	The surface area of the crate.	Mair	Markers comments
	٦		The surface area of the crate.		
			parachute.	B1 for	
			Presence of wind.	any	
	е		As speed increases, air	B1 for	
			resistance increases	any 1	
			until it is equal in magnitude	point	
			to weight.		
			so resultant force is 0.	B2 for	
				all 3	
				points	
					[4-4-1, 0]
3	а		Liquid that is heated at the		[total: 8]
3	а		bottom <u>expands</u> , resulting in a		
			lower density, and rises.	B1 for	
			iowor donoity, and noco.	any 1	
			Cooler liquid, being denser,	point	
			sinks, to be heated.		
				B2 for	
			Process repeats to form a	all 3	
			convection current.	points	
	b		From A to B , energy is		
			transferred to the internal kinetic		
			store and so the temperature of		
			the substance rises.	B1	
			From B to C , energy is transferred to the internal		
			potential store to separate the		
			particles and not to the internal		
			kinetic store.	B1	
			Minorio otoro.	5 .	
	С		● less steep AB and CD	B1	
			• longer BC		
			• same boiling point		
			<u> </u>		
	d		Particles are changing <u>from</u>		
			closely and disorderly packed to		
			far apart and randomly arranged.	B1	
	<u> </u>	1		Γ	[total: 6]
4	а		air particles (molecules) are in	D.4	
			constant random motion and	B1	
			collide with the emple merticles		
			collide with the smoke particles	B1	
	b	i	randomly, <u>exerting a force</u> The smoke particles change	ВΙ	
	ט		The smoke particles change directions more frequently.	B1	
			directions more frequently.	וטו	
			Reject "more randomly"		
	L	<u> </u>		l	

Q	uestic	on	Marking point	Mark	Markers comments
		ii	Air particles move more quickly and collide with the smoke particles more frequently.	B1	
				l .	[total: 4]
5	а		The gas particles travel at high speeds and collide frequently with the mercury and exerting a force Since pressure is force per unit area, a pressure is exerted (which pushes the column of mercury)	B1 for any 2 B2 for all 4	
	b		$P_{gas} = P_{atm} + P_{mercury}$ = 760 + 500 = 1260 mm Hg	B1	
	С	i	 Less space for gas or shorter distance to travel (or more particles per unit volume) Increased frequency of collision with walls of manometer Increase in gas pressure 	B1 for all 3	
		ii	$\begin{aligned} &P_{\text{new}} - P_{\text{old}} \\ &= \left(P_{\text{atm}} + P_{\text{new Hg}}\right) - \left(P_{\text{atm}} + P_{\text{old Hg}}\right) \\ &= P_{\text{new Hg}} - P_{\text{old Hg}} \\ &= 640 \text{ mm Hg} - 500 \text{ mm Hg} \\ &= 140 \text{ mm Hg} \\ &= 13 600 \times 10 \times (140 \times 10^{-3}) \\ &= 19 040 \\ &= 19 000 \text{ Pa (3sf)} \end{aligned}$	M1 A1	
		iii	$F=PA = 19 040 \times \frac{12}{100^2}$	M1	
			= 22.8 = 23 N (2sf)	A1 / ECF1	
					[total: 8]

Q	uestic	on	Marking point	Mark	Markers comments
6	а		Accept any correct answer.		
			Travel at 3.0 x 10 ⁸ m / s in vacuum (insist on 3.0 or 3.00)		
			They are all transverse waves.		
			They transfer energy without transferring mass.	B1 for	
			They can travel through vacuum.	any 1 point	
	b	i	$\frac{\sin i}{\sin r} = 1.52$ $\frac{\sin 46^{\circ}}{\sin r} = 1.52$ $\sin r = \frac{\sin 46^{\circ}}{1.52}$	M1	
			$r = \frac{1.52}{1.52}$ $r = \sin^{-1}\left(\frac{\sin 46^{\circ}}{1.52}\right)$ $= 28.2^{\circ}$	A1	
		ii	$c = \sin^{-1}\left(\frac{1}{n}\right)$ $= \sin^{-1}\left(\frac{1}{1.52}\right)$		
			=41.1°	B1	
_		iii			
			44° 45° Q		
			Angle of incidence = 90 - (180 - 45 - 90 - 28.2) = 73.8 °	B1 / ECF1	
		iv	 Total internal reflection occurs at PQ, expect i ≈ r. Arrows on rays 	B1	
	i I	·			[total:6]
7	а	i		B1	
			Arrows pointing inSymmetric		

Q	Question		Marking point	Mark	Markers comments
		ii	It shows the direction of a force	············	
			that a positive test charge would experience if placed at that point.	B1	
			experience in placed at that points		
	b		The metal plates are positively shared.		
			positively chargedThe dust particle are	B1 for	
			negatively charged.	any 2	
			 Opposite charges attract 	points	
			The dust particles are attracted to the motel plates.	B2 for	
			attracted to the metal plates and stay there.	all 4	
			,		[total: 4]
8	а				[total. 4]
				B1	
			† []]		
			<u> </u>		
	b	i	Resistance of thermistor is very	B1	
			high at first so current in that		
			branch is <u>too low</u> to light the lamp.		
			iamp.		
			Reject short circuit.		
		ii	the resistance of the thermistor	B1	
			decreased with increasing		
			temperature as it is heated up by the heater so current in that		
			branch increased.		
				144	
	С	i	from graph, when $I = 0.48$ A, $V=1.12$ V	M1	
			pd across 5.0 Ω bulb, V = IR		
			=0.48 x 5.0 =2.4 V	M1	
			<u> </u>		
			E.M.F = 1.12 + 2.4		
		ii	= 3.5 V (accept 3.52 V) The graph	A1	
		"	Passed through the origin		
			 and is straight when V was 	B1 for	
			between 0 V to 0.40 V.	both	
			(or <i>I</i> is directly proportional to <i>V</i>	points	
			between 0 V to 0.40 V)		
					[total: 7]

Q	uestic	on	Marking point	Mark	Markers comments
9	а	i	There is a change in magnetic		
			flux as the magnet was moving		
			into and out of the coil. (By	B1	
			Faraday's Law, and e.m.f is		
			induced.)		
		ii	It was moving into the coil	B1	
		iii	As a south pole is induced at the	B1	
			end near the bar magnet (using		
			RHGR),		
			the coil was <u>repelling the magnet</u>		
			to oppose the change, and thus	B1	
			by Lenz's Law, the magnet bar		
			was moving into the coil		
	b				
			500		
			voltage/V		
			0 0.01 0/02 0.03 time/s		
			-500-		
			Shape (sine on the t-axis)	B1	
			enape (eme en are carae)	-	
			amplitude at 500 mV	B1	
	С		smaller amplitude and larger	B1	
			period		
	d		Increase the number of coils in	B1 for	
			the solenoid	any	
			lles e stremmen mes mest		
			Use a stronger magnet		
	е		When switch is closed, a N pole is produced at Y using the right-		
			hand grip rule.	B1	
			nana grip raic.		
			As iron is a <u>magnetic material</u> , <u>a</u>		
			S pole is induced on the end of		
			the pendulum bob <u>nearer Y</u> .	B1	
			Since <u>unlike poles attract</u> , the	D4	
ļ			bob swings towards the solenoid.	B1	[4040]: 441
10	а		4.5 J of energy is required to		[total: 11]
10	а		raise 1 g of the substance (or		
			tea) by 1 K (or 1 °C)	B1	
	b	i	more energy needs to be		
			absorbed (or transferred out of		
			the internal store of the		
			ingredients) to reduce the		
			temperature of the drink when		
			the mass of tea is larger.	B1	

Q	uestic	on	Marking point	Mark	Markers comments
	b	ii	$Q_{\text{syrup}} = m_{\text{syrup}} c_{\text{syrup}} \Delta \theta_{\text{syrup}}$		
			$= 35 \times 3.1 \times (26 - 4)$	M1	
			= 2387		
			= 2400 J (2sf)	A1	
		iii	$Q_{tea} = m_{tea}c_{tea} \Delta\theta_{tea}$		
			$= 300 \times 4.5 \times (65 - 4)$		
			= 82 350 J		
			$Q_{pearls} = m_{pearl} c_{pearl} \Delta \theta_{pearl}$		
			$= 120 \times 3.5 \times (36 - 4)$		
			= 13440 J		
			total energy		
			= 2387 + 82 350 + 13 440		
			= 98 177		
			= 98 000 J (2sf)	B1	
		iv	98 000 J	B1/	
				ECF1	
		٧	energy transferred out from ingredients		
			= energy transferred into internal		
			store of ice		
			= energy required to melt the ice +		
			energy required to raise to $4^{\circ}\mathcal{C}$		
			= $m_{ice}l_{fice}$ + $m_{ice}C_{water}\Delta\theta_{water}$		
			$m_{ice}l_{fice} = m_{ice} 330$	M1	
			= 330 m _{ice}		
			$m_{ice}c_{water}\Delta\theta_{water} = m_{ice} \times 4.2 \times 4$		
			= 16.8 m _{ice}		
			98 177= 330 m _{ice} +16.8 m _{ice}	M1	
			98 177=346.8 m _{ice} m _{ice} = 283.1		
			= 280 g (2sf)	A1 /	
				ECF1	
					[4-4-1: A]
					[total: 9]

u estic a	on	Marking point $^{226}_{88}Ra \rightarrow ^{222}_{86}Rn + ^{4}_{2}He (or ^{4}_{2}\alpha)$	Mark	Markers comments
а		$440Da \rightarrow 444Da + 4Ua (an 4a)$		
		$_{88}$ $\mu \rightarrow _{86}$ $\mu + _{2}$ $\mu e (01 \frac{5}{2} \mu)$		
		correct reactants and products correct number of nucleons and	B1	
		protons	B1	
b	İ	Alpha particles are more ionizing than gamma radiation	B1	
	ii	 Use thongs to handle the radioactive substances Wear protective gears when handling the substances Minimize contact with the substances whenever possible Reduce exposing the substance to colleagues 	B1	
С		$100 \rightarrow 50 \rightarrow 25 \rightarrow 12.5$		
		3 half-lives	M1	
		3 x 8.3 = 25 days (2 sf)	A1	
d		take the background count using a <u>GM-counter</u> (or <u>Geiger-Muller</u> <u>tube</u>).	B1	
		subtract the <u>background count</u> from the measured count to get the corrected count rate.	B1	
		accept description of measurement taken without the source then with the source.		
е	i	curve upwards towards PQ (circular)	B1	
	-	no deviation as the gamma radiation has no electric charge, so no magnetic force is produced.	B1	
	c	c d e i	b i Alpha particles are more ionizing than gamma radiation ii •Use thongs to handle the radioactive substances •Wear protective gears when handling the substances •Minimize contact with the substances whenever possible •Reduce exposing the substance to colleagues accept reasonable answers. c 100 → 50 → 25 → 12.5 3 half-lives 3 x 8.3 = 25 days (2 sf) d take the background count using a GM-counter (or Geiger-Muller tube). subtract the background count from the measured count to get the corrected count rate. accept description of measurement taken without the source then with the source. e i curve upwards towards PQ (circular) i no deviation as the gamma radiation has no electric charge, so no magnetic force is	b i Alpha particles are more ionizing than gamma radiation ii •Use thongs to handle the radioactive substances • Wear protective gears when handling the substances • Minimize contact with the substances whenever possible • Reduce exposing the substance to colleagues accept reasonable answers. c 100 → 50 → 25 → 12.5 3 half-lives M1 3 x 8.3 = 25 days (2 sf) A1 d take the background count using a GM-counter (or Geiger-Muller tube). subtract the background count to get the corrected count rate. accept description of measurement taken without the source then with the source. e i curve upwards towards PQ (circular) i no deviation as the gamma radiation has no electric charge, so no magnetic force is

0	uestic	.	Marking point	Mark	Markers comments
12)[[Marking point	Mark	Markers comments
12	а		Energy cannot be created or	B1 for	
			destroyed.		
				any 1	
			It can be transferred from one	point	
			store to another store.	B2 for	
				all 3	
			Total energy in the (closed)		
			system remains constant.	points	
	b	i	$E_p = mgh$		
			$= 2400 \times 25$	M1	
			$= 60\ 000\ J$		
			$P = \frac{w}{t} = \frac{60\ 000}{60 \times 1.2}$		
			t 60 000		
			$=\frac{60000}{60 \times 10^{2}}$		
			60 × 1.2		
			= 833.3		
			= 830 W (2 s.f)	A1	
			- 030 W (2 S.I)	AI	
		ii	useful power output		
		"			
			total input power 833.3		
			$\frac{833.3}{input\ power} \times 100 = 65$		
			input power		
			input power = 1282 W		
			= 1300 W (2sf)	B1	
		iii	All the E_p is transferred to the		
			kinetic store.		
			$E_k = E_p$		
			$\frac{1}{m^2} - 60.000$		
			$\frac{1}{2}mv^2 = 60\ 000$		
			$\frac{1}{2} \times 240 \times v^2 = 60000$	M1	
			_	1011	
			$v^2 = 500$		
			v = 22.4		
			= 22 m / s (2sf)	A1	
	С	i	total cw momemts		
			$= 2400 \times 8.0 + 150000 \times 0.20$	M1	
			= 49 200 Nm		
			12 000 d = 49200	M1	
			d = 4.1 m	A1	
					[total:10]