Pap	er 2	Remarks
1		
	$\frac{\mathrm{d}y}{\mathrm{d}x} = 3ax^2 + 2bx$	
	At the turning points, $\frac{dy}{dx} = 0$. So,	
	$3ax^2 + 2bx = 0$	
	x(3ax+b)=0	
	$x = 0 \text{ or } x = -\frac{2b}{3a}.$	
	When $x = 0$, $y = c$.	
	When $x = -\frac{2b}{3a}$,	
	$y = a\left(-\frac{2b}{3a}\right)^3 + b\left(-\frac{2b}{3a}\right)^2 + c$	
	$= a\left(-\frac{8b^3}{27a^3}\right) + b\left(\frac{4b^2}{9a^2}\right) + c$	
	$= \left(-\frac{8}{27} + \frac{4}{9}\right) \frac{b^3}{a^2} + c$	
	$=\frac{4b^3}{27a^2}+c$	
	For the equation $ax^3 + bx^2 + c = 0$ to have 3 distinct real roots, the y-	
	coordinates of the two turning points must have different signs. Thus	
	$c\left(\frac{4b^3}{27a^2} + c\right) < 0$	
	$c\left(4b^3+27a^3c\right)<0$	
	$27a^{3}c^{2} + 4b^{3}c < 0 \text{ (shown)}$	
2		
	(a) $u_{n+2} = \frac{1}{2} (u_{n+1} + u_n)$	
	$2u_{n+2} - u_{n+1} - u_n = 0$	
	The auxiliary equation of the RR is	
	$2m^2-m-1=0$	
	(2m+1)(m-1) = 0	
	$m = -\frac{1}{2}$ or $m = 1$	
	Z N 11	
	$u_n = c\left(-\frac{1}{2}\right)^n + d(1)^n$	
	$u_n = c\left(-\frac{1}{2}\right)^n + d$	
	$u_1 = a$	
	$-\frac{1}{2}c+d=a \qquad -(1)$	
	$u_2 = b$	
	$\frac{1}{4}c + d = b \qquad -(2)$	
	•	1

(2) - (1):
$$c = \frac{4}{3}(b-a)$$

(1) + 2(2): $d = \frac{1}{3}(a+2b)$

$$\therefore u_n = \frac{4}{3}(b-a)\left(-\frac{1}{2}\right)^n + \frac{1}{3}(a+2b), \quad n \ge 1$$

(b)(i)
$$u_n = \frac{4}{3}(b-a)\left(-\frac{1}{2}\right)^n + \frac{1}{3}(a+2b), \quad n \ge 1$$

$$\text{As } n \to \infty, u_n \to 3$$

$$\text{since } \left(-\frac{1}{2}\right)^n \to 0 \text{ as } n \to \infty, \text{ therefore}$$

$$\frac{1}{3}(a+2b) = 3$$

$$a+2b=9$$

Since a and b are distinct positive integers, hence possible pairs of values of a and b are:

$$a = 1$$
 and $b = 4$, $a = 5$ and $b = 2$, $a = 7$ and $b = 1$

(b)(ii) If
$$a = b$$
, then $u_n = \frac{4}{3}(0)\left(-\frac{1}{2}\right)^n + \frac{1}{3}(a+2a)$
 $u_n = a, \quad n \ge 1$

Then the sequence is a constant sequence.

 $x_1 = 0.84095, x_2 = 0.87994, \dots, x_n$ converges to 0.864 (3sf).

:. x-coordinate of the turning point is 0.864, y-coordinate is 1.16 (3sf)

(a)(i) $y = A \sin \sqrt{x} + B \cos \sqrt{x}$ $\frac{\mathrm{d}y}{\mathrm{d}x} = \left(A\cos\sqrt{x}\right)\left(\frac{1}{2}x^{-\frac{1}{2}}\right) - \left(B\sin\sqrt{x}\right)\left(\frac{1}{2}x^{-\frac{1}{2}}\right)$ $2\sqrt{x}\frac{\mathrm{d}y}{\mathrm{d}x} = A\cos\sqrt{x} - B\sin\sqrt{x}$ $4x\frac{d^2y}{dx^2} + 2\frac{dy}{dx} = -\left(A\sin\sqrt{x} + B\cos\sqrt{x}\right)$ $4x\frac{d^2y}{dx^2} + 2\frac{dy}{dx} + y = 0 \quad \text{(shown)}$ $2\sqrt{x}\frac{d^{2}y}{dx^{2}} + \left(x^{-\frac{1}{2}}\right)\frac{dy}{dx} = \left(-A\sin\sqrt{x}\right)\left(\frac{1}{2}x^{-\frac{1}{2}}\right) - \left(B\cos\sqrt{x}\right)\left(\frac{1}{2}x^{-\frac{1}{2}}\right)$ (a)(ii) Let P_n be the statement

$$4x\frac{d^{n+2}y}{dx^{n+2}} + (4n+2)\frac{d^{n+1}y}{dx^{n+1}} + \frac{d^ny}{dx^n} = 0 \text{ for all integers } n \ge 0.$$

LHS of
$$P_0 = 4x \frac{d^2 y}{dx^2} + [4(0) + 2] \frac{dy}{dx} + y = 4x \frac{d^2 y}{dx^2} + 2 \frac{dy}{dx} + y$$

RHS of $P_0 = 0$

LHS = RHS (by (i))

 $\therefore P_0$ is true.

Assume that P_k is true for some integers $k \ge 0$,

i.e.,
$$4x \frac{d^{k+2}y}{dx^{k+2}} + (4k+2) \frac{d^{k+1}y}{dx^{k+1}} + \frac{d^ky}{dx^k} = 0$$

We want to prove that P_{k+1} is true,

i.e.,
$$4x \frac{d^{k+3}y}{dx^{k+3}} + (4k+6) \frac{d^{k+2}y}{dx^{k+2}} + \frac{d^{k+1}y}{dx^{k+1}} = 0$$

Consider

$$4x\frac{d^{k+2}y}{dx^{k+2}} + (4k+2)\frac{d^{k+1}y}{dx^{k+1}} + \frac{d^{k}y}{dx^{k}} = 0$$

$$4x\frac{d^{k+3}y}{dx^{k+3}} + 4\frac{d^{k+2}y}{dx^{k+2}} + (4k+2)\frac{d^{k+2}y}{dx^{k+2}} + \frac{d^{k+1}y}{dx^{k+1}} = 0$$

$$4x\frac{d^{k+3}y}{dx^{k+3}} + (4k+6)\frac{d^{k+2}y}{dx^{k+2}} + \frac{d^{k+1}y}{dx^{k+1}} = 0 \quad \text{(shown)}$$

 $\therefore P_k$ is true $\Rightarrow P_{k+1}$ is true

Since (1) P_0 is true, and (2) P_k is true $\Rightarrow P_{k+1}$ is true, by mathematical induction, P_n is true for all integers $n \ge 0$.

(b)
$$4x \frac{d^2y}{dx^2} + 2 \frac{dy}{dx} + y = x^2 - 25$$

Let $Q(x) = Dx^2 + Ex + F$, then $Q'(x) = 2Dx + E$
 $Q''(x) = D$

Hence,

$$4xD + 2(2Dx + E) + (Dx^{2} + Ex + F) = x^{2} - 25$$
$$Dx^{2} + (12D + E)x + (2E + F) = x^{2} - 25$$

By comparing coefficients,

$$D = 1$$
, $12D + E = 0$, $2E + F = -25$
 $D = 1$, $E = -12$ and $F = -1$

$$\therefore Q(x) = x^2 - 12x - 1$$

Let $F(x) = A \sin \sqrt{x} + B \cos \sqrt{x}$ and y = Q(x) + F(x), then

LHS =
$$4x \frac{d^2y}{dx^2} + 2\frac{dy}{dx} + y$$

= $4x[Q''(x) + F''(x)] + 2[Q'(x) + F'(x)] + [Q(x) + F(x)]$
= $[4xQ''(x) + 2Q'(x) + Q(x)] + [4xF''(x) + 2F'(x) + F(x)]$
= $(x^2 - 25) + 0$
= $x^2 - 25 = RHS$

Hence, $Q(x) + A \sin \sqrt{x} + B \cos \sqrt{x}$ for any arbitrary constants A and B, is a solution of this differential equation.

(a)
$$2x^{2} + 2xy + y^{2} = 1$$

$$2r^{2} \cos^{2} \theta + 2(r \cos \theta)(r \sin \theta) + r^{2} \sin^{2} \theta = 1$$

$$r^{2} (2 \cos^{2} \theta + 2 \cos \theta \sin \theta + r^{2} \sin^{2} \theta) = 1$$

$$\frac{r^{2} (2 \cos^{2} \theta + 2 \cos \theta \sin \theta + \sin^{2} \theta)}{\cos^{2} \theta} = \frac{1}{\cos^{2} \theta}$$

$$r^{2} \left(2 + \frac{2 \sin \theta}{\cos \theta} + \frac{\sin^{2} \theta}{\cos^{2} \theta}\right) = \sec^{2} \theta$$

$$r^{2} \left(2 + 2 \tan \theta + \tan^{2} \theta\right) = \sec^{2} \theta$$

$$r^{2} \left(1 + 1 + 2 \tan \theta + \tan^{2} \theta\right) = \sec^{2} \theta$$

$$r^{2} \left[1 + (1 + \tan \theta)^{2}\right] = \sec^{2} \theta$$

 $r^2 = \frac{\sec^2 \theta}{1 + (1 + \tan \theta)^2}$ (shown)

(b) Area =
$$\frac{1}{2} \int_{0}^{\frac{1}{4}\pi} \frac{\sec^{2}\theta}{1 + (1 + \tan\theta)^{2}} d\theta$$

= $\frac{1}{2} \left[\tan^{-1} (1 + \tan\theta) \right]_{0}^{\frac{1}{4}\pi}$
= $\frac{1}{2} \tan^{-1} \left(1 + \tan\frac{\pi}{4} \right) - \frac{1}{2} \tan^{-1} (1 + \theta)$
= $\frac{1}{2} \tan^{-1} 2 - \frac{1}{2} \times \frac{\pi}{4}$
= $\frac{1}{2} \tan^{-1} 2 - \frac{\pi}{8}$

(c)
$$r^{2} = \frac{\sec^{2}\theta}{1 + (1 + \tan\theta)^{2}} = \dots = \frac{1}{1 + 2\sin\theta\cos\theta + \cos^{2}\theta}$$
$$2r\frac{dr}{d\theta} = \frac{2\sin\theta\cos\theta + 2\sin^{2}\theta - 2\cos^{2}\theta}{(1 + 2\sin\theta\cos\theta + \cos^{2}\theta)^{2}}$$
When
$$\frac{dr}{d\theta} = 0, \sin\theta\cos\theta = \cos^{2}\theta - \sin^{2}\theta$$
$$\Rightarrow \frac{1}{2}\sin 2\theta = \cos 2\theta$$
$$\Rightarrow \tan 2\theta = 2$$
Let
$$m = \tan\theta$$
$$\frac{2m}{1 - m^{2}} = 2 \Rightarrow m^{2} + m - 1 = 0$$
$$\therefore m = \frac{-1 \pm \sqrt{5}}{2}$$

(d) Exact area enclosed by E

$= 4 \times \frac{1}{2} \int_{\tan^{-1}\left(\frac{-1-\sqrt{5}}{2}\right)}^{\tan^{-1}\left(\frac{-1-\sqrt{5}}{2}\right)} \frac{\sec^{2}\theta}{1+(1+\tan\theta)^{2}} d\theta$
$=2\left[\tan^{-1}(1+\tan\theta)\right]_{\tan^{-1}\left(\frac{-1+\sqrt{5}}{2}\right)}^{\tan^{-1}\left(\frac{-1-\sqrt{5}}{2}\right)}$
$= 2 \tan^{-1} \left(\frac{1 + \sqrt{5}}{2} \right) - 2 \tan^{-1} \left(\frac{1 - \sqrt{5}}{2} \right)$
$=2\left[\tan^{-1}\left(\frac{1+\sqrt{5}}{2}\right)-\tan^{-1}\left(\frac{1-\sqrt{5}}{2}\right)\right]$
$=2\times\frac{\pi}{2}$
$=\pi$

6 (a) Let T denote the time spent by Chan waiting at the bus stop in minutes.

Thus,
$$T \sim \text{Exp}(0.2)$$
.

$$f(t) = \frac{1}{5}e^{-\frac{1}{5}t}, t > 0$$

$$E(T) = \frac{1}{\lambda} = 5 \Rightarrow \lambda = \frac{1}{5}$$

$$P(T \ge t + 6 \mid T \ge t) = \frac{P(T \ge t + 6 \text{ and } T \ge t)}{P(T \ge t)}$$
$$= \frac{P(T \ge t + 6)}{P(T \ge t)}$$

$$= \frac{\int_{t=6}^{\infty} 0.2e^{-0.2x} dx}{\int_{t}^{\infty} 0.2e^{-0.2x} dx}$$

$$= \frac{\left[-e^{-0.2x}\right]_{t+6}^{\infty}}{\left[-e^{-0.2x}\right]_{t}^{\infty}}$$
$$= \frac{0 - \left(-e^{-0.2(t+6)}\right)}{0 - \left(-e^{-0.2t}\right)}$$

$$=e^{-1.2}$$

which is independent of t.

(b)
$$Y = 0.8T$$

$$Var(Y) = Var(0.8T)$$
$$= 0.8^{2} Var(T)$$
$$= 0.64(5^{2})$$

 $=16 \text{ litres}^2$.

Not allowed to quote lack of memory property.
Question is basically asking you to show.

Need to integrate. Cannot just quote cdf and use cdf to show!

NO need to integrate!

7 (a) The Wilcoxon test is appropriate in this case as it takes into account both the magnitude and sign of the difference in the amount each customer spends on Friday and on Saturday, which are available from the data. Moreover, the distribution of the difference in the amount spent by each customer on Friday and on Saturday is not known and is unlikely to follow a normal distribution.

(b)	Let $D = amount spent$	by customer	on Friday -	amount spent on
	Saturday.			_

Let m_D be the population median of D. (NOT differences of median)

$$H_0: m_D = 0$$

$$H_1: m_D > 0$$

Customer	A	В	C	D	Е	F	G	Н	I	J
Amount spent on Friday	190	152	139	100	90	88	60	55	42	20
Amount spent on Saturday	150	120	132	103	99	83	66	40	32	24
D	40	32	7	-3	-9	5	-6	15	10	-4
Rank	10	9	5	-1	-6	3	-4	8	7	-2

P = sum of positive ranks = 42

Q = sum of negative ranks = 13

$$T = \min(P, Q) = 13$$

8

From MF26, for n = 10, 1-tailed test at 5% significance level, critical region is $T \le 10$.

Since T = 13 lies outside the critical region, we do not reject H_0 and conclude that there is insufficient evidence at 5% significance level that on average, customers who shop regularly on both Fridays and Saturdays spend more on Fridays than on Saturdays.

(a) Unbiased estimate of the population mean $= \overline{t} = \frac{\sum t}{10} = \frac{513.00}{10} = 51.300$

Unbiased estimate of population variance, s^2

$$= \frac{1}{9} \left(26524.26 - \frac{(513.00)^2}{10} \right) = 23.04$$

A 95% confidence interval for μ is

$$\left(\overline{t} - t_{0.025} \frac{s}{\sqrt{10}}, \ \overline{t} + t_{0.025} \frac{s}{\sqrt{10}}\right)$$
 where $P(T \ge t_{0.025}) = 0.025, \ T \sim t_9$.

i.e.
$$\left(51.300 - 2.262157 \frac{\sqrt{23.04}}{\sqrt{10}}, 51.300 + 2.262157 \frac{\sqrt{23.04}}{\sqrt{10}}\right)$$

i.e. (47.87, 54.73) (to 4 s.f.)

By symmetry, the sample mean for the second sample of 10 is $\frac{44.88 + 52.32}{2} = \frac{97.2}{2} = 48.6$

So for the second sample of 10, $\sum t_2 = 48.6 \times 10 = 486$

For this second sample of 10,

 $2(2.262157)\frac{s_2}{\sqrt{10}} = 52.32 - 44.88$ where s_2 is an unbiased estimate of the

population variance for the second sample.

$$s_2^2 = 27.04209873 = \frac{1}{9} \left(\sum_{i=1}^{2} t_2^2 - \frac{(486)^2}{10} \right)$$

$$\sum t_2^2 = 23862.97889$$

Combining the two samples of 10

$$\sum t_c = \sum t + \sum t_2 = 513.00 + 486 = 999$$

$$\sum_{c} t_{c}^{2} = \sum_{c} t^{2} + \sum_{c} t_{2}^{2} = 26524.26 + 23862.97889 = 50387.23889$$

$$n = 10 + 10 = 20$$

New sample mean =
$$\overline{t}_c = \frac{999}{20} = 49.95$$

New unbiased estimate of population variance

$$= s_c^2 = \frac{1}{19} \left(50387.23889 - \frac{(999)^2}{20} \right) \approx 25.64152$$

$$\left(\overline{t_c} - t_{0.025} \frac{s_c}{\sqrt{20}}, \ \overline{t_c} + t_{0.025} \frac{s_c}{\sqrt{20}}\right) \quad \text{where} \quad P(T \ge t_{0.025}) = 0.025, \ T \sim t_{19}.$$

i.e.
$$\left(49.95 - 2.09302 \frac{\sqrt{25.64152}}{\sqrt{20}}, 49.95 + 2.09302 \frac{\sqrt{25.64152}}{\sqrt{20}}\right)$$

i.e. (47.6, 52.3) (to 3 s.f.)

- 9 (a) Foxes are found independently in the city and at a constant average rate.

 The following statements are incorrect:
 - The number of foxes in one square kilometre is independent of the number of foxes in another square kilometre.
 - the probability of a given number in any square kilometre is constant
 - the number of foxes of any given square kilometre had to be constant"

(b)
$$F \sim Po(\lambda)$$

Required probability = P(F = 1) + P(F = 3) + P(F = 5)

$$= e^{-\lambda} \lambda + \frac{e^{-\lambda} \lambda^3}{3!} + \frac{e^{-\lambda} \lambda^5}{5!}$$

$$=e^{-\lambda}\left(\lambda+\frac{\lambda^3}{6}+\frac{\lambda^5}{120}\right)$$

Do not leave as three separate answers. You need to add them up

(c)
$$P(X \text{ is odd}) = e^{-\lambda} \left(\lambda + \frac{\lambda^3}{3!} + \frac{\lambda^5}{5!} + \cdots \right)$$

Consider e^{λ} and $e^{-\lambda}$:

$$e^{\lambda} = 1 + \lambda + \frac{\lambda^2}{2!} + \frac{\lambda^3}{3!} + \frac{\lambda^4}{4!} + \frac{\lambda^5}{5!} + \cdots$$

$$e^{-\lambda} = 1 - \lambda + \frac{\lambda^2}{2!} - \frac{\lambda^3}{3!} + \frac{\lambda^4}{4!} - \frac{\lambda^5}{5!} + \cdots$$

$$\Rightarrow e^{\lambda} - e^{-\lambda} = 2\left(\lambda + \frac{\lambda^3}{3!} + \frac{\lambda^5}{5!} + \cdots\right)$$

$$\left(\lambda + \frac{\lambda^3}{3!} + \frac{\lambda^5}{5!} + \cdots\right) = \frac{1}{2} \left(e^{\lambda} - e^{-\lambda}\right)$$

$$\therefore P(X \text{ is odd}) = e^{-\lambda} \cdot \frac{1}{2} \left(e^{\lambda} - e^{-\lambda} \right) = \frac{1}{2} \left(1 - e^{-2\lambda} \right) \text{ (shown)}$$

(d)
$$P(F=0) = 0.1108 \Rightarrow e^{-\lambda} = 0.1108$$

P(F is odd) =
$$\frac{1}{2} \left[1 - (0.1108)^2 \right] \approx 0.49386 = 0.494 \text{ (3sf)}$$

Let k denote the number in the cell (Grade D, Men). Then, the numbers in the remaining missing cells are given as follows.

	Total	Grade	Grade	Grade	Grade	Grade
	Total	\boldsymbol{A}	B	\boldsymbol{C}	D	$\boldsymbol{\mathit{E}}$
Total	500	153	96	121	70	60
Men	300	81	54	77	k	88-k
Women	200	72	42	44	70 - k	k-28

H₀: There is no association between gender and grade.

 H_1 : There is association between gender and grade.

Under H_0 , the expected frequencies are

	Total	Grade A	Grade B	Grade C	Grade D	Grade E
Total	500	153	96	121	70	60
		153×300	96×300	121×300	70×300	60×300
Men	300	500	500	500	500	500
		= 91.8	= 57.6	= 72.6	= 42	= 36
		153×200	96×200	121×200	70×200	60×200
Women	200	500	500	500	500	500
		= 61.2	= 38.4	= 48.4	= 28	= 24

Since no cell has a value of less than 5, d.f. = (5-1)(2-1) = 4.

Test statistic:
$$\chi^2 = \sum_{i=1}^{10} \frac{\left(O_i - E_i\right)^2}{E_i} \sim \chi^2(4)$$
.

Observed test statistic,

$$\chi^{2} = \sum_{i=1}^{10} \frac{\left(o_{i} - e_{i}\right)^{2}}{e_{i}}$$

$$= \frac{\left(81 - 91.8\right)^{2}}{91.8} + \frac{\left(72 - 61.2\right)^{2}}{61.2} + \frac{\left(54 - 57.6\right)^{2}}{57.6} + \frac{\left(42 - 38.4\right)^{2}}{38.4}$$

$$+ \frac{\left(77 - 72.6\right)^{2}}{72.6} + \frac{\left(44 - 48.4\right)^{2}}{48.4} + \frac{\left(k - 42\right)^{2}}{42} + \frac{\left(70 - k - 28\right)^{2}}{28}$$

$$+ \frac{\left(88 - k - 36\right)^{2}}{36} + \frac{\left(k - 28 - 24\right)^{2}}{24}$$

$$= 4.4057 + \frac{\left(k - 42\right)^{2}}{42} + \frac{\left(k - 42\right)^{2}}{28} + \frac{\left(k - 52\right)^{2}}{36} + \frac{\left(k - 52\right)^{2}}{24}$$

$$= 4.4057 + \frac{5}{84}\left(k - 42\right)^{2} + \frac{5}{72}\left(k - 52\right)^{2}$$

Level of significance: 5%.

Critical region: $\chi^2 \ge 9.488$.

Since the null hypothesis is not rejected at the 5% significance level,

$$4.4057 + \frac{5}{84}(k-42)^2 + \frac{5}{72}(k-52)^2 < 9.488.$$

By GC, 43.6 < k < 51.2.

Therefore, the possible numbers in the cell (Grade D, Men) are 44, 45, 46, 47, 48, 49, 50 or 51.