

Qn		Steps/Answer	Remarks
1			
		$\sqrt{0.81}$ 0.902 $\frac{2}{2}$ $\frac{399}{100}$	
		$\sqrt{0.81}$ 0.302 0.86^3 441	
2		$=$ $\frac{7x}{1}$	$\frac{7x}{1}$
		$(x-5)^2$ x-5	Also accept $(5-x)^2$ $5-x$
		$=\frac{7x-(x-5)}{2}$	$=\frac{7x+5-x}{1}$
		$(x-5)^2$	$(5-x)^2$
		$-\frac{6x+5}{2}$	$-\frac{6x+5}{2}$
		$-\frac{1}{(x-5)^2}$	$-\frac{1}{(5-x)^2}$
			$A_{\text{ccont}} (254 \times 10^9) \div (2.45 \times 10^6)$ or
3		$(254.9 \times 10^{\circ}) \div (2.45 \times 10^{\circ})$	higher accuracy
		-1.04×10^{5}	S
4		$5c - 20c^2$	
		$\frac{32}{2} \div \frac{232}{d}$	
		5c d	
		$=\frac{1}{2}\times\frac{1}{20c^2}$	
		$-\underline{d}$	
		$-\frac{1}{8c}$	
		$Qkr^2 - kr^2$	
5		$\frac{3\kappa x}{kx^2} \times 100\%$	
		= 800%	
6		(3-2) units -> \$20	
		Total 9 units -> \$180	
7	(a)	2 2 7 1	
		$-8 \le 2 - 3x$ and $2 - 3x < 7 - x$	
		1	
		$-10 \le -3x$ and $-5 < 2-x$	
		$2 \cdot \cdot \cdot 2^{1}$	
		$-2 < x \le 5 - 3$	cannot accept 3.33
	(b)	-1, 0, 1, 2, 3	
8	(a)	8	
		AB	
	(bi)	7 ∉ B	
	(h::)	<u> </u>	
	(D11)	$\{ j^{s}, j^{s} \subset A \}$	

9		Image: Correct angle bisector Correct region shaded	Construction arcs are to be clearly seen.
10		(2 - + 1)(2) 0	(2 - 1)(2 - 2) = 0
10		(2p+1)(p-2) = 0	Accept $(2p+1)(3p-6) = 0$
		$p = -\frac{1}{2}, p = 2$	
		80	
11		Cost price of watch for Jimmy = $\frac{33}{100} \times 210$	
		= \$168	
		Profit price = $\frac{120}{100} \times 168 = \$201.60	
		Marked price = $\frac{100}{90} \times \$201.60 = \224	
		Total time taken	
12	(a)	= 15 + 5 + 5 = 25 min	
		Yes, he will achieve his target as he will complete by 09 15 .	
	(b)	2.3×1000	
		- 72 m/mm	
13	(a)	$\frac{200}{V} = (\frac{1.49}{1})^3$	
		$V = 60 \mathrm{g}$	
	(b)	Different vertical scales/intervals are used.	
14	(a)	$1260 = 2^2 \times 3^2 \times 5 \times 7$	
	(b)	84 and 180	
	(c)	m = 3, n = 2	

18		$QP = \frac{8}{\tan 0.7 rad} = 9.4979$	
		Area of triangle $OPQ = \frac{1}{2}(8)(9.4979) = 37.992$	
		Area of sector = $\frac{1}{2} (8^2) (\frac{\pi}{2} - 0.7) = 27.865$	
		Area of shaded region = 10.1 cm^2	
19	(a)	$\frac{1}{2}(6)v + (18-6)v + \frac{1}{2}(23-18)v = 385$	
		v = 22 m/s	
	(b)	$\frac{30-0}{25-0} = \frac{25-0}{25-0}$	$\frac{10}{10} = 2$
		T - 35 $45 - 35$	or 2
		30(10) = 25(T - 35)	
		T = 47s	or 45+2=47
20	(a)	angle <i>PBC</i> = angle <i>QBR</i> (common angle) angle <i>BQR</i> = angle <i>BPC</i> (corr. angles, <i>PC</i> // <i>QR</i>)	
		Triangle <i>PCB</i> and triangle <i>QRB</i> are similar (AA test)	
	(1-)	Triangles ABC and QRC	
	(D)	or Triangles ABO and CPO	
	(c)	$\frac{CR}{CB} = \frac{3}{7}$	
		QR BR	
		$\frac{1}{PC} = \frac{1}{BC}$	
		3 4	
		$\frac{1}{PC} = \frac{1}{7}$	
		<i>PC</i> = 5.25	

21	(a)	$\left(\frac{4a^6}{b^4}\right)^{-\frac{1}{2}}$	
		$=\left(\frac{b^4}{4a^6}\right)^{\frac{1}{2}}$	
		$=\frac{b^2}{2a^3}$	
	(b)	$\frac{2^k}{\sqrt[4]{8}} = 4^{2k}$	
		$\frac{2^{k}}{2^{\frac{3}{4}}} = 2^{4k}$	
		$k = 4k + \frac{3}{4}$	
		$k = -\frac{1}{4}$	
22	(a)	$T_n = n(n+1) + 10 - 4(n-1)$	
		$-n^2 + n + 10 - 4n + 4$	
		$= n^{2} - 3n + 14$	
	(b)	$T_{so} = 2364$	
	(c)	$n^2 - 3n + 14 = n(n-3) + 14$	
		When n is even $n(n-3)$ is (even x odd) = even.	
		When n is odd, $n(n-3)$ is (odd x even) = even.	
		Adding to 14 which is also even,	
		$T_n = n^2 - 3n + 14$ will always be even for all terms.	
23	(a)	$\angle EDC = \angle BAE = \frac{(5-2) \times 180}{5} = 108^{\circ}$	
		$\angle AEB = \frac{180 - 108}{2} = 36^{\circ}$	
		$\angle BED = 108 - 36 = 72^{\circ}$	
		$\angle BED + \angle EDC = 72 + 108 = 180^{\circ}$	
		By the converse of interior angles, <i>BE</i> is parallel to <i>CD</i>	
	(b)	$\angle EBX = 180 - 36 = 144^{\circ}$	
		$\angle BEC = 108 - 36 - 36 = 36^{\circ}$	Or equivalent methods, with
		As $\angle EBX + \angle BEC = 180^\circ$, by the converse/property of	correct reasoning.
		interior angles, EC//BX.	(eg BE // CX and a pair of
		<i>BECX</i> is a rhombus as <i>BE</i> // <i>CX</i> (<i>or DX</i>) and <i>EC</i> // <i>BX</i> and adjacent sides <i>BE</i> = <i>EC</i> .	opposite equal angles)

24	(ai)	5	
	(aii)	Gradient of PQ = $\frac{-3}{4}$	
		$-2 = \frac{-3}{4}(8) + c$	
		<i>c</i> = 4	
		Equation is $y = \frac{-3}{4}x + 4$	
	(b)	$2\left(\frac{-3}{4}x+4\right)-4x=19$	Or elimination method correctly follow-thru from a(ii)
		x = -2, y = 5.5	
		(-2,5.5)	
25	(0)	2 nd child	
23	(a)	1^{st} child $\frac{11}{24}$ Boy	
		Boy	
		$\frac{12}{25}$ $\frac{13}{24}$ Girl	
		\langle	
		$\frac{12}{24}$ Boy	
		$\frac{13}{25}$	
		Girl	
		$\frac{12}{24}$ Girl	
	(b)	$\left(\frac{12}{25}\right)\left(\frac{11}{24}\right) = \left(\frac{11}{50}\right)$	
	(c)	$\left(\frac{13}{25}\right)\left(\frac{12}{24}\right) \times 2$	
		$=\left(\frac{13}{25}\right)$	
		$1 - \left(\frac{12}{25}\right) \left(\frac{11}{24}\right) \left(\frac{10}{23}\right) - \left(\frac{13}{25}\right) \left(\frac{12}{24}\right) \left(\frac{11}{23}\right)$	
	(d)	or P(BBG)+P(BGB)+P(GBB)+P(GGB)+P(GBG)+P(BGG)	
		$= \left(\frac{12}{25}\right) \left(\frac{11}{24}\right) \left(\frac{13}{23}\right) \times 3 + \left(\frac{13}{25}\right) \left(\frac{12}{24}\right) \left(\frac{12}{23}\right) \times 3$	
		$= 0.78 \text{ or } \left(\frac{39}{50}\right)$	