OTUDENT MAME.	_ CA	ANL	JIDA		3E	აა	ION	NU	MIRE	:K
STUDENT NAME:	0	2	5	0	1	2	2			
TEACHER NAME:	EX	XAN	IINA	TIO	N (COI	DE			
	8	8	1	8	3	-	7	2	0	1

ST. JOSEPH'S INSTITUTION YEAR 5 END OF YEAR EXAMINATION 2018

MATHEMATICS
HIGHER LEVEL
PAPER 1
Wednesday

26th September 2018

1 hr 30 mins

0800 - 0930 hrs

INSTRUCTIONS TO CANDIDATES

- Write your session number in the boxes above.
- Write your name and teacher's name in the spaces provided.
- Do not open this examination paper until instructed to do so.
- **Section A**: Answer all questions showing working and answers in the spaces provided in the exam paper.
- Section B: Answer all questions using the foolscap paper provided.
- The use of calculators is **not** permitted in this paper.
- A clean copy of the **Mathematics HL Formulae Booklet** is required for this paper.
- Unless otherwise stated in the question all numerical answers are to be given exactly.
- The maximum mark for this examination paper is [80 marks].
- This question paper consists of **10** printed pages including the Cover Sheet.
- Sections A and B are to be submitted separately.

FOR MARKER USE ONLY:

Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8	Q9	Q10	TOTAL
										/80

Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by working and/or explanations. Where an answer is incorrect, some marks may be given for a correct method, provided this is shown by written working. You are advised to show all working.

SECTION A (40 marks)

Answer all questions in the spaces provided.

1	[Maximum	mark•	41
1	1 VI axIIIIuIII	mai K.	7 1

The complex numbers u = 2 + 3i and v = 3 + 2i satisfy the equation

$$\frac{1}{u} + \frac{1}{v} = \frac{10}{w}, \quad w \in \mathbb{C}.$$

Express w in the form a+ib where $a,b \in \mathbb{R}$ and $i^2 = -1$.

_		_	
2	Movimum	5	mortza
4	[Maximum:	J	IIIai KS

Let $g: \mathbb{N} \longrightarrow \mathbb{Z}^+$ be a piecewise function defined as

general expenses function defined as
$$g(n) = \begin{cases} 1, & \text{if } n = 0 \\ g\left(\frac{1}{2}n\right), & \text{if } n \text{ is even} \\ 1 + g(n-1), & \text{if } n \text{ is odd} \end{cases}$$

(a)	Find $g(3)$.	[3]
(a)	$I \cap G $ $g(S)$.	[3]

(b)	Does g have an inverse? Justify your answer.	[2]

[Ma	ximum mark: 8]
(a)	The term independent of x in the expansion $\left(\frac{3}{x^4} + 2x^2\right)^6$ can be written in the form
	$2^p \times 3^q \times 5^r$, where $p, q, r \in \mathbb{N}$. Find the values of p, q and r . [4]
(b)	Determine $\operatorname{Im}\left(\left(1-i\sqrt{2}\right)^{5}\right)$, where $i^{2}=-1$, leaving your answer in the form $a\sqrt{2}$, where
	$a \in \mathbb{Z}$. [4]

3

Find the coordinates of the point of inflection of the function $f(x) = xe^x$ where $x \in \mathbb{R}$) ,
justifying your answer.	

[Maximum mark: 5]

•••••	 • • • • • • •	 •	 •	 • • • • • • • • •	 •	
	 • • • • • • •	 	 	 • • • • • • • •	 	
	 • • • • • • •	 	 	 • • • • • • • •	 	
	 • • • • • • •	 	 	 • • • • • • • •	 	

5 [Maximum mark: 5]	
---------------------	--

Determine the series of transformations that transform the circle with equation $x^2 - 4x + y^2 + 6y + 8 = 0$ into the ellipse with equation $x^2 + 4(y+3)^2 = 20$.

Solve for $x : \sin\left(\arcsin\left(\frac{1}{5}\right) + \arccos(x)\right) = 1$.

7 [Maximum mark: 9]

The function g is given by $g(x) = \frac{x+1}{2x-1}, x \in \mathbb{R}, x \neq \frac{1}{2}$.

- (a) Write down the equations of the horizontal and vertical asymptotes of g. [2]
- (b) In the space below, sketch the graph of y = |g(x)| + 1, indicating the asymptotes, critical point and point(s) of intersection with the axes. [6]
- (c) State the range of y = |g(x)| + 1. [1]

Do NOT write solutions on this page.

SECTION B (40 marks)

Answer all questions on the foolscap paper provided. Please start each question on a new page.

8 [Maximum mark: 12]

- (a) Express $4\cos 2x 3\sin 2x$ in the form $R\cos(2x + \theta)$, where R > 0 and θ is acute, giving the exact value of R and θ . [2]
 - (ii) Hence, write down the greatest and least value of $\frac{2}{4\cos^2 x 3\sin^2 x + 7}$. [2]
- **(b)** A curve has equation $x y = (x + y)^2$. Find $\frac{dy}{dx}$ in terms of x and y. [4]
- (c) Consider another curve with equation $y = \log_3 x$. If $\frac{d^2y}{dx^2} + \left(\frac{dy}{dx}\right)^2 = \frac{k}{x^2}$, find the value of k in the form $\frac{1-p}{p^2}$, where $p \in \mathbb{R}$. [4]

9 [Maximum mark: 15]

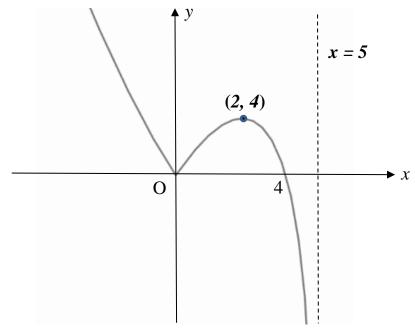
(a) (i) Evaluate

$$\sum_{r=0}^{\infty} \left[\sin^{2r} \left(\frac{5\pi}{6} \right) \right]$$
 [3]

(ii) For what values of x, where $x \in (0, \pi)$ does the geometric series

$$\sin x + \sin 2x + 4\sin x \cos^2 x + \cdots \text{ exist?}$$
 [5]

(b) A computer password is to be generated such that it consists of the following four digits 4, 4, 5 and 6, and the seven letters a, e, E, X, I, t, T.


Find the number of ways of arranging the password such that the digits must always be separated and two of the same letters are to always be beside each other. Leave your answer in the form $m! \times n!$, where m and n are positive integers to be determined.

[7]

Do NOT write solutions on this page.

10 [Maximum mark: 13]

(a) The graph of the function y = f(x) is shown below.

Sketch the graph of
$$y = \frac{1}{f(x)}$$
. [4]

(b) (i) Show that
$$\frac{d}{dx}(\arccos(x)) = -\frac{1}{\sqrt{1-x^2}}$$
. [4]

(ii) Hence, find
$$g'\left(\frac{1}{2}\right)$$
 if the function $g(x) = \frac{\arccos(x)}{h(x)}$, where $h(x)$ is a non-zero function such that $h\left(\frac{1}{2}\right) = 1$, $h'\left(\frac{1}{2}\right) = \frac{\sqrt{3}}{\pi}$. [5]

End of Paper

Year 5 HL Maths End of Year Exam 2018 – Paper 1 Markscheme

Qn	Suggested solution	Markscheme
	Section A	
1	Complex Number operations	[Max mark: 4]
	Method 1	
	$\frac{10}{10} = \frac{1}{10} + \frac{1}{100}$	
	w u v	
	$=\frac{2-3i}{13}+\frac{3-2i}{13}$	M1-use of conjugate
		J. J. J. J. J. G.
	$=\frac{5-5i}{13}$	A1
	$w = \frac{26}{1-i} = 13+13i$	M1 A1
	1-i	
	Method 2	
	$\frac{u+v}{u+v} = \frac{10}{10}$	
	$\frac{u + v}{uv} = \frac{10}{w}$	
		M1
	$w = \frac{10uv}{u+v} = \frac{10(2+3i)(3+2i)}{2+3i+3+2i}$	M1
	$=\frac{130i}{5+5i}$	A1
	$=\frac{26i}{1+i}\times\frac{1-i}{1-i}$	M1-use of conjugate
	=13i(1-i)=13+13i	A1
2	Composite Functions	[Max mark: 5]
(a)	g(3) = 1 + g(2)	M1
	= 1 + g(1)	A1
	= 1 + 1 + g(0)	
	= 3	A1
(b)		D1
(b)	Since $g(1) = g(2)$ but $1 \neq 2$, g is not a one-one function.	R1 A1 -with justification
	Hence, g does not have an inverse.	A1-with justification
3	Binomial Expansion	[Max mark: 8]
(a)	General term = $\binom{6}{k} (3x^{-4})^k (2x^2)^{6-k} = \binom{6}{k} (3^k 2^{6-k}) x^{12-6k}$	M1
	For term independent of x , $k = 2$	
	Term indep of $x = \binom{6}{2} (3^2 2^4)$	A1
	$= \left(\frac{6 \times 5}{2}\right) \left(3^2 2^4\right) = 2^4 \times 3^3 \times 5$	
	p = 4, q = 3, r = 1	(A1 if answer left as $2^4 \times 3^3 \times 5$)

Qn	Suggested solution	Markscheme
(b)	General term of $\left(1 - i\sqrt{2}\right)^5 = {5 \choose k} \left(-i\sqrt{2}\right)^k$	M1 – general term or expansion
		expansion
	For imaginary part, $k = 1, 3, 5$	M1 – only terms with
	$a\sqrt{2}i = {5 \choose 1}\left(-i\sqrt{2}\right) + {5 \choose 3}\left(-i\sqrt{2}\right)^3 + {5 \choose 5}\left(-i\sqrt{2}\right)^5$	odd powers
	$=-5\sqrt{2}i+10\left(2\sqrt{2}\right)i+4\sqrt{2}\left(-i\right)$	A1 $\left(-i\right)^3 = i$ and
	$=11\sqrt{2}i$	$\left(-i\right)^{5}=-i$
	$\therefore \operatorname{Im}\left(\left(1-i\sqrt{2}\right)^{5}\right) = 11\sqrt{2}$	$\mathbf{A1}$ – no i
4	Points of Inflection	[Max mark: 5]
	$f'(x) = (1+x)e^x$	A1
	$f''(x) = e^x + e^x (1+x) = (2+x)e^x$	A1
	At points of inflection, $f''(x) = 0$ (or $f''(x)$ is not defined) o.e.	M1
	Since $e^x > 0 \ \forall x, \ x = -2$	
	When $x < -2$, f''(x) < 0 (concave downward)	R1 – justify change
	When $x > -2$, f''(x) > 0 (concave upward)	in concavity
	$\left(-2, -\frac{2}{e^2}\right)$ is a point of inflection.	A1 – coordinates
	$\left(\begin{array}{cc} e^2 \end{array}\right)$	
5	Graph Transformation with Completing the Square	[Max mark: 5]
	Circle is: $x^2 - 4x + y^2 + 6y + 8 = 0$	
	$(x-2)^{2}-4+(y+3)^{2}-9+8=0$	M1 – completing sq.
	(x-2)	1 0 1
	$(x, 2)^2 + (x + 2)^2 = 5$	
	$(x-2)^2 + (y+3)^2 = 5$	A1
	$(x-2)^2 + (y+3)^2 = 5$ Method 1	A1
		A1
	Method 1	A1 (A1)
	Method 1 $4(x-2)^2 + 4(y+3)^2 = 20$	
	Method 1 $4(x-2)^{2} + 4(y+3)^{2} = 20$ $(2x-4)^{2} + 4(y+3)^{2} = 20$	(A1)
	Method 1 $4(x-2)^{2} + 4(y+3)^{2} = 20$ $(2x-4)^{2} + 4(y+3)^{2} = 20$ Horizontal scaling/stretch with factor 2 (: $x \to 0.5x$)	(A1) A1
	Method 1 $4(x-2)^{2} + 4(y+3)^{2} = 20$ $(2x-4)^{2} + 4(y+3)^{2} = 20$ Horizontal scaling/stretch with factor 2 (: $x \to 0.5x$) followed by Translation by $\begin{pmatrix} -4 \\ 0 \end{pmatrix}$ o.e. (: $x \to x+4$)	(A1) A1
	Method 1 $4(x-2)^{2} + 4(y+3)^{2} = 20$ $(2x-4)^{2} + 4(y+3)^{2} = 20$ Horizontal scaling/stretch with factor 2 $(\because x \to 0.5x)$ followed by Translation by $\begin{pmatrix} -4 \\ 0 \end{pmatrix}$ o.e. $(\because x \to x+4)$ OR	(A1) A1
	Method 1 $4(x-2)^{2} + 4(y+3)^{2} = 20$ $(2x-4)^{2} + 4(y+3)^{2} = 20$ Horizontal scaling/stretch with factor 2 (: $x \to 0.5x$) followed by Translation by $\begin{pmatrix} -4 \\ 0 \end{pmatrix}$ o.e. (: $x \to x+4$) OR Translation by $\begin{pmatrix} -2 \\ 0 \end{pmatrix}$ o.e. (: $x \to x+2$)	(A1) A1

Qn	Suggested solution	Markscheme
	Method 2	
	Ellipse is:	
	$x^2 + 4(y+3)^2 = 20$	
	$\left(\frac{1}{2}x\right)^2 + \left(y+3\right)^2 = 5$	(A1)
	Translation by $\begin{pmatrix} -2\\0 \end{pmatrix}$ o.e.	A1
	followed by Horizontal scaling/stretch with factor 2	A1
	Method 3 Ellipse is:	
	$x^2 + 4(y+3)^2 = 20$	
	$x^2 + (2y + 6)^2 = 20$	(A1)
	Translation by $\begin{pmatrix} -2 \\ -3 \end{pmatrix}$ o.e.	A1
	followed by Vertical scaling/stretch with factor $\frac{1}{2}$	A1
6	Inverse Trigo Function	[Max mark: 4]
	Let $A = \arcsin\left(\frac{1}{5}\right)$ and $B = \arccos(x)$	
	Then	
		R1 —seen anywhere to justify
	$\begin{cases} \sin A = \frac{1}{5} & 0 \le A \le \frac{\pi}{2} \implies \cos A > 0 \\ \cos B = x & 0 \le B \le \pi \implies \sin B > 0 \end{cases}$	$\sin B = +\sqrt{1-x^2}$
	$\sin(A+B)=1$	
	$\sin A \cos B + \cos A \sin B = 1$	M1–compound angle
	$\frac{1}{5}x + \frac{\sqrt{24}}{5}\left(\sqrt{1-x^2}\right) = 1$	
	$24(1-x^2) = (5-x)^2$	
	$25x^2 - 10x + 1 = 0$	A1
	$\left(5x-1\right)^2=0$	
	$x = \frac{1}{5}$	A1

Qn	Suggested solution	Markscheme
7	Rational Functions with absolute value and range	[Max mark: 9]
(a)	$x = \frac{1}{2} \text{ and } y = \frac{1}{2}$	A1 A1
(b)	Note: Graph of g 6.67 f1(x)= $\frac{1}{2}$ f1(x)= $\frac{x+1}{2 \cdot x-1}$ -6.67 $x=\frac{1}{2}$	(G1)
	Required graph:	G1 – left branch G1 – right branch G1 – both asymptotes G1 – (-1, 1) with correct graph behaviour G1 – (0, 2)
(c)	$[1,\infty)$ OR $\{y \in \mathbb{R} : y \ge 1\}$ o.e.	A1

Qn	Suggested solution	Markscheme
	Section B	
8	Trigonometry (R-form) and Implicit differentiation	[Max mark: 12]
ai	$R = \sqrt{9 + 16} = 5$ $\theta = \arctan \frac{3}{4}$	A1 A1
ii	Greatest = 1, Least = $\frac{1}{6}$	A1A1
b	$x - y = (x + y)^{2}$ $1 - \frac{dy}{dx} = 2(x + y)(1 + \frac{dy}{dx})$ $dy 1 - 2x - 2y$	M2,1,0
	$\frac{dy}{dx} = \frac{1 - 2x - 2y}{1 + 2x + 2y}$	A2,1,0
c	$y = \log_3 x = \frac{\ln x}{\ln 3}$ $\frac{dy}{dx} = \frac{1}{x \ln 3}$	M
	$\frac{d^2y}{dx^2} = -\frac{1}{x^2 \ln 3}$	M1 M1
	$\begin{vmatrix} \frac{d^2y}{dx^2} + \left(\frac{dy}{dx}\right)^2 \\ = -\frac{1}{x^2 \ln 3} + \left(\frac{1}{x \ln 3}\right)^2 \end{vmatrix}$	M1
	$=\frac{1-ln3}{x^2(ln3)^2}$	
	$k = \frac{1 - \ln 3}{(\ln 3)^2}$	A1

Qn	Suggested solution	Markscheme
9	Sigma Notation, GP, Combinatorics	[Max mark: 15]
ai	$S_{\infty} = \frac{1}{1 - \sin^2\left(\frac{5\pi}{6}\right)}$ $S_{\infty} = \frac{1}{1 - \sin^2\left(\frac{5\pi}{6}\right)}$	M1
	$S_{\infty} = \frac{1}{1 - \sin^2\left(\frac{\pi}{6}\right)}$ $S_{\infty} = \frac{1}{1 - \left(\frac{1}{2}\right)^2}$	M1
	$S_{\infty} = \frac{4}{3}$	A1
ii	$r = \frac{2sinxcosx}{sinx} = 2cosx$	M1A1
	For S_{∞} to exist, $ r < 1$ -1 < 2cosx < 1	M1
	$\frac{\pi}{3} < x < \frac{2\pi}{3}$	A1A1
b	Number of ways to arrange = $2! \ 2! \ 5! \frac{4!}{2!} \ \binom{6}{4}$	M5 o.e. (2! Perm. Ee, Tt) (5! Perm. letters) $\binom{6}{4}$ Perm. insertion of digits in 6 spaces btw letters) $(\frac{4!}{2!}$ Perm. digits with 44 repeat)
	$= 2! 2! 5! \frac{4!}{2!} \frac{6!}{2!4!}$ $= 5!6!$	M1 A1

Qn	Suggested solution	Markscheme				
10	Logarithms, Inverse Trigo	[Max mark: 13]				
a	$y \qquad x=4$ $O \qquad (2, 0.25) \qquad x$	G1 – left branches G1 – middle branch with correct local min pt (2, 0.25) G1 – right branch with hollow point at $x = 5$ G1 – asymptote at x = 4, $y = 0$, $x = 0*G2 if studentdraws originalgraph and did notintersect at y = 1$				
bi	Let $y = \arccos x$ $\cos y = x$ $-\sin y \frac{dy}{dx} = 1$ $\frac{dy}{dx} = -\frac{1}{\sin y}$ $\frac{dy}{dx} = -\frac{1}{\sqrt{1 - \cos^2 y}}$ $\frac{dy}{dx} = -\frac{1}{\sqrt{1 - x^2}}$	M1 M1 M1				
ii	$g'\left(\frac{1}{2}\right) = \frac{\sqrt{1-\left(\frac{1}{2}\right)/2}}{[h\left(\frac{1}{2}\right)]^2}$	M2,1,0 – formula M1 - subn				
	$g'\left(\frac{1}{2}\right) = \frac{(1)\cdot\left(-\frac{1}{\sqrt{\frac{3}{4}}}\right) - \left(\frac{\pi}{3}\right)\cdot\left(\frac{\sqrt{3}}{\pi}\right)}{(1)^2}$ $g'\left(\frac{1}{2}\right) = -\sqrt{3}$	M1 (arccos 0.5)				

	0	2	5 (0 1	2				
STUDENT NAME: _									
	 EX	AMI	NAT	ION	co	DE			
TEACHER NAME:	8	8	1	8	-	7	2	0	2

CANDIDATE SESSION NUMBER

ST JOSEPH'S INSTITUTION YEAR 5 END OF YEAR EXAMINATION 2018

MATHEMATICS

HIGHER LEVEL

1 hr 30 mins

PAPER 2

Monday

0800 – 0930 hrs

INSTRUCTIONS TO CANDIDATES

- Write your session number in the boxes above.
- Write your name and teacher's name in the spaces provided.
- Do not open this examination paper until instructed to do so.
- **Section A**: Answer all questions showing working and answers in the spaces provided in the exam paper.
- Section B: Answer all questions using the foolscap paper provided
- The use of a scientific or examination graphical calculator is permitted in this paper.
- Ti-Nspire calculators must be in Press-to-Test mode and cleared of all previous data.
- TI-84+ graphical calculators must only have permitted apps and be ram cleared.
- A clean copy of the **Mathematics HL Formulae Booklet** is required for this paper.
- Unless otherwise stated in the question all numerical answers must be given exactly or to three significant figures.
- The maximum mark for this examination paper is [80 marks].
- Number of printed pages = 10.
- Sections A and B are to be submitted separately.

FOR MARKER USE ONLY:

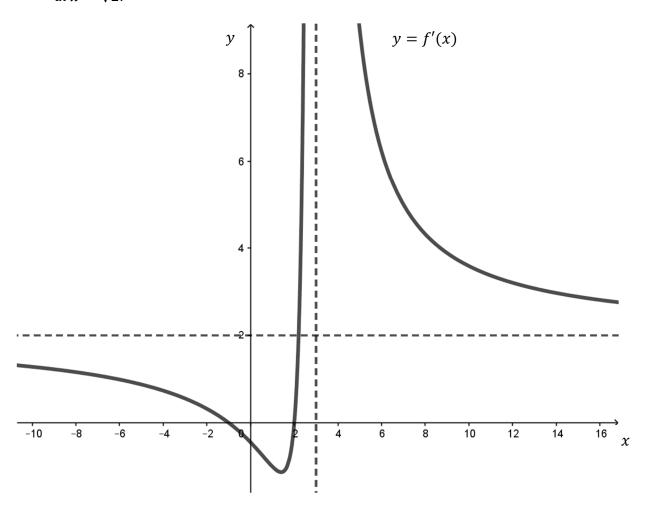
Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8	Q9	Q10	Total/80

Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by working and/or explanations. In particular, solutions found from a graphic display calculator should be supported by suitable working, for example, if graphs are used to find a solution, you should sketch these as part of your answer. Where an answer is incorrect, some marks may be given for a correct method, provided this is shown by written working. You are advised to show all working.

SECTION A (40 marks)

Answer all questions in the spaces provided.

1	[Maximum mark: 5]
	Find an expression for the inverse of $h(x) = \frac{3}{4 - 4e^{-5x}}, x \in \mathbb{R} \setminus \{0\}$
	and state the range of $y = h(x)$.


2 [Maximum mark: 5]
Solve for $w \in \mathbb{C}$:
$\begin{cases} 0 = (w+1)(w^*+1) + Im(w) \times Im(w^*) \\ -5 = Re(w^2) \end{cases}$

3	[Maximum mark: 6]
	 A polynomial function, P(x), satisfies the following conditions: deg P = 4 with leading coefficient 1; P(1) = 0;
	 P(2) = -1; sum of roots is 4; and,
	 sum of roots is 4, and, product of roots is -6.
	product of roots is 0.
	Find the remainder when $P(x)$ is divided by $(x + 1)$.
••••	
••••	
••••	
••••	
••••	
••••	
••••	
••••	

4 [Maximum mark: 5]

The graph of y = f'(x) is given below.

f' has two asymptotes x=3 and y=2; two zeros at x=-1,2; and a minimum at $x=\sqrt{2}$.

Justify why $f(x) \to 2x + C$ for some constant C as $x \to \infty$ or as $x \to -\infty$.

On the same set of axes above, sketch a possible graph of y = f(x).

.....

.....

.....

.....

5	[Maximum mark: 7]
	Let $f(x) = 2x^3 + 2x^2 - 5x + 1$ and $g(x) = \ln(x - 1)$.
	Find exactly the sum of the roots of $f(g(x)) = 0$.
•••••	
•••••	
•••••	
•••••	
•••••	
•••••	
•••••	
•••••	
•••••	
•••••	
•••••	
•••••	
•••••	
•••••	
•••••	

	Let $f(x) = x \cos x$, $x \in D_f$, where $D_f = [a, b]$ is a maximal domain for which f^{-1} exists and a and b are positive constants to be determined.
	By using the graph of $y = f(x)$, determine the smallest possible value of a and of b such that there exists a positive number $k \in D_f$ where $f(k) = f^{-1}(k)$.
	Hence, find k .
• • • • •	
•••••	
•••••	
•••••	

[Maximum mark: 5]

6

7	[Maximum mark: 7]
	How many different integers greater than 30 can be formed from the digits $\{1, 2, 2, 3, 3\}$ if no digit can be used more than once?
•••••	
•••••	
•••••	
•••••	
•••••	
•••••	
••••	
•••••	
•••••	
•••••	
•••••	
•••••	
•••••	
•••••	
••••	
•••••	
•••••	
•••••	

Do NOT write solutions on this page

SECTION B (40 marks)

Answer all questions on the foolscap paper provided. Please start each question on a new page.

8 [Maximum Mark: 9]

- (i) John has to crack a 3-digit code. These three digits are the first three terms of a sequence u_n respectively.
 Given that u_n is a quadratic polynomial in n, n∈ Z⁺ and u₄ = 14, u₆ = 40 and u₁₀ = 140, find u_n in terms of n and deduce the 3-digit code.
- (ii) A curve has equation $y = \tan^{-1}(3x^2 + x)$. Find the set of values of x for which the curve is increasing. [3]

9 [Maximum Mark: 12]

The terms of the sequence $a_1, a_2, a_3, ..., a_n$ are in arithmetic progression and $b_r = \left(\frac{1}{3}\right)^{a_r}$, for r = 1, 2, 3, ..., n.

(i) Show that the sequence
$$b_1, b_2, b_3, ..., b_n$$
 is geometric. [3]

Given that $b_1 = 9$ and the common ratio of the geometric progression is $\frac{1}{9}$,

- (ii) find an expression for a_r and the value of the common difference of the arithmetic progression, [4]
- (iii) find the least value of *n* such that the sum of the first *n* terms of the arithmetic progression exceeds 200, [3]

(iv) find
$$\sum_{r=1}^{n} \ln(b_r)$$
, leaving your answer in terms of n . [2]

TURN OVER

10 [Maximum Mark: 19]

(a) Using the formulae for $\sin(A \pm B)$ and $\cos(A \pm B)$, prove that

$$\sin(A+B) + \sin(A-B) = 2\sin A \cos B$$
and
$$\cos(A+B) + \cos(A-B) = 2\cos A \cos B$$
[4]

Hence, prove that
$$(\cos 8x + \cos 2x)^2 + (\sin 8x + \sin 2x)^2 = 4\cos^2 3x$$
. [4]

(b) Given that $\tan 3x \neq 2$, find the exact solution(s) of the equation

$$(\cos 8x + \cos 2x)^2 + (\sin 8x + \sin 2x)^2 = \sin 6x, \quad -\frac{\pi}{2} < x < \frac{\pi}{2}.$$
 [6]

- (c)(i) Express $f(x) = (\cos 8x + \cos 2x)^2 + (\sin 8x + \sin 2x)^2 2$ in the form $p\cos(qx)$. [2]
 - (ii) Find the period of f(x). [1]
 - (iii) For which values of k is |f(x)-k| strictly above the x-axis? [2]

END OF PAPER

Year 5 HL Maths Promotional Exam 2018 – Paper 2 Mark Scheme

Qn	Suggested solution	Mark
1	Inverse of Expo + Range	[Max mark: 5]
	Let $y = \frac{3}{4 - 4e^{-5x}}$. Then $x = -\frac{1}{5} \ln \left(1 - \frac{3}{4y} \right)$. Thus, $h^{-1}(x) = -\frac{1}{5} \ln \left(1 - \frac{3}{4x} \right)$.	M1 A1 A1
	Range of $h(x) = (0.75, +\infty)$.	(M1 for -0.75) A1
2	Complex Equation	[Max mark: 5]
	Let $w = a + ib$, $a, b \in \mathbb{R}$. $ (w+1)(w^*+1) = -Im(w) \times Im(w^*) \Rightarrow a^2 + b^2 + 2a + 1 = b^2 $ $ \Rightarrow (a+1)^2 = 0 \Rightarrow a = -1 $ $ \text{Re}(w^2) = -5 \Rightarrow 1 - b^2 = -5 \Rightarrow b = \pm \sqrt{6} \text{ (seen anywhere)} $	M1-attempt to simplify both expressions A1 M1-attempt to get the real component of w^2
3	Polynomial Function + Vieta's & Remainder/Factor Theorem	A1A1 [Max mark: 6]
	$P(x) = x^4 + px^3 + qx^2 + rx + s$	
	Product of roots = $-6 \Rightarrow s = -6$ Sum of roots = $4 \Rightarrow p = -4$	A1 A1
	$P(1) = 0$ and $P(2) = -1 \Longrightarrow q = \frac{3}{2}$ and $r = \frac{15}{2}$	M1A1A1
	Remainder is $P(-1) = -7$	A1
	OR	
	$P(x) = (x - 1)(x^3 + bx^2 + cx + d)$	A1
	Product of roots = $-6 \Rightarrow d = 6$ Sum of roots = $4 \Rightarrow b = -3$	A1 A1
	$P(2) = -1 \Longrightarrow (2-1)(2^3 - 3 \times 2^2 + 2c + 6) = -1 \Longrightarrow c = -\frac{3}{2}$	M1A1
	Remainder is $P(-1) = -7$	A1

4	Sketching f given the graph of f'	[Max mark: 5]
	$f'(x) \to 2$ as $x \to \pm \infty \Longrightarrow f(x)$ approaches an oblique asymptote of gradient 2.	R1
		G1 - $x < -1$ G1 - $-1 < x < \sqrt{2}$ G1 - $\sqrt{2} < x < 3$ G1 - $x > 3$
		Award G1G1G1G0 for correct concavity and behavior of f but without oblique asymptote
5	Zeros, Composition, Logarithms	[Max mark: 7]
	$f(1) = 0 \Rightarrow (x+1) \text{ divides } f(x).$	A1
	Using long/synthetic division or any other valid method, we get $f(x) = (x - 1)(2x^2 + 4x - 1)$	M1A1
	And so the other zeros of f are $-1 \pm \frac{1}{2}\sqrt{6}$.	A1
	Thus, the roots of $f(g(x)) = 0$ are $e + 1, e^{-1 + \frac{1}{2}\sqrt{6}} + 1$ and $e^{-1 - \frac{1}{2}\sqrt{6}} + 1$	M1A1
	Thus, the exact sum of the roots of $f(g(x)) = 0$ is $3 + e + e^{-1 + \frac{1}{2}\sqrt{6}} + e^{-1 - \frac{1}{2}\sqrt{6}}$	A1

6	1-1 Functions	[Max mark: 5]
	For $[a, b]$ to be maximal, $f(a)$ and $f(b)$ must be adjacent local extreme.	(R1 – award for any pair a and b resulting to a maximal domain)
	6.59 \mathcal{V} (6.28, 6.28) (6.44, 6.36) $\mathbf{f2}(x) = x$ f1(x)=x·cos(x) 0.5 11.01	G1 - y = x
	a = 3.43 $b = 6.44$	A1 A1
	b = 6.44 $k = 6.28$	A1
7	Combinatorics	[Max mark: 7]
	Case 1. Two digits 31, 32, 33 → 3 ways	A1
	Case 2. Three digits: XYZ or XXY $3! + 2C1*2C1*3 = 18 \text{ ways}$	M1A1
	Case 3. Four digits: XXYZ or XXYY 2C1*4!/2! + 4!/(2!2!) = 30 ways	M1A1
	Case 4. Five digits: XXYYZ 5!/(2!2!) = 30 ways	A1
	Total: 81 integers	A1
		*Award M1 for correct cases IF there is still an available method mark

8	Solving System of Linear Eq & Quadratics	[Max mark: 9]
(i)	Let $u_n = an^2 + bn + c$, where a, b, c are constants.	
		M1
	$u_4 = 16a + 4b + c = 14$	
	$u_6 = 36a + 6b + c = 40$	A1
	$u_{10} = 100a + 10b + c = 140$	
	Using GDC,	M1A1
	a = 2, $b = -7$ and $c = 10$	
	$\therefore u_n = 2n^2 - 7n + 10$	
	$u_1 = 2(1)^2 - 7(1) + 10 = 5$	
	$u_2 = 2(2)^2 - 7(2) + 10 = 4$	M1
	$u_3 = 2(3)^2 - 7(3) + 10 = 7$	
		A1
	∴ The 3-digit code is 547.	
(ii)	Method 1	
	f3 (x)=tan ⁻¹ (3-x ² +x)	G1
	(-0.167,-0.083)	A1 (x-ordinate of min pt)
	Set of values of x is $(-0.167, \infty)$.	A1
	$\frac{\text{Method 2}}{y = \tan^{-1} \left(3x^2 + x\right)}$	
	$\frac{dy}{dx} = \frac{1}{1 + \left(3x^2 + x\right)^2} \left(6x + 1\right)$	
	$\frac{dy}{dx} > 0 \Rightarrow x > -\frac{1}{6}$	
	Set of values of x is $\left(-\frac{1}{6}, \infty\right)$.	

9	AP and GP	[Max mark:12]
(i)	$\frac{b_r}{b_{r-1}} = \frac{\left(\frac{1}{3}\right)^{a_r}}{\left(\frac{1}{3}\right)^{a_{r-1}}} = \left(\frac{1}{3}\right)^{a_r - a_{r-1}} = \left(\frac{1}{3}\right)^d \equiv \text{ a constant}$	M1A1
	\therefore $d =$ common difference of the AP which is a constant, hence the sequence $b_1, b_2, b_3,, b_n$ is geometric.	R1
(ii)	Given $b_1 = 9$, $r = \frac{1}{9}$, $\Rightarrow b_r = 9\left(\frac{1}{9}\right)^{r-1} = \left(\frac{1}{9}\right)^{r-2} = \left(\frac{1}{3}\right)^{2r-4}$	M1
	$\therefore a_r = 2r - 4$ $d = a_r - a_{r-1} = 2r - 4 - [2(r-1) - 4] = 2$	A1 M1 A1
(iii)	Method 1 $\sum_{r=1}^{n} (2r-4) > 200$ $\sum_{r=1}^{n} (2r-4) - 200 > 0$	
	$\sum_{r=1}^{n} (2r-4) - 200 > 0$ Using GDC, table,	A1 M1
	x f1(x):= ▼ \(\sum_{\subset} \subseteq (-4+2*r,) \)	
	1370. 1446. 1520.	
	16. 8. 17. 38. Least value of <i>n</i> is 16.	A1
	Method 2	
	$a_1 = 2(1) - 4 = -2$	
	$S_n > 200$	
	$\Rightarrow \frac{n}{2} [2(-2) + (n-1)(2)] > 200$	M1
	$\Rightarrow \frac{n}{2}(2n-6) > 200$	
	$\Rightarrow n^2 - 3n - 200 > 0$	

	11.1 1.2 *Doc \Rightarrow RAD (1) \Rightarrow 12(x) \Rightarrow 2	A1
	n < -12.7 (rejected) or $n > 15.7$	
	Hence, the least value of n is 16.	A1
(iv)	$\sum_{r=1}^{n} \ln(b_r) = \sum_{r=1}^{n} \ln\left(\frac{1}{3}\right)^{2r-4}$	
	$=\ln\left(\frac{1}{3}\right)\sum_{r=1}^{n}(2r-4)$	M1
	$=\ln\left(\frac{1}{3}\right)\left[n(n-3)\right]$	A1
10	Trigo	[Max mark: 19]
(a)	$\sin(A+B) + \sin(A-B)$ $= \sin A \cos B + \sin B \cos A + \sin A \cos B - \sin B \cos A$ $= 2\sin A \cos B \text{ (proven)}$	M1A1
	$\cos(A+B)+\cos(A-B)$	M1A1
	$= \cos A \cos B - \sin A \sin B + \cos A \cos B + \sin A \sin B$ $= 2 \cos A \cos B \text{ (proven)}$	

10(b)	$(\cos 8x + \cos 2x)^2 + (\sin 8x + \sin 2x)^2 = \sin 6x, -\frac{\pi}{2} < x < \frac{\pi}{2}$	
	$4\cos^2 3x = \sin 6x$	
	$4\cos^2 3x = 2\sin 3x \cos 3x$	M1A1
	$2\cos 3x \left(2\cos 3x - \sin 3x\right) = 0$	A1
	$\cos 3x = 0 \qquad \qquad \text{or} \qquad 2\cos 3x - \sin 3x = 0$	M1
	$\Rightarrow 3x = \pm \frac{\pi}{2}$ or $\tan 3x = 2$ (rejected as $\tan 3x \neq 2$)	
	or $\tan 3x = 2$ (rejected as $\tan 3x \neq 2$) $\Rightarrow x = \pm \frac{\pi}{6}$	A1A1
(c)(i)	$f(x) = (\cos 8x + \cos 2x)^2 + (\sin 8x + \sin 2x)^2 - 2$	
	$=4\cos^2 3x - 2$	
	$=2\left(2\cos^23x-1\right)$	M1A1
	$=2\cos 6x$	
(ii)	Period of $f(x) = \frac{2\pi}{6} = \frac{\pi}{3}$	A1
(iii)	k < -2 or k > 2	A1A1

STUDENT NAME:	CANDIDATE SESSION NUMBER
OTODERT RAME.	0 2 5 0 1 2
TEACHER NAME:	EXAMINATION CODE

ST. JOSEPH'S INSTITUTION YEAR 5 END OF YEAR EXAMINATION 2019

1 hr 30 mins

MATHEMATICS 17 October 2019
HIGHER LEVEL

PAPER 1

Thursday 0800 – 0930 hrs

INSTRUCTIONS TO CANDIDATES

- Write your session number in the boxes above.
- Write your name and teacher's name in the spaces provided.
- Do not open this examination paper until instructed to do so.
- **Section A**: Answer all questions showing working and answers in the spaces provided in the exam paper.
- Section B: Answer all questions using the foolscap paper provided.
- The use of calculators is **not** permitted in this paper.
- A clean copy of the **Mathematics HL Formulae Booklet** is required for this paper.
- Unless otherwise stated in the question all numerical answers are to be given exactly.
- The maximum mark for this examination paper is [80 marks].
- This question paper consists of **10** printed pages including the Cover Sheet.
- Sections A and B are to be submitted separately.

FOR MARKER USE ONLY:

Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8	Q9	Q10	TOTAL
										/80

Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by working and/or explanations. Where an answer is incorrect, some marks may be given for a correct method, provided this is shown by written working. You are advised to show all working.

SECTION A (40 marks)

Answer all questions in the spaces provided.

1 [Maximum mark: 7]

The function f is defined as $f: x \mapsto \ln \sqrt{x}$, $x \in (0, \infty)$.

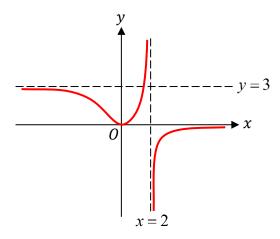
Some values are given in the table below for the function g and its derivative g'.

х	2	e	3	5
g(x)	-3e	-e ²	-е	4e ²
g '(x)	-e ³	-е	$\frac{\mathrm{e}}{2}$	e ²

(a)	Show that $f'(e) = \frac{1}{2e}$.	[2]
-----	------------------------------------	-----

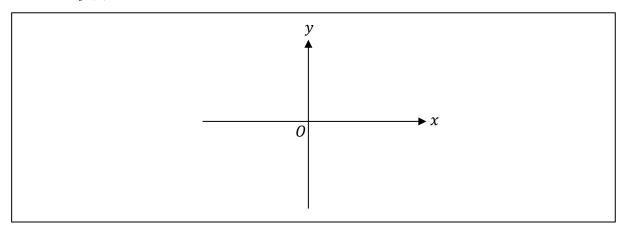
(b) It is given that $h(x) = f(x) \times g(2\ln x + 3)$.

Find the value of h'	(e).	. [51
illa tile value of ti	10,	• 19	~ .

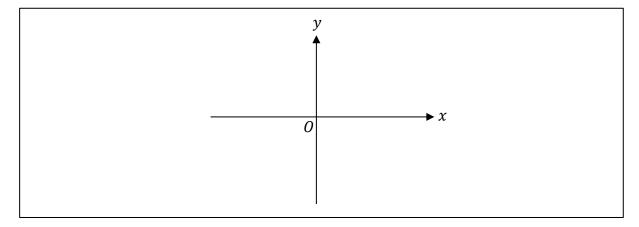


2 [Maximum	mark:	4]
------------	-------	----

Prove that $\tan(\pi + \arccos x) = \frac{-\sqrt{1-x^2}}{x}$, where $x \in [-1,0)$.


3 [Maximum mark: 7]

The graph of the function f has asymptotes at x = 2, y = 0 and y = 3 and a minimum point at the origin, as shown in the figure below.



Sketch the following graphs on the axes below, indicating clearly any axial intercepts, turning points and the equations of all asymptotes:

$$\mathbf{(a)} \qquad y = \frac{1}{f(x)},\tag{3}$$

(b)
$$y = f'(x)$$
. [4]

4 [Maximum mark: 5]

Solve the equations $(1+i)w+iz=2i$ and $(1-i)z-2w=2$, given z and w are in the form
$a+bi$ where $a, b \in \mathbb{R}$ and $i^2 = -1$.

5	[Maximum mark: 6]	
	It is given that the curve C is defined by $e^{x\sin y} + 2x + \ln y = 5$.	
	Find an expression for $\frac{dy}{dx}$ as a function of both x and y .	[6]

6 [Maximum mark: 5]

Expand and simplify the expression $(z+1)(z^*+1)$, where z^* is the conjugate of z .
Hence, or otherwise, prove that $\frac{z-1}{z+1}$ is a purely imaginary number if $ z =1$.
•••••••••••••••••••••••••••••••••••••••

[Ma	ximum mark: 6]	
In th	the triangle ABC , it is given that $AC = 8 \text{ cm}$, $BC = a \text{ cm}$, $\angle BAC = 30^{\circ}$ and $\angle ABC = \theta^{\circ}$.	
(a)	If $a = 4\sqrt{2}$, find the possible values of θ .	[3]
(b)	Find the set of all the values of a for which there is a unique value for the length	
	of AB .	[3]

SECTION B (40 marks)

Answer all questions on the foolscap paper provided. Please start each question on a new page.

8 [Maximum mark: 15]

Let $P(x) = 3kx^2 - kx + 1$ for some real number k such that P(x) > 0 for all $x \in \mathbb{R}$.

(a) Determine the range of possible values of k.

[4]

(b) Determine the value of k so that P is tangent to y = kx.

[4]

Let Q(x) be a polynomial such that for k = -1, $Q(x) = (x + 2) \times P(x) - (x + 2)$, $x \in \mathbb{R}$.

(c) Find the remainder when Q(x) is divided by (x-1).

[3]

(d) Find the remainder when Q(x) is divided by (x-1)(x+1).

[4]

9 [Maximum mark: 13]

(a) Determine the coefficient of x^8 in the expansion of $(2-x)^{10}$.

[4]

(b) In the expansion of $(2 + x^2)^8$ written in ascending powers of x, two consecutive terms share the same coefficient.

Determine the two powers of x having the same coefficients.

[5]

(c) Suppose

$$(2-x)^{10}(2+x^2)^8 = 2^n - 1310720x + \dots + Mx^{25} + x^{26}.$$

Find the value of n and of M.

[4]

Do NOT write solutions on this page.

10 [Maximum mark: 12]

(a) Find the solutions to the equation, leaving your answer in the Cartesian form: [3] (z-1)

$$z-1=\mathrm{i}\left(\frac{z-1}{z}\right)$$
, $z\in\mathbb{C}$ and $\mathrm{i}^2=-1$.

(b) Let $f_n(x) = (x - u_1)(x - u_2)(x - u_3) \cdots (x - u_n)$, $x \in \mathbb{R}$, for some positive integer n, where u_1, u_2, \dots, u_n form a geometric sequence.

Further, suppose u_1 and u_3 satisfy the equation in (a) such that $\arg u_1 < \arg u_3$.

i. Find the possible values of the common ratio, leaving your answer in the Cartesian form.

[5]

ii. Evaluate $f_9(0)$, leaving your answer in the Cartesian form.

[4]

End of Paper

Year 5 HL Maths End of Year Exam 2019 – Paper 1 Mark Scheme

Qn	Suggested solution	Markscheme
	Section A	3.5
(a)	Differentiation, Chain Rule, Product Rule	Max mark: 7
(a)	$f(x) = \ln \sqrt{x} = \frac{1}{2} \ln x$ $f'(x) = \frac{1}{2x}$ $\therefore f'(e) = \frac{1}{2e}$	
	$f'(x) = \frac{1}{2x}$	M1 A1
	$\therefore f'(e) = \frac{1}{2e}$	AG
(b)	$h(x) = f(x)g(2\ln x + 3)$	
	$h'(x) = f(x)g'(2\ln x + 3) \cdot \frac{2}{x} + f'(x)g(2\ln x + 3)$	M1 A1 (Product rule)
	$h'(e) = f(e)g'(2(1)+3)\cdot\frac{2}{e}+f'(e)g(2(1)+3)$	M1
	$= \frac{2f(e)g'(5)}{e} + f'(e)g(5)$	
	$=\frac{2\left(\frac{1}{2}\right)e^2}{e} + \left(\frac{1}{2e}\right)4e^2$	A1
	= e + 2e $= 3e$	A1
2	Trigoromoton Angtrigo	Max mark: 4
<u> </u>	Trigonometry, Arctrigo	Max mark. 4
	$\tan\left(\pi + \arccos x\right) = -\frac{\sqrt{1-x^2}}{x}$, where $x \in [-1, 0]$	
	Let $A = \arccos x$. Then, $\cos A = x$.	A1
	Since $x \in [-1, 0]$, then $\frac{\pi}{2} \le A \le \pi$	
	Method 1: Then, $\sin A = \sqrt{1-\cos^2 A} = \sqrt{1-x^2}$	M1
	Therefore, $\tan A = \frac{\sin A}{\cos A} = \frac{\sqrt{1 - x^2}}{x}$	A1
	Method 2:	
	$\sqrt{1-x^2}$ $1 \qquad \cos A = \frac{x}{1}$	
	By Pythagora's Theorem, oppo. side $= \sqrt{1-x^2}$	M1
	$\therefore \tan A = \frac{\sqrt{1 - x^2}}{x}$	AG
	x	

Continuing from either method: Hence, $LHS = \tan(\pi - A)$ $= -\tan A \text{ (property: } \tan(\pi - A) = -\tan A \text{ for any } A)$ $= -\frac{\sqrt{1 - x^2}}{x}$ Alternative reasoning: $\tan(\pi - A) = \frac{\tan \pi - \tan A}{1 - \tan \pi \tan A}$ $= \frac{0 - \tan A}{1 - 0}$ $= -\tan A$ 3 Functions/Differentiation, Graphs of reciprocal and derivative (a) Al shape Al horizontal asymptote Al vertical asymptote Al vertical asymptote Al vertical asymptote Al min point	On	Suggested solution	Markscheme
Hence, $LHS = \tan(\pi - A)$ (R1) $= -\tan A \text{ (property: } \tan(\pi - A) = -\tan A \text{ for any } A)$ $= -\frac{\sqrt{1 - x^2}}{x}$ Alternative reasoning: $\tan(\pi - A) = \frac{\tan \pi - \tan A}{1 - \tan \pi \tan A}$ $= \frac{0 - \tan A}{1 - 0}$ $= -\tan A$ 3 Functions/Differentiation, Graphs of reciprocal and derivative Al shape Al horizontal asymptote Al vertical asymptote (b) $x = 0$ Al shape Al horizontal asymptote Al vertical asymptote Al vertical asymptote Al noine point	QII		Wiai KSCHellie
$LHS = \tan(\pi - A)$ $= -\tan A \text{ (property: } \tan(\pi - A) = -\tan A \text{ for any } A)$ $= -\frac{1}{x}$ $\frac{Alternative \text{ reasoning:}}{1 - \tan \pi \tan A}$ $= \frac{0 - \tan A}{1 - \tan A}$ $= -\frac{1}{x}$ (a) $\frac{3}{x}$ Functions/Differentiation, Graphs of reciprocal and derivative (a) y $x = 0$ Al shape Al horizontal asymptote Al vertical asymptote Al vertical asymptote Al vertical asymptote Al vertical asymptote Al min point		Continuing from Cities method.	
$LHS = \tan(\pi - A)$ $= -\tan A \text{ (property: } \tan(\pi - A) = -\tan A \text{ for any } A)$ $= -\frac{1}{x}$ $\frac{Alternative \text{ reasoning:}}{1 - \tan \pi \tan A}$ $= \frac{0 - \tan A}{1 - \tan A}$ $= -\frac{1}{x}$ (a) $\frac{3}{x}$ Functions/Differentiation, Graphs of reciprocal and derivative (a) y $x = 0$ Al shape Al horizontal asymptote Al vertical asymptote Al vertical asymptote Al vertical asymptote Al vertical asymptote Al min point		Hence.	
$= -\tan A \text{ (property: } \tan(\pi - A) = -\tan A \text{ for any } A)$ $= -\frac{\sqrt{1 - x^2}}{x}$ Alternative reasoning: $\tan(\pi - A) = \frac{\tan \pi - \tan A}{1 - \tan \pi \tan A}$ $= \frac{0 - \tan A}{1 - 0}$ $= -\tan A$ 3 Functions/Differentiation, Graphs of reciprocal and derivative (a) Al shape Al horizontal asymptote Al vertical asymptote (b) Al shape Al horizontal asymptote Al vertical asymptote Al vertical asymptote Al noinzontal asymptote Al noinzontal asymptote			(R1)
$= -\frac{\sqrt{1-x^2}}{x}$ Alternative reasoning: $\tan(\pi - A) = \frac{\tan \pi - \tan A}{1 - \tan \pi \tan A}$ $= \frac{0 - \tan A}{1 - 0}$ $= - \tan A$ 3 Functions/Differentiation, Graphs of reciprocal and derivative (a) Al shape Al horizontal asymptote Al vertical asymptote (b) y Al shape Al horizontal asymptote Al vertical asymptote			
Alternative reasoning: $\tan(\pi - A) = \frac{\tan \pi - \tan A}{1 - \tan \pi \tan A}$ $= \frac{0 - \tan A}{1 - 0}$ $= - \tan A$ 3 Functions/Differentiation, Graphs of reciprocal and derivative (a) Al shape Al horizontal asymptote Al vertical asymptote (b) y Al shape Al horizontal asymptote Al vertical asymptote Al vertical asymptote Al vertical asymptote			AG
Alternative reasoning: $\tan(\pi - A) = \frac{\tan \pi - \tan A}{1 - \tan \pi \tan A}$ $= \frac{0 - \tan A}{1 - 0}$ $= - \tan A$ 3 Functions/Differentiation, Graphs of reciprocal and derivative (a) Al shape Al horizontal asymptote Al vertical asymptote (b) y Al shape Al horizontal asymptote Al vertical asymptote Al vertical asymptote Al vertical asymptote		$\sqrt{1-x^2}$	
$\tan(\pi - A) = \frac{\tan \pi - \tan A}{1 - \tan \pi \tan A}$ $= \frac{0 - \tan A}{1 - 0}$ $= - \tan A$ 3 Functions/Differentiation, Graphs of reciprocal and derivative (a) A1 shape A1 horizontal asymptote A1 vertical asymptote (b) y A1 shape A1 horizontal asymptote A1 writical asymptote		$\equiv -{x}$	
$\tan(\pi - A) = \frac{\tan \pi - \tan A}{1 - \tan \pi \tan A}$ $= \frac{0 - \tan A}{1 - 0}$ $= - \tan A$ 3 Functions/Differentiation, Graphs of reciprocal and derivative (a) A1 shape A1 horizontal asymptote A1 vertical asymptote (b) y A1 shape A1 horizontal asymptote A1 writical asymptote			
$= \frac{0 - \tan A}{1 - 0}$ $= - \tan A$ 3 Functions/Differentiation, Graphs of reciprocal and derivative (a) A1 shape A1 horizontal asymptote A1 vertical asymptote (b) y A1 shape A1 horizontal asymptote A1 writical asymptote		Alternative reasoning:	
		$\tan(\pi - A) = \tan \pi - \tan A$	
		$\frac{\tan(\pi - A) - 1}{1 - \tan \pi \tan A}$	
		$0 - \tan A$	
		$=\frac{1-0}{1-0}$	
3 Functions/Differentiation, Graphs of reciprocal and derivative (a) A1 shape A1 horizontal asymptote A1 vertical asymptote (b) y $y = 0$ A1 shape A1 horizontal asymptote A1 wertical asymptote A1 wertical asymptote A1 wertical asymptote			
(a) y 0 $x = 0$ A1 shape A1 horizontal asymptote A1 vertical asymptote A1 horizontal asymptote A1 wertical asymptote A1 wertical asymptote A1 wertical asymptote A1 min point			
Al shape Al horizontal asymptote Al vertical asymptote Al horizontal asymptote Al horizontal asymptote Al horizontal asymptote Al vertical asymptote Al vertical asymptote Al min point	3	Functions/Differentiation, Graphs of reciprocal and derivative	Max mark: 7
$y = \frac{1}{3}$ Al horizontal asymptote $x = 0$ Al vertical asymptote $x = 0$ Al shape Al horizontal asymptote $x = 0$ Al wertical asymptote	(a)	<u> </u>	
$y = \frac{1}{3}$ Al horizontal asymptote $x = 0$ Al vertical asymptote $x = 0$ Al shape Al horizontal asymptote $x = 0$ Al wertical asymptote		<u></u>	
asymptote A1 vertical asymptote $x = 0$ A1 shape A1 horizontal asymptote A1 vertical asymptote A1 vertical asymptote A1 vertical asymptote A1 min point			A1 shape
asymptote A1 vertical asymptote $x = 0$ A1 shape A1 horizontal asymptote A1 vertical asymptote A1 vertical asymptote A1 vertical asymptote A1 min point			A 1 1 1
(b) $x = 0$ A1 vertical asymptote A1 shape A1 horizontal asymptote A1 vertical asymptote A1 vertical asymptote A1 vertical asymptote A1 min point		$y = \frac{1}{2}$	
(b) $x = 0$ A1 vertical asymptote A1 shape A1 horizontal asymptote A1 vertical asymptote A1 vertical asymptote A1 min point		$0 \xrightarrow{2} x$	asymptote
(b) $x = 0$ A1 shape A1 horizontal asymptote A1 vertical asymptote A1 min point			A1 vertical
(b) $x = 0$ Al shape Al horizontal asymptote Al vertical asymptote Al min point			
(b) A1 shape A1 horizontal asymptote A1 vertical asymptote A1 min point			J T
A1 shape A1 horizontal asymptote A1 vertical asymptote A1 min point		$x \pm 0$	
A1 shape A1 horizontal asymptote A1 vertical asymptote A1 min point	(b)	21	
A1 horizontal asymptote $y = 0$ A1 vertical asymptote A1 min point	(-)		A1 shape
y = 0 x A1 vertical asymptote A1 min point			
y = 0 $y = 0$ A1 vertical asymptote A1 min point		/	A1 horizontal
y = 0 Al vertical asymptote A1 min point			asymptote
asymptote A1 min point		$\longrightarrow x$	
A1 min point		y = 0	
			asymptote
			A1 min point in
x = 2 negative x		$ x \neq 2 $	negative x
region.			_
1 , 3,	4		Max mark: 5
$(1+i)w + zi = 2i \dots (1)$		$(1+i)w + zi = 2i \dots (1)$	
(1-i)z-2w=2(2)			
Method 1: By elimination v1			
			M1 (Equalizing
			the coefficients)
(1+i)(1-i)w+2i(1-i)-2i(1-i)			
$(1+i)z + 2w = 2 + 2i \dots (3)$		(1+i)z + 2w = 2+2i(3)	

_	Year 5 HL Maths End of Year Exam 20	
Qn	Suggested solution	Markscheme
	(2)+(3), we have	M1 (Eliminating
	2z = 4 + 2i	one variable)
		A1
	z = 2 + i	
	Subst $z = 2 + i$ into (2), we have	М1
	(1-i)(2+i)-2w=2	M1
	2w = (3-i)-2	A1
	1-i	
	$w = \frac{1-i}{2}$	
	2	
	364 14 D P P P A	
	Method 2: By elimination v2	
	$(1)\times(-1-i)$, we have	M1 (Equalizing
	(1+i)(-1-i)w + zi(-1-i) = 2i(-1-i)	M1 (Equalizing
		the coefficients)
	(1-i)z - 2iw = 2-2i(3)	
	(2)-(3), we have	
	(-2+2i)w = 2i	
	(-2+2i)w-2i	
	2i i	M1 (Eliminating
	$w = \frac{2i}{-2+2i} = \frac{i}{-1+i}$	
	= 1 = v	one variable)
	$=\frac{i}{-1+i}\times\frac{-1-i}{-1-i}$	
	-1+i $-1-i$	M1
	1-i	(Rationalising)
	$=\frac{1-i}{2}$	A1
	\mathcal{L}	
	Subst $w = \frac{1-i}{2}$ into (2), we have	
	$\frac{1}{2}$	
	(1-i)	
	$(1-i)z-2\left(\frac{1-i}{2}\right)=2$	
	(2)	
	(1-i)z = 3-i	
	$z = \frac{3-i}{1-i} \times \frac{1+i}{1+i}$	
	1-i $1+i$	
	4+2i	
	$=\frac{4+2i}{2}$	
	_	A1
	=2+i	Al
	Method 3: By substitution	
	From (2),	
	(1-i)z-2=2w	
		M1 (Subject)
	$w = \frac{(1-i)z - 2}{2} \qquad(3)$	
	$w = \frac{1}{2} \qquad \dots \tag{3}$	
	2	
	Subst (3) into (1),	M1 (Eliminating
		M1 (Eliminating
		one variable)

Qn	Suggested solution	Markscheme
1		Wat Recheffic
	$(1+i)\cdot\frac{(1-i)z-2}{2} = (2-z)i$	
	(1+i)(1-i)z-2(1+i)	M1
	$\frac{(1+i)(1-i)z-2(1+i)}{2} = (2-z)i$	(Rationalisation)
	$\frac{2z-2(1+i)}{2}=2i-zi$	
		A1
	z - (1+i) = 2i - zi	
	z + zi = 1 + 3i	
	$z = \frac{1+3i}{1+i} \cdot \frac{1-i}{1-i}$	
	$=\frac{(1+3)+(-1+3)i}{2}$	A1
	=2+i	
	Subst $z = 2 + i$ into (3), we have	
	$w = \frac{(1-i)(2+i)-2}{2}$	
	L	
	$=\frac{3-i-2}{2}$	
	$=\frac{1-i}{2}$	
	Ans: $z = 2 + i$, $w = \frac{1 - i}{2}$	
5	Implicit Differentiation	Max mark: 6
	$e^{x\sin y} + 2x + \ln y = 5$	
	Differentiating w.r.t. x ,	
	$1 d \cdot \dots \cdot d \cdot \dots$	M1 (Implicit
	$\frac{d}{dx}\left(e^{x\sin y} + 2x + \ln y\right) = \frac{d}{dx}(5)$	M1 (Implicit differentiation)
	$\frac{d}{dx}\left(e^{x\sin y} + 2x + \ln y\right) = \frac{d}{dx}(5)$ $\frac{dy}{dx} = \frac{1}{2} \frac{dy}{dx} = 0$	differentiation)
	$\frac{d}{dx}\left(e^{x\sin y} + 2x + \ln y\right) = \frac{d}{dx}(5)$ $e^{x\sin y}\left(\sin y + x\cos y\frac{dy}{dx}\right) + 2 + \frac{1}{y}\frac{dy}{dx} = 0$	
	ax ax	differentiation) M1 (chain)
	$e^{x\sin y} \left(\sin y + x\cos y \frac{dy}{dx}\right) + 2 + \frac{1}{y} \frac{dy}{dx} = 0$	differentiation) M1 (chain) M1 (product)
	ax ax	differentiation) M1 (chain) M1 (product) A1
	$e^{x\sin y} \left(\sin y + x\cos y \frac{dy}{dx} \right) + 2 + \frac{1}{y} \frac{dy}{dx} = 0$ $\left(e^{x\sin y} x\cos y + \frac{1}{y} \right) \frac{dy}{dx} = -\left(2 + e^{x\sin y} \sin y \right)$	differentiation) M1 (chain) M1 (product) A1 M1 ($\frac{dy}{dx}$
	$e^{x\sin y} \left(\sin y + x \cos y \frac{dy}{dx} \right) + 2 + \frac{1}{y} \frac{dy}{dx} = 0$ $\left(e^{x\sin y} x \cos y + \frac{1}{y} \right) \frac{dy}{dx} = -\left(2 + e^{x\sin y} \sin y \right)$ $\left(e^{x\sin y} xy \cos y + 1 \right) \frac{dy}{dx} = -y \left(2 + e^{x\sin y} \sin y \right)$	differentiation) M1 (chain) M1 (product) A1
	$e^{x\sin y} \left(\sin y + x \cos y \frac{dy}{dx} \right) + 2 + \frac{1}{y} \frac{dy}{dx} = 0$ $\left(e^{x\sin y} x \cos y + \frac{1}{y} \right) \frac{dy}{dx} = -\left(2 + e^{x\sin y} \sin y \right)$ $\left(e^{x\sin y} xy \cos y + 1 \right) \frac{dy}{dx} = -y \left(2 + e^{x\sin y} \sin y \right)$	differentiation) M1 (chain) M1 (product) A1 M1 ($\frac{dy}{dx}$
	$e^{x\sin y} \left(\sin y + x\cos y \frac{dy}{dx} \right) + 2 + \frac{1}{y} \frac{dy}{dx} = 0$ $\left(e^{x\sin y} x\cos y + \frac{1}{y} \right) \frac{dy}{dx} = -\left(2 + e^{x\sin y} \sin y \right)$	differentiation) M1 (chain) M1 (product) A1 M1 ($\frac{dy}{dx}$ subject)
	$e^{x\sin y} \left(\sin y + x \cos y \frac{dy}{dx} \right) + 2 + \frac{1}{y} \frac{dy}{dx} = 0$ $\left(e^{x\sin y} x \cos y + \frac{1}{y} \right) \frac{dy}{dx} = -\left(2 + e^{x\sin y} \sin y \right)$ $\left(e^{x\sin y} xy \cos y + 1 \right) \frac{dy}{dx} = -y \left(2 + e^{x\sin y} \sin y \right)$	differentiation) M1 (chain) M1 (product) A1 M1 ($\frac{dy}{dx}$ subject)
6	$e^{x\sin y} \left(\sin y + x \cos y \frac{dy}{dx} \right) + 2 + \frac{1}{y} \frac{dy}{dx} = 0$ $\left(e^{x\sin y} x \cos y + \frac{1}{y} \right) \frac{dy}{dx} = -\left(2 + e^{x\sin y} \sin y \right)$ $\left(e^{x\sin y} xy \cos y + 1 \right) \frac{dy}{dx} = -y \left(2 + e^{x\sin y} \sin y \right)$	differentiation) M1 (chain) M1 (product) A1 M1 ($\frac{dy}{dx}$ subject)
6	$e^{x\sin y} \left(\sin y + x \cos y \frac{dy}{dx} \right) + 2 + \frac{1}{y} \frac{dy}{dx} = 0$ $\left(e^{x\sin y} x \cos y + \frac{1}{y} \right) \frac{dy}{dx} = -\left(2 + e^{x\sin y} \sin y \right)$ $\left(e^{x\sin y} xy \cos y + 1 \right) \frac{dy}{dx} = -y \left(2 + e^{x\sin y} \sin y \right)$ $\frac{dy}{dx} = -\frac{y \left(2 + e^{x\sin y} \sin y \right)}{e^{x\sin y} xy \cos y + 1} $ (o.e.)	differentiation) M1 (chain) M1 (product) A1 M1 ($\frac{dy}{dx}$ subject) A1
6	$e^{x\sin y} \left(\sin y + x \cos y \frac{dy}{dx} \right) + 2 + \frac{1}{y} \frac{dy}{dx} = 0$ $\left(e^{x\sin y} x \cos y + \frac{1}{y} \right) \frac{dy}{dx} = -\left(2 + e^{x\sin y} \sin y \right)$ $\left(e^{x\sin y} xy \cos y + 1 \right) \frac{dy}{dx} = -y \left(2 + e^{x\sin y} \sin y \right)$ $\frac{dy}{dx} = -\frac{y \left(2 + e^{x\sin y} \sin y \right)}{e^{x\sin y} xy \cos y + 1} $ (o.e.) $Complex Numbers, Properties of conjugate$	differentiation) M1 (chain) M1 (product) A1 M1 ($\frac{dy}{dx}$ subject) A1
6	$e^{x\sin y} \left(\sin y + x\cos y \frac{dy}{dx}\right) + 2 + \frac{1}{y} \frac{dy}{dx} = 0$ $\left(e^{x\sin y} x \cos y + \frac{1}{y}\right) \frac{dy}{dx} = -\left(2 + e^{x\sin y} \sin y\right)$ $\left(e^{x\sin y} x y \cos y + 1\right) \frac{dy}{dx} = -y\left(2 + e^{x\sin y} \sin y\right)$ $\frac{dy}{dx} = -\frac{y\left(2 + e^{x\sin y} \sin y\right)}{e^{x\sin y} x y \cos y + 1} \qquad \text{(o.e.)}$ $\frac{Complex Numbers, Properties of conjugate}{(i) (z+1)(z*+1)}$	differentiation) M1 (chain) M1 (product) A1 M1 ($\frac{dy}{dx}$ subject) A1

On	Suggested solution	Markscheme
Qn	Suggested solution (ii) Method 1: Hongo	wiai KSCHeIHe
	(ii) Method 1: Hence	
	$\frac{z-1}{z+1}$	
	$= \frac{z-1}{z+1} \cdot \frac{z^*+1}{z^*+1}$	3.41
	$\frac{z}{z+1} \cdot \frac{z}{z+1}$	M1
	$= \frac{zz^* + (z - z^*) - 1}{zz^* + (z + z^*) + 1}$	A 1
		A1
	$= \frac{ z ^2 + 2\operatorname{Im}(z) - 1}{ z ^2 + 2\operatorname{Re}(z) + 1}$	
	$=\frac{1}{ z ^2+2R_2(z)+1}$	
	!!	
	$=\frac{1+2 \text{Im}(z)-1}{z}$	
	$-\frac{1}{1+2 \operatorname{Re}(z)+1}$	
		A1
	$= \frac{\text{Im}(z)}{1 + \text{Re}(z)}, \text{ which is a purely imaginary number}$	
	1 + Re(z)	R1
	Method 2: Otherwise	
	Let $z = a + ib$, where $a, b \in \mathbb{R}$	
	z-1 $ai+b-1$	
	Then, $\frac{z-1}{z+1} = \frac{ai+b-1}{ai+b+1}$	
	$=\frac{a+ib-1}{a+a+a+a+a+a+a+a+a+a+a+a+a+a+a+a+a+a+a+$	
	a+ib+1	
	$= \frac{(a-1)+ib}{(a+1)+ib} \times \frac{(a+1)-ib}{(a+1)-ib}$	
	$-\frac{a+1+ib}{(a+1)-ib}$	M1
	$= \frac{\left[(a-1)(a+1) + b^2 \right] + i \left[b(a+1) - b(a-1) \right]}{(a+1)^2 + b^2}$	
	$ (a+1)^2+b^2$	
	$\begin{bmatrix} a^2 & 1 + b^2 \end{bmatrix} + i \begin{bmatrix} ab + b & ab + b \end{bmatrix}$	
	$= \frac{\left[a^2 - 1 + b^2\right] + i\left[ab + b - ab + b\right]}{(a+1)^2 + b^2}$	
	$(a+1)^2+b^2$	A1
	$= \frac{\left[(a^2 + b^2) - 1 \right] + i \left[2b \right]}{(a+1)^2 + b^2}, (z = 1 \Rightarrow a^2 + b^2 = 1)$	
	$=\frac{[(a+b)^{2}]^{2}+[2b]}{[2]^{2}}, (z =1 \Rightarrow a^{2}+b^{2}=1)$	
		A1
	$\begin{bmatrix} 2b \end{bmatrix}$	
	$=i\left[\frac{2b}{(a+1)^2+b^2}\right]$, which is a purely imaginary number	
	$\lfloor (a+1) + b \rfloor$	R1
_		
7	Trigonometry, Ambiguous case of the Sine Rule	Max mark: 6
(a)	$_{f .}B_{f 1}$	
	B_2 θ_1 a a a a	
	a	
	θ_2	
	A 8 cm	
	Given $a = 4\sqrt{2}$	
	Given $a = 4\sqrt{2}$, $\sin \theta = \sin 30^{\circ}$	
	By sine rule, $\frac{\sin \theta}{8} = \frac{\sin 30^{\circ}}{4\sqrt{2}}$	M1
	$8(\frac{1}{2})$ 1	
	Simplifying, $\sin \theta = \frac{8(\frac{1}{2})}{4\sqrt{2}} = \frac{1}{\sqrt{2}}$	
	Solving, $\theta = 45^{\circ}$ or 135°	A1 A1
L		<u>l</u>

Year 5 HL Maths End of Year Exam 2019/P1 Mark Scheme

Qn	Suggested solution	Markscheme
(b)	Unique length of AB means that the triangle is either (1) a right-angled triangle ($\angle ABC = 90^{\circ}$), or (2) length of BC exceeds the length of AC .	R1
	For (1), $\sin 30^{\circ} = \frac{a}{8} \Rightarrow a = 8 \sin 30^{\circ} \Rightarrow a = 4$	A1
	A 8 cm C	
	For (2), $a \ge 8$ Therefore, $a = 4$ or $a \ge 8$.	A1

Qn	Suggested solution	Markscheme
	Section B	
8	Quadratic (Discriminants) & Polynomial Functions	[Max mark: 15]
(a)	Observe that if $k = 0$, $P(x) = 1 > 0$ for all $x \in \mathbb{R}$.	A1
	Suppose, $k \neq 0$. Then $P(x) > 0$ for all $x \in \mathbb{R}$ only if $(-k)^2 - 4(3k)(1) < 0$	M1
	$\Rightarrow k^2 - 12k < 0$ $\Rightarrow k(k - 12) < 0$ $\Rightarrow 0 < k < 12$	M1 A1
	Thus, $0 \le k < 12$.	
(b)	$3kx^2 - kx + 1 = kx \Rightarrow 3kx^2 - 2kx + 1 = 0$ must have zero discriminant, i.e., $(-2k)^2 - 4(3k)(1) = 0$.	A1
	$\Rightarrow 4k^2 - 12k = 4k(k-3) = 0$ $\Rightarrow k = 3 \text{ or } k = 0$	M1 A1 – both
	Reject $k = 0$ as the resulting functions, e.g., $P(x) = 1$ and $y = 0$, are not tangent.	A1 – reasoning not needed
(c)	$Q(x) = (x+2)(-3x^2 + x + 1) - (x+2)$ = $(x+2)(-3x^2 + x)$	A1 (seen anywhere)
	Remainder = $Q(1) = (1+2)(-3+1) = -6$	M1A1
(d)	Method 1	
	Let $Q(x) = (x^2 - 1)S(x) + (Ax + B)$ for some $S(x)$ and real numbers A and B .	A1
	Q(1) = A + B = -6 Q(-1) = -A + B = (1)(-3 - 1) = -4	A1
	$\Rightarrow A = -1 \text{ and } B = -5.$	M1
	Thus, the remainder is $-x - 5$.	A1

Qn	Suggested solution	Markscheme
	Method 2	
	By long division, $x^{2} - 1 = \begin{vmatrix} -3x & -5 \\ -3x^{2} - 5x + 2x \\ -3x^{2} + 3x \end{vmatrix}$ $-5x^{2} - x$ $-5x^{2} + 5$	A1A1 – correct quotient M1 – correct division
	Thus, the remainder is $-x - 5$.	A1
	Method 3 $Q(x) = (x+2)(-3x^2 + x)$ $= -3x^3 - 5x^2 + 2x$ $= -3x^3 - 5x^2 + (3x - x) + (5 - 5)$	A1 A1
	$= (-3x^{3} + 3x) + (-5x^{2} + 5) + (-x - 5)$ $= -3x(x^{2} - 1) - 5(x^{2} - 1) + (-x - 5)$ $= (x^{2} - 1)(-3x - 5) + (-x - 5)$	M1
	Thus, the remainder is $-x - 5$	A1
9	Complex Numbers & Geometric Sequence	[Max mark: 12]
(a)	$z - 1 = i\left(\frac{z - 1}{z}\right) \Longrightarrow (z - 1) - i\left(\frac{z - 1}{z}\right) = 0$ $\Longrightarrow (z - 1)\left(1 - \frac{i}{z}\right) = (z - 1)(z - i) = 0$	M1
(1)	Thus, $z = 1$ or $z = i$.	A1A1
(b)	Let $u_1 = 1$ and $u_3 = i$.	A1 – seen anywhere
	Let $r = a + ib$ for some real numbers a and b . $\Rightarrow \frac{u_3}{u_1} = i = r^2 = a^2 - b^2 + 2abi$ $\Rightarrow a^2 - b^2 = 0 \text{ and } 2ab = 1 \Leftrightarrow b = \frac{1}{2a}.$	A1
	$a^{2} - b^{2} = 0 \Longrightarrow a = \pm b \Longrightarrow 2a^{2} = \pm 1 \Longrightarrow 2a^{2} = 1.$	M1
	Thus, $a = \pm \frac{1}{\sqrt{2}}$ and $b = \pm \frac{1}{\sqrt{2}}$.	
	Therefore, $r = \pm \frac{1}{\sqrt{2}}(1+i)$.	A1A1
	(ii)	
	$f_9(0) = (-u_1)(-u_2)\cdots(-u_9)$	

Qn	Suggested solution	Markscheme
C -2	$=-(u_1u_2\cdots u_9)$	A1
	$=-(r^{0}r^{1}\cdots r^{8})$	
	$=-r^{0+1+\cdots+8}$	M1
	$=-r^{36}$	
	$=-(r^2)^{18}$	M1
	$=-i^{18}$	
	= 1	A1
10	Binomial Theorem	[Max mark: 13]
(a)	The general term in the expansion of $(2-x)^{10}$ is given by $\binom{10}{k} 2^{10-k} (-x)^k$ or $\binom{10}{m} 2^m (-x)^{10-m}$	A1
	Letting $k = 8$ or $m = 2$, gives us $\frac{10!}{8! 2!} 2^2 = 5 \times 9 \times 4 = 180.$	A1 M1A1
(b)	The general term in the expansion of $(2 + x^2)^8$ is given by $ \binom{8}{k} 2^k x^{2(8-k)} \text{ or } \binom{8}{m} 2^{8-m} x^{2m} $	A1
	Since two consecutive terms in the expansion have the same coefficients: $\binom{8}{k} 2^k = \binom{8}{k+1} 2^{k+1} \text{or } \binom{8}{m} 2^{8-m} = \binom{8}{m+1} 2^{7-m}$ $\binom{8}{k} = \binom{8}{k+1} 2 \text{or } \binom{8}{m} 2 = \binom{8}{m+1}$ $\frac{8!}{k!(8-k)!} = \frac{8!}{(k+1)!(8-(k+1))!} 2 \text{or } \frac{8!}{m!(8-m)!} 2 = \frac{8!}{(m+1)!(8-(m+1))!}$	A1
	$\frac{k!(8-k)!}{1} = \frac{(k+1)!(8-(k+1))!}{2} \text{ or } \frac{m!(8-m)!}{2} = \frac{(m+1)!(8-(m+1))!}{(m+1)m!(7-m)!} = \frac{1}{(m+1)m!(7-m)!} = \frac{1}{($	M1 A1
	There we are 1 w 4 harmon and 50° all and	A1
(a)	Thus, x^6 and x^4 have the same coefficients.	AL
(c)	By inspection, it follows that $n = 10 + 8 = 18$.	A1
	Method 1	
	Also, $M = -\sum \text{roots} = 2 \times 10$.	R1
	Therefore, $M = -20$.	M1A1
	Method 2	
	Observe that there is only one way of getting x^{25} , i.e., by considering x^9 in the expansion of $(2-x)^{10}$ and x^{16} in the expansion of $(2+x^2)^8$.	R1

Year 5 HL Maths End of Year Exam 2019/P1 Mark Scheme

Qn	Suggested solution	Markscheme
	Thus, $Mx^{25} = {10 \choose 9} 2(-x)^9 \times x^{16} = -20x^{25}$	M1
	Therefore, $M = -20$.	A1

	CANDIDATE SESSION NOWBER												
STUDENT NAME:	0	2	5	0	1 2	2							
TEACHER NAME:	<u></u>	(AM	NAT	ION	СО	DE							
	8	8	1	9		7	2	0	2				

CANDIDATE SESSION NUMBER

ST JOSEPH'S INSTITUTION YEAR 5 END OF YEAR EXAMINATION 2019

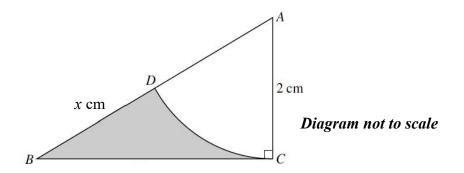
MATHEMATICS
21 October 2019
HIGHER LEVEL
1 hr 30 mins
PAPER 2
Monday
0800 – 0930 hrs

INSTRUCTIONS TO CANDIDATES

- Write your session number in the boxes above.
- Write your name and teacher's name in the spaces provided.
- Do not open this examination paper until instructed to do so.
- **Section A**: Answer all questions showing working and answers in the spaces provided in the exam paper.
- Section B: Answer all questions using the foolscap paper provided
- The use of a scientific or examination graphical calculator is permitted in this paper.
- Ti-Nspire calculators must be in Press-to-Test mode and cleared of all previous data.
- TI-84+ graphical calculators must only have permitted apps and be ram cleared.
- A clean copy of the **Mathematics HL Formulae Booklet** is required for this paper.
- Unless otherwise stated in the question all numerical answers must be given exactly or to three significant figures.
- The maximum mark for this examination paper is [80 marks].
- Number of printed pages = 9.
- Sections A and B are to be submitted **separately**.

FOR MARKER USE ONLY:

Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8	Q9	Total
/ 5	/ 6	/ 5	/8	/8	/8	/ 9	/ 16	/ 15	/ 80


Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by working and/or explanations. In particular, solutions found from a graphic display calculator should be supported by suitable working, for example, if graphs are used to find a solution, you should sketch these as part of your answer. Where an answer is incorrect, some marks may be given for a correct method, provided this is shown by written working. You are advised to show all working.

SECTION A (40 marks)

Answer all questions in the spaces provided.

1 [Maximum mark: 5]

The diagram shows a right-angled triangle ABC with AC = 2 cm and BD = x cm. CD is an arc of a circle with centre A and radius 2 cm.

- (a) Show that the area of the shaded region is $\left(\sqrt{x^2+4x}-2\arccos\left(\frac{2}{x+2}\right)\right)$ cm². [3]
- (b) Find the value of x when the area of the shaded region is 5 cm^2 . [2]

 •••	•••		•••	 •••	•••			• • •		•••	• • •	 •••	 •••	 •••		•••	••				•••	• • •	 •••	•••	•••	• • •	• • • •	• • • •	• • • •	 	••
																														••••	
																														••••	
 	•••			 	• • •			•••	•••	•••	• • •	 •••	 ••	 		•••	••		•••		••	•••	 	•••		• • •	• • •	• • •	• • •	 	
 •••	•••			 				•••	•••	••	• • •	 ••	 •••	 			••		•••		•••	•••	 	•••		• • •	• • • •	• • • •	• • •	 ••••	
 •••	•••	•••	• • •	 • • •			••	•••	•••	•••	• • •	 •••	 •••	 	•••	•••	••	•••	•••		•••	•••	 • • •	• • •	• • •	• • • •	• • •	• • •	• • •	 	••
 •••	•••			 		• • •	•••		•••	•••	• • •	 •••	 •••	 			••		•••	• • •	•••	• • •	 	•••		• • •	• • •		• • •	 ••••	••
 	•••			 						••		 ••	 ••	 			••				••		 	• • •		• • •	• • • •			 	
 	•••			 				•••	•••	•••		 •••	 •••	 			••				•••	•••	 	•••		• • •	• • • •	• • • •	• • •	 	

2	[Maximum	mark:	6]
_			~

A curve has equation $y = \frac{x^2 - x}{e^x}$ defined for all real values of x.

	(a)	Find the range of values of x for which the curve is strictly increasing.	[3
	(b)	Find the range of values of x for which the curve is concave upwards.	[3
	• • • • • • •		• • • •
• • • • • •	• • • • • • • •		• • • •
	• • • • • • •		• • • •
	• • • • • • •		• • •
			• • • •
	• • • • • • • • • • • • • • • • • • • •		•••
	• • • • • • •		• • • •
	• • • • • • • •		• • •
	• • • • • • • • • • • • • • • • • • • •		• • •
	• • • • • • • •		• • • •
	• • • • • • • •		
•••••	•••••		• • • •

3 [Maximum mark: 5]

determined.	
	• • • •
	• • • •
	• • • •

The roots of a cubic polynomial equation with real coefficients, p(x) = 0, are the

Find a possible p(x), in the form $ax^3 + bx^2 + cx + d$, where a, b, c and d are values to be

consecutive terms of an arithmetic sequence and one of the roots is 2 - i.

TURN OVER

The function f is defined by $f(x) = \frac{2x-3}{x-1}$, $x \in \mathbb{R}$, $x \ne 1$, $x \ne 2$ and f^n is denoted as $\underbrace{\left(f \circ f \circ f \circ ... \circ f\right)}_{n \text{ times}}(x).$

- (a) Find the function f^2 . [2]
- (b) Find, f^{-1} , the inverse function of f, stating its domain. [3]
- (c) Hence, or otherwise, define the function f^{2019} for $n \in \mathbb{Z}^+$. [3]

 •
 •••••
 •••••
 •••••
 •••••

TURN OVER

5	[Ma	ximum mark: 8]		
	The	e are 8 cards printe	d with a different single digit from 1 to 8 on each card.	
	(a)	Find the number o	ds at random without replacement. of possible selections such that there is an equal number of d even-digit cards.	[2]
	(b)	Ben uses 5 of the and ends with an element to the How many number		gins [3]
	(c)	cards on the top ro	the 8 cards into a 3 by 3 grid such that there are exactly two by and three cards each in in the middle row and bottom roof arrangements such that both cards on the top row are	
		Top Row		
		Middle Row		
		Bottom Row		
••••	•••••			••••
				.
				.
	•••••			
••••	•••••			· • • • •
••••	•••••			••••

TURN OVER

6 [Maximum mark: 8]

Solve the simultaneous equations
$\log_x y = \log_y x,$
$\log_x(x-y) = \log_y(x+y).$
•••••••••••••••••••••••••••••••••

SECTION B (40 marks)

Answer all questions on the foolscap paper provided. **Please start each question on a new page.**

7 [Maximum Mark: 9]

(a) Alex, Bryan and Caleb work for GoGrab! taxi company. The company pays them different rates for different periods of time in a day. During off-peak periods, the firm pays \$x for each km driven. For peak and super-peak periods, the firm pays \$y more and \$z more per km respectively. The table below shows the distance (in km) covered by Alex, Byran and Caleb during the three different periods, together with the amount they were paid, on a particular day.

	Off-peak	Peak	Super-peak	Total
Alex	63	26	4	\$146.70
Bryan	59	34	12	\$170.30
Caleb	30	52	28	\$189.40

Write down and solve equations to find the values of x, y and z. [4]

(b) Find the equations of the asymptotes of the graph of $y = \frac{2 - e^x}{2e^x - 1}$. [5]

8 [Maximum Mark: 16]

(a) Given

$$4\sin B + 3\sin C = 6$$
$$3\cos C + 4\cos B = 1$$

find the value of cos(B-C). [6]

(b) Let $h(x) = \arctan(x) + \arctan\left(\frac{1}{x}\right), x \neq 0$.

(i) Find
$$h'(x)$$
 in simplified form. [4]

(ii) Hence show that
$$h(x) = \frac{\pi}{2}$$
 for $x > 0$. [3]

(iii) Show that h is an odd function. Hence state the value of h(x) for x < 0. [3]

Do NOT write solutions on this page

9 [Maximum Mark: 15]

Let f(x) = |x| - 2.

(a) (i) Sketch the graph of
$$y = f(x)$$
. [1]

(ii) State the zeros of
$$f$$
. [1]

(b) (i) Sketch the graph of
$$y = (f \circ f)(x)$$
. [2]

(ii) State the zeros of
$$f \circ f$$
. [1]

We denote f^n as $\underbrace{f \circ f \circ f \circ \dots \circ f}_{n \text{ times}}$.

(c) (i) Find the zeros of
$$f^3$$
. [1]

(ii) Find the zeros of
$$f^4$$
. [1]

(iii) Deduce the zeros of
$$f^8$$
. [1]

(d) The zeros of f^{2n} are $a_1, a_2, a_3, ..., a_N$.

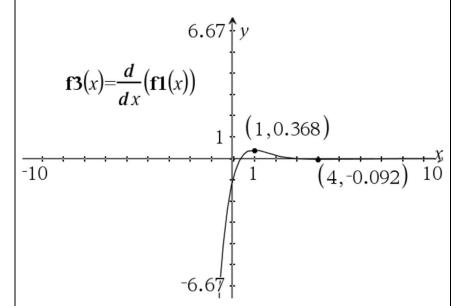
(i) State the relation between
$$n$$
 and N . [1]

(ii) Find, and simplify, an expression for
$$\sum_{r=1}^{N} |a_r|$$
 in terms of n . [3]

(iii) Find, and simplify, an expression for the product
$$a_1 \cdot a_2 \cdot a_3 \cdot ... \cdot a_N$$
, in terms of n , where $a_i \neq 0$ for $i = 1, 2, ..., N$. [3]

End of Paper

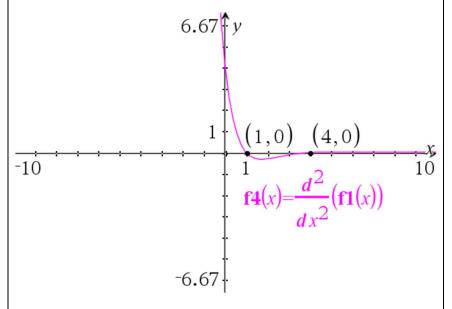
Year 5 HL Maths End of Year Exam 2019 – Paper 2 Mark Scheme


Qn	Suggested solution	Markscheme
	Section A	
1	Trigonometry – Circular Measure	Max mark: 5
(a)	$\cos A = \frac{2}{x+2} \text{gives} A = \arccos\left(\frac{2}{x+2}\right)$ Area of shaded region	A1
	= Area of Triangle ABC – Area of Sector ADC = $\frac{1}{2}(2)\left(\sqrt{(x+2)^2 - 2^2}\right) - \frac{1}{2}(2^2)\arccos\left(\frac{2}{x+2}\right)$ = $\left(\sqrt{x^2 + 4x} - 2\arccos\left(\frac{2}{x+2}\right)\right)$ cm ²	M1 A1 for Area of sector ADC AG
(b)	Solving the equation $\sqrt{x^2 + 4x} - 2\arccos\left(\frac{2}{x+2}\right) = 5$ by GDC using either Graphing App or nSolve gives	M1
	x = 5.88661 = 5.89 (3 sf)	A1
	$f2(x)=5$ 6.67 $\uparrow y$	
	$(5.89,5)$ 1 -10 1 1 10 $f1(x) = \sqrt{x^2 + 4 \cdot x} - 2 \cdot \cos^{-1}\left(\frac{2}{x+2}\right)$ -6.67	
	$nSolve\left(\sqrt{x^2+4\cdot x}-2\cdot\cos\left(\frac{2}{x+2}\right)=5,x\right) \qquad 5.88661$	

Qn	Year 5 HL Maths End of Year Exam 20 Suggested solution	Markscheme
2	Differentiation – Strictly Increasing Function and Concavity	Max mark: 6
(a)	Either	
	Using GDC to sketch the graph of $y = \frac{x^2 - x}{e^x}$ and finding the	M1
	coordinates of the maximum and minimum points.	
	$\mathbf{f1}(x) = \frac{x^2 - x}{\mathbf{e}^x} $ 6.67 \(\frac{1}{2}y\)	
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	(0.382, -0.161)	
	-6.67	
	Or	
	$\frac{dy}{dx} = \frac{e^{x}(2x-1) - e^{x}(x^{2} - x)}{(e^{x})^{2}} = \frac{-x^{2} + 3x - 1}{e^{x}}$	
	Curve is strictly increasing means $\frac{dy}{dx} > 0$ i.e. $-x^2 + 3x - 1 > 0$	M1
	0.382 < x < 2.62 (3 sf)	A1 for correct end values A1 for correct
	6.67 [↑] <i>y</i>	inequality
	$\mathbf{f2}(x) = -x^2 + 3 \cdot x - 1$	
	(0.382,0) $(2.62,0)$ $(2.62,0)$	
	-6.67 	

(b) **Either**

Using GDC to sketch the graph of $y = \frac{dy}{dx}$ and finding the coordinates of the maximum and minimum points.


M1

Or

Using GDC to sketch the graph of $y = \frac{d^2y}{dx^2}$ and finding the zeros.

M1

Or

$$\frac{d^2y}{dx^2} = \frac{e^x(-2x+3) - e^x(-x^2 + 3x - 1)}{(e^x)^2} = \frac{x^2 - 5x + 4}{e^x} = \frac{(x-1)(x-4)}{e^x}$$

Curve is concave upwards means $\frac{d^2y}{dx^2} > 0$ i.e. (x-1)(x-4) > 0 x < 1 or x > 4

M1 A1 A1

3	Polynomials – Fundamental Theorem of Algebra, Sum		
	Product of Roots with Arithmetic Sequence		Will mark.
	Given one complex root = $2 - i$		R1 Reason Must
	By the Fundamental Theorem of Algebra,		be stated
	Complex conjugate root = $2 + i$		A1
	Third real root $= 2$		A1
	p(x) = (x-2)(x-2-i)(x-2+i)		M1
	$=(x-2)(x^2-4x+5)$		
	$= (x - 2)(x - 4x + 3)$ $= x^3 - 6x^2 + 13x - 10$		A1
	-x - 0x + 13x - 10		AI
	Note that GDC can be used to evaluate the sum and product o		
	the complex roots	-	
	11.0 001.1p.10.10010		
	2112	4	
	2+i+2-i	4	
	(1) (1)	_	
	$(2+\boldsymbol{i})\cdot(2-\boldsymbol{i})$	5	
		_	
	2+i+2-i+2	6	
	(\ \ (\ \)		
	$(2+\mathbf{i})\cdot(2-\mathbf{i})\cdot 2$	10	
4	Functions – Inverse and Composite Functions (non GDC)		Max mark: 8
(a)	Tunctions – Inverse una Composite Functions (non GDC)		Max mark. 0
	$f^{2}(x) = f\left(\frac{2x-3}{x-1}\right) = \frac{2\left(\frac{2x-3}{x-1}\right) - 3}{\left(\frac{2x-3}{x-1}\right) - 1}$ $f^{2}(x) = \frac{x-3}{x-2}$		M1 A1
(b)	Any valid method of finding inverse $f^{-1}(x) = \frac{x-3}{x-2}, x \in \mathbb{R}, x \neq 1, x \neq 2$		M1 A1 For Rule A1 For Domain
(c)			
1 1 1	From (a) and (b), $f^2(x) = f^{-1}(x)$ is equivalent to $f^3(x) = x$,	M1
	From (a) and (b), $f^2(x) = f^{-1}(x)$ is equivalent to $f^3(x) = x$ 2019 is divisible by 3	;	M1
	2019 is divisible by 3	;	
		;	M1
	2019 is divisible by 3 $f^{2019}(x) = x, x \in \mathbb{R}, x \neq 1, x \neq 2$;	M1 A1
5	2019 is divisible by 3 $f^{2019}(x) = x, x \in \mathbb{R}, x \neq 1, x \neq 2$ Permutations and Combinations	,	M1
	2019 is divisible by 3 $f^{2019}(x) = x, x \in \mathbb{R}, x \neq 1, x \neq 2$ Permutations and Combinations	;	M1 A1 Max mark: 8
5	2019 is divisible by 3 $f^{2019}(x) = x, x \in \mathbb{R}, x \neq 1, x \neq 2$ Permutations and Combinations Number of possible selections = ${}^{4}C_{2} \times {}^{4}C_{2}$ or $\binom{4}{2} \times \binom{4}{2}$;	M1 A1
5	2019 is divisible by 3 $f^{2019}(x) = x, x \in \mathbb{R}, x \neq 1, x \neq 2$ Permutations and Combinations		M1 A1 Max mark: 8
5	2019 is divisible by 3 $f^{2019}(x) = x, x \in \mathbb{R}, x \neq 1, x \neq 2$ Permutations and Combinations Number of possible selections = ${}^{4}C_{2} \times {}^{4}C_{2}$ or $\binom{4}{2} \times \binom{4}{2}$ $= 36$		M1 A1 Max mark: 8 M1
5	2019 is divisible by 3 $f^{2019}(x) = x, x \in \mathbb{R}, x \neq 1, x \neq 2$ Permutations and Combinations Number of possible selections = ${}^{4}C_{2} \times {}^{4}C_{2}$ or $\binom{4}{2} \times \binom{4}{2}$ $= 36$	36	M1 A1 Max mark: 8
5	2019 is divisible by 3 $f^{2019}(x) = x, x \in \mathbb{R}, x \neq 1, x \neq 2$ Permutations and Combinations Number of possible selections = ${}^{4}C_{2} \times {}^{4}C_{2}$ or $\binom{4}{2} \times \binom{4}{2}$ $= 36$		M1 A1 Max mark: 8

(b) Number of numbers formed = ${}^4P_2 \times {}^3P_3$ or $(4\times3)\times(6\times5\times4)$ M1 A1 $= 1440$ $n\Pr(4,2) \cdot n\Pr(6,3)$ 1440 (c) Number of odd-digit cards for top row = ${}^4C_2\times3!$ or $\binom{4}{2}\times3!=36$ Number of arrangements for the middle and bottom row = ${}^4P_3 \times {}^3P_3$ or $6!=720$ Total number of arrangements = $36\times720=25920$ A1 $n\Pr(6,3) \cdot n\Pr(3,3)$ 720 $n\Pr(6,3) \cdot n\Pr(3,3)$ 720 $n\Pr(4,2) \cdot 3! \cdot n\Pr(6,3) \cdot n\Pr(3,3)$ 25920 6 Simultaneous Logarithmic Equations $\log_x y = \log_y x$ Applying change of base on either side of the equation $\log_x y = \frac{\log_x x}{\log_x y}$ gives $(\log_x y) = \pm 1$ $y = \frac{1}{x}$ or $y = x$ (reject since $x - y > 0$) Substituting $y = \frac{1}{x}$ into $\log_x (x - y) = \log_y (x + y)$ gives $\log_x \left(x - \frac{1}{x}\right) = \log_{\frac{1}{x}} \left(x + \frac{1}{x}\right)$ Therefore, $\log_x \left(x - \frac{1}{x}\right) = \log_x \left(x + \frac{1}{x}\right)$ A1 $\log_x \left(x - \frac{1}{x}\right) + \log_x \left(x + \frac{1}{x}\right) = 0$ gives $\log_x \left(x - \frac{1}{x}\right) + \log_x \left(x + \frac{1}{x}\right) = 0$ or $\left(x - \frac{1}{x}\right) \left(x + \frac{1}{x}\right) = 1$ by GDC using nSolve gives $x = 1.27201 = 1.27$ (3 sf) and $y = 0.78615 = 0.786$ (3 sf)		Year 5 HL Maths End of Year Exam 20	119/P2 Mark Scheme
(c) Number of odd-digit cards for top row = ${}^4C_2 \times 3!$ or $\binom{4}{2} \times 3! = 36$ A1 Number of arrangements for the middle and bottom row = ${}^6P_3 \times P_3$ or $6! = 720$ Total number of arrangements = $36 \times 720 = 25920$ $nCr(4,2) \cdot 3!$ $nPr(6,3) \cdot nPr(3,3)$ $nPr(3,3)$ $nCr(4,2) \cdot 3! \cdot nPr(6,3) \cdot nPr(3,3)$ 25920 6 Simultaneous Logarithmic Equations $\log_x y = \log_y x$ Applying change of base on either side of the equation $\log_x y = \frac{\log_x x}{\log_x y} \text{ gives } (\log_x y) = \pm 1$ $y = \frac{1}{x} \text{ or } y = x \text{ (reject since } x - y > 0)$ Substituting $y = \frac{1}{x}$ into $\log_x (x - y) = \log_y (x + y)$ gives $\log_x \left(x - \frac{1}{x}\right) = \log_{\frac{1}{x}} \left(x + \frac{1}{x}\right)$ Therefore, $\log_x \left(x - \frac{1}{x}\right) = \log_x \left(x + \frac{1}{x}\right)$ A1 $\log_x \left(x - \frac{1}{x}\right) + \log_x \left(x + \frac{1}{x}\right) = 0 \text{ gives}$ $\log_x \left(x - \frac{1}{x}\right) \left(x + \frac{1}{x}\right) = 0 \text{ or } \left(x - \frac{1}{x}\right) \left(x + \frac{1}{x}\right) = 1$ Either Solving $\log_x \left(x - \frac{1}{x}\right) \left(x + \frac{1}{x}\right) = 0 \text{ or } \left(x - \frac{1}{x}\right) \left(x + \frac{1}{x}\right) = 1 \text{ by}$ GDC using nSolve gives	(b)		
Number of odd-digit cards for top row = ${}^{1}C_{2} \times 3!$ or $\binom{1}{2} \times 3! = 36$ Number of arrangements for the middle and bottom row = ${}^{6}P_{3} \times {}^{3}P_{3}$ or $6! = 720$ Total number of arrangements = $36 \times 720 = 25920$ A1 $nCr(4,2) \cdot 3! \qquad 36$ $nPr(6,3) \cdot nPr(3,3) \qquad 720$ $nCr(4,2) \cdot 3! \cdot nPr(6,3) \cdot nPr(3,3) \qquad 25920$ 6 Simultaneous Logarithmic Equations $\log_{x} y = \log_{y} x$ Applying change of base on either side of the equation $\log_{x} y = \frac{\log_{x} x}{\log_{x} y} \text{ gives } (\log_{x} y) = \pm 1$ $y = \frac{1}{x} \text{ or } y = x \text{ (reject since } x - y > 0)$ A1 Must reject $y = x$ $\log_{x} \left(x - \frac{1}{x}\right) = \log_{\frac{x}{2}} \left(x + \frac{1}{x}\right)$ Therefore, $\log_{x} \left(x - \frac{1}{x}\right) + \log_{x} \left(x + \frac{1}{x}\right) = 0$ gives $\log_{x} \left(x - \frac{1}{x}\right) + \log_{x} \left(x + \frac{1}{x}\right) = 0 \text{ or } \left(x - \frac{1}{x}\right) \left(x + \frac{1}{x}\right) = 1$ Either Solving $\log_{x} \left(x - \frac{1}{x}\right) \left(x + \frac{1}{x}\right) = 0$ or $\left(x - \frac{1}{x}\right) \left(x + \frac{1}{x}\right) = 1$ by GDC using nSolve gives		$nPr(4,2) \cdot nPr(6,3)$ 1440	
Total number of arrangements = $36 \times 720 = 25920$ $nCr(4,2) \cdot 3!$ $nCr(4,2) \cdot 3!$ $nCr(4,2) \cdot 3! \cdot nPr(6,3) \cdot nPr(3,3)$ 125920 6 Simultaneous Logarithmic Equations $\log_x y = \log_y x$ Applying change of base on either side of the equation $\log_x y = \frac{\log_x x}{\log_x y} \text{ gives } (\log_x y) = \pm 1$ $y = \frac{1}{x} \text{ or } y = x \text{ (reject since } x - y > 0)$ Substituting $y = \frac{1}{x}$ into $\log_x (x - y) = \log_y (x + y)$ gives $\log_x \left(x - \frac{1}{x}\right) = \log_{\frac{1}{x}} \left(x + \frac{1}{x}\right)$ Therefore, $\log_x \left(x - \frac{1}{x}\right) = \log_x \left(x + \frac{1}{x}\right) = 0$ gives $\log_x \left(x - \frac{1}{x}\right) \left(x + \frac{1}{x}\right) = 0 \text{ or } \left(x - \frac{1}{x}\right) \left(x + \frac{1}{x}\right) = 1$ Either $Solving \log_x \left(x - \frac{1}{x}\right) \left(x + \frac{1}{x}\right) = 0 \text{ or } \left(x - \frac{1}{x}\right) \left(x + \frac{1}{x}\right) = 1 \text{ by}$ GDC using nSolve gives	(c)	Number of odd-digit cards for top row = ${}^{4}C_{2} \times 3!$ or $\binom{4}{2} \times 3! = 36$	A1
		_	A1
$n\Pr(6,3) \cdot n\Pr(3,3) \qquad 720$ $n\operatorname{Cr}(4,2) \cdot 3! \cdot n\operatorname{Pr}(6,3) \cdot n\operatorname{Pr}(3,3) \qquad 25920$ $6 Simultaneous \ Logarithmic \ Equations \qquad Max \ mark: 8$ $\log_x y = \log_y x$ $\operatorname{Applying change of base on either side of the equation} \qquad M1$ $\log_x y = \frac{\log_x x}{\log_x y} \text{gives} (\log_x y) = \pm 1$ $y = \frac{1}{x} \text{or} y = x \text{ (reject since } x - y > 0)$ $\operatorname{Substituting} y = \frac{1}{x} \text{into } \log_x (x - y) = \log_y (x + y) \text{gives}$ $\log_x \left(x - \frac{1}{x}\right) = \log_{\frac{1}{x}} \left(x + \frac{1}{x}\right)$ $\operatorname{Therefore, } \log_x \left(x - \frac{1}{x}\right) = -\log_x \left(x + \frac{1}{x}\right)$ $\log_x \left(x - \frac{1}{x}\right) + \log_x \left(x + \frac{1}{x}\right) = 0 \text{gives}$ $\log_x \left(x - \frac{1}{x}\right) \left(x + \frac{1}{x}\right) = 0 \text{or} \left(x - \frac{1}{x}\right) \left(x + \frac{1}{x}\right) = 1$ Either $\operatorname{Solving} \log_x \left(x - \frac{1}{x}\right) \left(x + \frac{1}{x}\right) = 0 \text{or} \left(x - \frac{1}{x}\right) \left(x + \frac{1}{x}\right) = 1 \text{by}$ $\operatorname{GDC} \text{ using nSolve gives}$		Total number of arrangements = $36 \times 720 = 25920$	A1
nCr(4,2)· 3!· nPr(6,3)· nPr(3,3) 6 Simultaneous Logarithmic Equations $\log_x y = \log_y x$ Applying change of base on either side of the equation $\log_x y = \frac{\log_x x}{\log_x y} \text{ gives } (\log_x y) = \pm 1$ $y = \frac{1}{x} \text{ or } y = x \text{ (reject since } x - y > 0)$ Al Must reject $y = x$ Substituting $y = \frac{1}{x}$ into $\log_x (x - y) = \log_y (x + y)$ gives $\log_x \left(x - \frac{1}{x}\right) = \log_{\frac{1}{x}} \left(x + \frac{1}{x}\right)$ Therefore, $\log_x \left(x - \frac{1}{x}\right) = -\log_x \left(x + \frac{1}{x}\right)$ Al $\log_x \left(x - \frac{1}{x}\right) + \log_x \left(x + \frac{1}{x}\right) = 0 \text{ gives}$ $\log_x \left(x - \frac{1}{x}\right) \left(x + \frac{1}{x}\right) = 0 \text{ or } \left(x - \frac{1}{x}\right) \left(x + \frac{1}{x}\right) = 1$ Either Solving $\log_x \left(x - \frac{1}{x}\right) \left(x + \frac{1}{x}\right) = 0 \text{ or } \left(x - \frac{1}{x}\right) \left(x + \frac{1}{x}\right) = 1 \text{ by}$ GDC using nSolve gives			
6 Simultaneous Logarithmic Equations $\log_{x} y = \log_{y} x$ Applying change of base on either side of the equation $\log_{x} y = \frac{\log_{x} x}{\log_{x} y} \text{ gives } (\log_{x} y) = \pm 1$ $y = \frac{1}{x} \text{ or } y = x \text{ (reject since } x - y > 0)$ Al Must reject $y = x$ Substituting $y = \frac{1}{x}$ into $\log_{x} (x - y) = \log_{y} (x + y)$ gives $\log_{x} \left(x - \frac{1}{x}\right) = \log_{\frac{1}{x}} \left(x + \frac{1}{x}\right)$ Therefore, $\log_{x} \left(x - \frac{1}{x}\right) = -\log_{x} \left(x + \frac{1}{x}\right)$ Al $\log_{x} \left(x - \frac{1}{x}\right) + \log_{x} \left(x + \frac{1}{x}\right) = 0 \text{ gives}$ $\log_{x} \left(x - \frac{1}{x}\right) \left(x + \frac{1}{x}\right) = 0 \text{ or } \left(x - \frac{1}{x}\right) \left(x + \frac{1}{x}\right) = 1$ Either $\operatorname{Solving} \log_{x} \left(x - \frac{1}{x}\right) \left(x + \frac{1}{x}\right) = 0 \text{ or } \left(x - \frac{1}{x}\right) \left(x + \frac{1}{x}\right) = 1 \text{ by}$ GDC using nSolve gives		$nPr(6,3) \cdot nPr(3,3)$ 720	
$\log_x y = \log_y x$ Applying change of base on either side of the equation $\log_x y = \frac{\log_x x}{\log_x y} \text{ gives } (\log_x y) = \pm 1$ $y = \frac{1}{x} \text{ or } y = x \text{ (reject since } x - y > 0)$ All Must reject $y = x$ Substituting $y = \frac{1}{x}$ into $\log_x (x - y) = \log_y (x + y)$ gives $\log_x \left(x - \frac{1}{x}\right) = \log_{\frac{1}{x}} \left(x + \frac{1}{x}\right)$ Therefore, $\log_x \left(x - \frac{1}{x}\right) = -\log_x \left(x + \frac{1}{x}\right)$ All $\log_x \left(x - \frac{1}{x}\right) + \log_x \left(x + \frac{1}{x}\right) = 0$ gives $\log_x \left(x - \frac{1}{x}\right) \left(x + \frac{1}{x}\right) = 0 \text{ or } \left(x - \frac{1}{x}\right) \left(x + \frac{1}{x}\right) = 1$ Either Solving $\log_x \left(x - \frac{1}{x}\right) \left(x + \frac{1}{x}\right) = 0$ or $\left(x - \frac{1}{x}\right) \left(x + \frac{1}{x}\right) = 1$ by GDC using nSolve gives		$nCr(4,2) \cdot 3! \cdot nPr(6,3) \cdot nPr(3,3)$ 25920	
$\log_x y = \log_y x$ Applying change of base on either side of the equation $\log_x y = \frac{\log_x x}{\log_x y} \text{ gives } (\log_x y) = \pm 1$ $y = \frac{1}{x} \text{ or } y = x \text{ (reject since } x - y > 0)$ All Must reject $y = x$ Substituting $y = \frac{1}{x}$ into $\log_x (x - y) = \log_y (x + y)$ gives $\log_x \left(x - \frac{1}{x}\right) = \log_{\frac{1}{x}} \left(x + \frac{1}{x}\right)$ Therefore, $\log_x \left(x - \frac{1}{x}\right) = -\log_x \left(x + \frac{1}{x}\right)$ All $\log_x \left(x - \frac{1}{x}\right) + \log_x \left(x + \frac{1}{x}\right) = 0$ gives $\log_x \left(x - \frac{1}{x}\right) \left(x + \frac{1}{x}\right) = 0 \text{ or } \left(x - \frac{1}{x}\right) \left(x + \frac{1}{x}\right) = 1$ Either Solving $\log_x \left(x - \frac{1}{x}\right) \left(x + \frac{1}{x}\right) = 0$ or $\left(x - \frac{1}{x}\right) \left(x + \frac{1}{x}\right) = 1$ by GDC using nSolve gives	-	Simultan cous Logarithmic Equations	May mayly 0
Applying change of base on either side of the equation $\log_x y = \frac{\log_x x}{\log_x y} \text{ gives } (\log_x y) = \pm 1$ $y = \frac{1}{x} \text{ or } y = x \text{ (reject since } x - y > 0)$ All Must reject $y = x$ Substituting $y = \frac{1}{x}$ into $\log_x (x - y) = \log_y (x + y)$ gives $\log_x \left(x - \frac{1}{x} \right) = \log_{\frac{1}{x}} \left(x + \frac{1}{x} \right)$ Therefore, $\log_x \left(x - \frac{1}{x} \right) = -\log_x \left(x + \frac{1}{x} \right)$ $\log_x \left(x - \frac{1}{x} \right) + \log_x \left(x + \frac{1}{x} \right) = 0 \text{ gives}$ $\log_x \left(x - \frac{1}{x} \right) \left(x + \frac{1}{x} \right) = 0 \text{ or } \left(x - \frac{1}{x} \right) \left(x + \frac{1}{x} \right) = 1$ Either Solving $\log_x \left(x - \frac{1}{x} \right) \left(x + \frac{1}{x} \right) = 0 \text{ or } \left(x - \frac{1}{x} \right) \left(x + \frac{1}{x} \right) = 1 \text{ by }$ GDC using nSolve gives	0		Max mark: 8
$\log_{x} y = \frac{\log_{x} x}{\log_{x} y} \text{ gives } (\log_{x} y) = \pm 1$ $y = \frac{1}{x} \text{ or } y = x \text{ (reject since } x - y > 0)$ $\text{Substituting } y = \frac{1}{x} \text{ into } \log_{x} (x - y) = \log_{y} (x + y) \text{ gives}$ $\log_{x} \left(x - \frac{1}{x} \right) = \log_{\frac{1}{x}} \left(x + \frac{1}{x} \right)$ $\text{Therefore, } \log_{x} \left(x - \frac{1}{x} \right) = -\log_{x} \left(x + \frac{1}{x} \right)$ $\log_{x} \left(x - \frac{1}{x} \right) + \log_{x} \left(x + \frac{1}{x} \right) = 0 \text{ gives}$ $\log_{x} \left(x - \frac{1}{x} \right) \left(x + \frac{1}{x} \right) = 0 \text{ or } \left(x - \frac{1}{x} \right) \left(x + \frac{1}{x} \right) = 1$ Either $\text{Solving } \log_{x} \left(x - \frac{1}{x} \right) \left(x + \frac{1}{x} \right) = 0 \text{ or } \left(x - \frac{1}{x} \right) \left(x + \frac{1}{x} \right) = 1 \text{ by}$ $\text{GDC using nSolve gives}$		1	M1
$y = \frac{1}{x} \text{ or } y = x \text{ (reject since } x - y > 0)$ Substituting $y = \frac{1}{x}$ into $\log_x (x - y) = \log_y (x + y)$ gives $\log_x \left(x - \frac{1}{x} \right) = \log_{\frac{1}{x}} \left(x + \frac{1}{x} \right)$ Therefore, $\log_x \left(x - \frac{1}{x} \right) = -\log_x \left(x + \frac{1}{x} \right)$ $\log_x \left(x - \frac{1}{x} \right) + \log_x \left(x + \frac{1}{x} \right) = 0 \text{ gives}$ $\log_x \left(x - \frac{1}{x} \right) \left(x + \frac{1}{x} \right) = 0 \text{ or } \left(x - \frac{1}{x} \right) \left(x + \frac{1}{x} \right) = 1$ Either $\text{Solving } \log_x \left(x - \frac{1}{x} \right) \left(x + \frac{1}{x} \right) = 0 \text{ or } \left(x - \frac{1}{x} \right) \left(x + \frac{1}{x} \right) = 1 \text{ by}$ GDC using nSolve gives			1711
Substituting $y = \frac{1}{x}$ into $\log_x (x - y) = \log_y (x + y)$ gives $\log_x \left(x - \frac{1}{x} \right) = \log_{\frac{1}{x}} \left(x + \frac{1}{x} \right)$ Therefore, $\log_x \left(x - \frac{1}{x} \right) = -\log_x \left(x + \frac{1}{x} \right)$ $\log_x \left(x - \frac{1}{x} \right) + \log_x \left(x + \frac{1}{x} \right) = 0 \text{ gives}$ $\log_x \left(x - \frac{1}{x} \right) \left(x + \frac{1}{x} \right) = 0 \text{ or } \left(x - \frac{1}{x} \right) \left(x + \frac{1}{x} \right) = 1$ Either Solving $\log_x \left(x - \frac{1}{x} \right) \left(x + \frac{1}{x} \right) = 0 \text{ or } \left(x - \frac{1}{x} \right) \left(x + \frac{1}{x} \right) = 1 \text{ by}$ GDC using nSolve gives Must reject $y = x$ Must reject $y = x$ M1		$\log_x y = \frac{\log_x y}{\log_x y} \text{gives} (\log_x y) = \pm 1$	
Substituting $y = \frac{1}{x}$ into $\log_x (x - y) = \log_y (x + y)$ gives $\log_x \left(x - \frac{1}{x} \right) = \log_{\frac{1}{x}} \left(x + \frac{1}{x} \right)$ Therefore, $\log_x \left(x - \frac{1}{x} \right) = -\log_x \left(x + \frac{1}{x} \right)$ $\log_x \left(x - \frac{1}{x} \right) + \log_x \left(x + \frac{1}{x} \right) = 0 \text{ gives}$ $\log_x \left(x - \frac{1}{x} \right) \left(x + \frac{1}{x} \right) = 0 \text{ or } \left(x - \frac{1}{x} \right) \left(x + \frac{1}{x} \right) = 1$ Either Solving $\log_x \left(x - \frac{1}{x} \right) \left(x + \frac{1}{x} \right) = 0 \text{ or } \left(x - \frac{1}{x} \right) \left(x + \frac{1}{x} \right) = 1 \text{ by}$ GDC using nSolve gives		$y = \frac{1}{x}$ or $y = x$ (reject since $x - y > 0$)	
Therefore, $\log_x \left(x - \frac{1}{x} \right) = -\log_x \left(x + \frac{1}{x} \right)$ $\log_x \left(x - \frac{1}{x} \right) + \log_x \left(x + \frac{1}{x} \right) = 0 \text{gives}$ $\log_x \left(x - \frac{1}{x} \right) \left(x + \frac{1}{x} \right) = 0 \text{or} \left(x - \frac{1}{x} \right) \left(x + \frac{1}{x} \right) = 1$ Either Solving $\log_x \left(x - \frac{1}{x} \right) \left(x + \frac{1}{x} \right) = 0 \text{or} \left(x - \frac{1}{x} \right) \left(x + \frac{1}{x} \right) = 1 \text{by}$ GDC using nSolve gives A1		λ	
$\log_{x}\left(x-\frac{1}{x}\right) + \log_{x}\left(x+\frac{1}{x}\right) = 0 \text{gives}$ $\log_{x}\left(x-\frac{1}{x}\right)\left(x+\frac{1}{x}\right) = 0 \text{or} \left(x-\frac{1}{x}\right)\left(x+\frac{1}{x}\right) = 1$ Either $\text{Solving } \log_{x}\left(x-\frac{1}{x}\right)\left(x+\frac{1}{x}\right) = 0 \text{or} \left(x-\frac{1}{x}\right)\left(x+\frac{1}{x}\right) = 1 \text{by}$ GDC using nSolve gives M1		$\log_x \left(x - \frac{1}{x} \right) = \log_{\frac{1}{x}} \left(x + \frac{1}{x} \right)$	
$\log_{x} \left(x - \frac{1}{x} \right) \left(x + \frac{1}{x} \right) = 0 \text{ or } \left(x - \frac{1}{x} \right) \left(x + \frac{1}{x} \right) = 1$ Either Solving $\log_{x} \left(x - \frac{1}{x} \right) \left(x + \frac{1}{x} \right) = 0 \text{ or } \left(x - \frac{1}{x} \right) \left(x + \frac{1}{x} \right) = 1 \text{ by}$ GDC using nSolve gives M1		Therefore, $\log_x \left(x - \frac{1}{x} \right) = -\log_x \left(x + \frac{1}{x} \right)$	A1
$\log_{x} \left(x - \frac{1}{x} \right) \left(x + \frac{1}{x} \right) = 0 \text{ or } \left(x - \frac{1}{x} \right) \left(x + \frac{1}{x} \right) = 1$ Either Solving $\log_{x} \left(x - \frac{1}{x} \right) \left(x + \frac{1}{x} \right) = 0 \text{ or } \left(x - \frac{1}{x} \right) \left(x + \frac{1}{x} \right) = 1 \text{ by}$ GDC using nSolve gives		$\log_{x} \left(x - \frac{1}{x} \right) + \log_{x} \left(x + \frac{1}{x} \right) = 0 \text{ gives}$	
Solving $\log_x \left(x - \frac{1}{x} \right) \left(x + \frac{1}{x} \right) = 0$ or $\left(x - \frac{1}{x} \right) \left(x + \frac{1}{x} \right) = 1$ by GDC using nSolve gives		$\log_{x} \left(x - \frac{1}{x} \right) \left(x + \frac{1}{x} \right) = 0 \text{or} \left(x - \frac{1}{x} \right) \left(x + \frac{1}{x} \right) = 1$	A1
GDC using nSolve gives		Either	
			M1
			A1 A1

	Year 5 HL Maths End of Year Exam	n 2019/P2 Mark Scheme
nSolve $\frac{\ln\left(\left(x-\frac{1}{x}\right)\cdot\left(x+\frac{1}{x}\right)\right)}{\ln(x)} = 0, x$	1.27202	M1
nSolve $\left(x - \frac{1}{x}\right) \cdot \left(x + \frac{1}{x}\right) = 1, x$	1.27202	A1
Or		A1
Solving $x^4 - x^2 - 1 = 0$ gives	_	
$x = \sqrt{\frac{\sqrt{5} + 1}{2}} = 1.27$ (3sf) since		
$y = \sqrt{\frac{2}{\sqrt{5} + 1}} = 0.786 \text{ (3sf)} \text{ or}$	$y = \sqrt{\frac{\sqrt{5} - 1}{2}} = 0.786 \text{ (3sf)}$	
$polyRoots(x^4-x^2-1,x)$	{-1.27202,1.27202}	
$nSolve(x^4-x^2-1=0,x)$	1.27202	
1	0.786151	
1.2720196495141		

	Section B						
7	System of equations/Asymptotes	Max mark: 9					
(a)	63x + 26(x + y) + 4(x + z) = 165.10 $59x + 34(x + y) + 12(x + z) = 176.15$ $30x + 52(x + y) + 28(x + z) = 205.70$	M1A1					
	lin Solve $\begin{cases} 63 \cdot x + 26 \cdot (x+y) + 4 \cdot (x+z) = 146.7 \\ 59 \cdot x + 34 \cdot (x+y) + 12 \cdot (x+z) = 170.3 , \\ 30 \cdot x + 52 \cdot (x+y) + 28 \cdot (x+z) = 189.4 \\ \{1.5, 0.2, 0.5\} \end{cases}$	M1					
(1.)	By GDC, $x = \$1.50$, $y = \$0.20$, $z = \$0.50$.						
(b)	$y = \frac{2 - e^x}{2e^x - 1} = -\frac{1}{2} + \frac{1.5}{2e^x - 1}$ $2e^x - 1 = 0 \Rightarrow x = \ln\left(\frac{1}{2}\right)$						
	As $x \to \ln\left(\frac{1}{2}\right)$, $y \to \pm \infty \Rightarrow x = \ln\left(\frac{1}{2}\right)$ is an asymptote.	M1A1					
	As $x \to \infty$, $y \to -\frac{1}{2} \Rightarrow y = -\frac{1}{2}$ is an asymptote. As $x \to -\infty$, $y \to -2 \Rightarrow y = -2$ is an asymptote.	M1 A1 A1					
	6						

8 Trigo(Addition Formula), Differentiation, Odd Function (a) $16\sin^2 B + 9\sin^2 C + 24\sin B\sin C = 36 - (1)$ $9\cos^2 C + 16\cos^2 B + 24\cos B\cos C = 1 - (2)$ (1) $+ (2)$, $25 + 24\cos(B - C) = 37$ $\Rightarrow \cos(B - C) = \frac{1}{2}$ (b) $h(x) = \arctan(x) + \arctan\left(\frac{1}{x}\right), x \neq 0$ $h'(x) = \frac{1}{1+x^2} + \frac{1}{1+\left(\frac{1}{x}\right)^2} \cdot \frac{-1}{x^2}$ $= \frac{1}{1+x^2} + \frac{x^2}{1+x^2} \cdot \frac{-1}{x^2}$ $= 0$ A1 (ii) Since $h'(x) = 0$ for all $x \neq 0$, $h(x) = c$, where c is a constant. $h(x) = h(1)$ $= \arctan(1) + \arctan(1)$ $= \frac{\pi}{4} + \frac{\pi}{4}$ $= \frac{\pi}{2}$ (iii) $h(x) = \arctan(x) + \arctan\left(\frac{1}{x}\right)$ $h(-x) = \arctan(-x) + \arctan\left(\frac{1}{x}\right)$ $= -\arctan(x) - \arctan\left(\frac{1}{x}\right)$ ($\because \arctan(x)$ is an odd function.) $= -h(x)$		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
(a) $16 \sin^2 B + 9 \sin^2 C + 24 \sin B \sin C = 36 - (1)$ $9 \cos^2 C + 16 \cos^2 B + 24 \cos B \cos C = 1 - (2)$ $A1$ $A1$ $A1$ $A1$ $A1$ $A1$ $A1$ $A1$	0	1, 1	M1 16
9\(\cos^2 C + 16\cos^2 B + 24\cos B \cos C = 1 - (2)\) (1) + (2), 25 + 24\cos (B - C) = 37 \[\Rightarrow \cos (B - C) = \frac{1}{2}\] (b) \[h'(x) = \frac{1}{1 + x^2} + \frac{1}{1 + \left(\frac{1}{x}\right)^2} \cdot \frac{-1}{x^2}\] $= \frac{1}{1 + x^2} + \frac{1}{1 + \left(\frac{1}{x}\right)^2} \cdot \frac{-1}{x^2}\] A1 \[\begin{align*} \text{M1A1} \\ \text{a} & = \frac{1}{1 + x^2} + \frac{1}{x^2} \cdot \text{A1} \\ \text{a} & = \frac{1}{1 + x^2} + \frac{x^2}{1 + x^2} \cdot \text{A2} \\ \text{a} & = 0 \end{align*} \] (ii) \[\text{Since } h'(x) = 0 \text{ for all } x \neq 0, h(x) = c, \text{ where } c \text{ is a constant.} \\ h(x) = h(1) \\ \text{a} & = \frac{\pi}{4} + \frac{\pi}{4} \\ \text{a} & = \frac{\pi}{2} \end{align*} \] (iii) \[h(x) = \text{arctan(1)} + \text{arctan(1)} \\ \text{a} & = \frac{\pi}{2} \end{align*} \] (iii) \[h(x) = \text{arctan(x)} + \text{arctan}\left(\frac{1}{x}\right) \\ h(-x) = \text{arctan(x)} + \text{arctan}\left(\frac{-1}{x}\right) \\ \text{a} & = -\text{arctan(x)} - \text{arctan}\left(\frac{1}{x}\right) \text{ ($\text{: arctan(x)} is an odd function.)} \\ \text{R1} \\ \text{a} \\ \text{a} \\ \text{arctan(x)} \\ \text{arctan(x)} \\ \text{arctan(x)} \text{ is an odd function.)} \\ \text{R1} \\ \text{a} \\ \text{a} \\ \text{arctan(x)} \\ \text{arctan(x)} \\ \text{arctan(x)} \\ \text{arctan(x)} \\ \text{arctan(x)} \text{ is an odd function.)} \\ \text{R1} \\ \text{arctan(x)} \\ \te$			
9 $\cos^2 C + 16\cos^2 B + 24\cos B \cos C = 1$ - (2) (1) + (2), 25 + 24 $\cos(B - C) = 37$ $\Rightarrow \cos(B - C) = \frac{1}{2}$ (b) (i) $h(x) = \arctan(x) + \arctan\left(\frac{1}{x}\right), x \neq 0$ $h'(x) = \frac{1}{1+x^2} + \frac{1}{1+(\frac{1}{x})^2} \cdot \frac{-1}{x^2}$ $= \frac{1}{1+x^2} + \frac{x^2}{1+x^2} \cdot \frac{-1}{x^2}$ A1 (ii) Since $h'(x) = 0$ for all $x \neq 0$, $h(x) = c$, where c is a constant. $h(x) = h(1)$ $= \arctan(1) + \arctan(1)$ $= \frac{\pi}{4} + \frac{\pi}{4}$ $= \frac{\pi}{2}$ (iii) $h(x) = \arctan(x) + \arctan\left(\frac{1}{x}\right)$ $h(-x) = \arctan(x) + \arctan\left(\frac{1}{x}\right)$ $= -\arctan(x) - \arctan\left(\frac{1}{x}\right)$ (: $\arctan(x)$ is an odd function.) $= -h(x)$	(a)	$16\sin^2 B + 9\sin^2 C + 24\sin B\sin C = 36 - (1)$	
(i) + (2), $25 + 24\cos(B - C) = 37$ $\Rightarrow \cos(B - C) = \frac{1}{2}$ (b) $h(x) = \arctan(x) + \arctan\left(\frac{1}{x}\right), x \neq 0$ $h'(x) = \frac{1}{1 + x^2} + \frac{1}{1 + \left(\frac{1}{x}\right)^2} \cdot \frac{-1}{x^2}$ $= \frac{1}{1 + x^2} + \frac{x^2}{1 + x^2} \cdot \frac{-1}{x^2}$ $= 0$ A1 (ii) Since $h'(x) = 0$ for all $x \neq 0$, $h(x) = c$, where c is a constant. R1 $h(x) = h(1)$ $= \arctan(1) + \arctan(1)$ $= \frac{\pi}{4} + \frac{\pi}{4}$ $= \frac{\pi}{2}$ (iii) $h(x) = \arctan(x) + \arctan\left(\frac{1}{x}\right)$ $h(-x) = \arctan(-x) + \arctan\left(\frac{1}{x}\right)$ $= -\arctan(x) - \arctan\left(\frac{1}{x}\right)$ ($\because \arctan(x)$ is an odd function.) $= -h(x)$		$9\cos^2 C + 16\cos^2 B + 24\cos B\cos C = 1 - (2)$	
$(i) + (2), 23 + 24 \cos(B - C) = 37$ $\Rightarrow \cos(B - C) = \frac{1}{2}$ (b) $h(x) = \arctan(x) + \arctan\left(\frac{1}{x}\right), x \neq 0$ $h'(x) = \frac{1}{1 + x^2} + \frac{1}{1 + \left(\frac{1}{x}\right)^2} \cdot \frac{-1}{x^2}$ $= \frac{1}{1 + x^2} + \frac{x^2}{1 + x^2} \cdot \frac{-1}{x^2}$ $= 0$ A1 (ii) Since $h'(x) = 0$ for all $x \neq 0$, $h(x) = c$, where c is a constant. $h(x) = h(1)$ $= \arctan(1) + \arctan(1)$ $= \frac{\pi}{4} + \frac{\pi}{4}$ $= \frac{\pi}{2}$ (iii) $h(x) = \arctan(x) + \arctan\left(\frac{1}{x}\right)$ $h(-x) = \arctan(-x) + \arctan\left(\frac{1}{x}\right)$ $= -\arctan(x) - \arctan\left(\frac{1}{x}\right)$ (\cdots arctan(x) is an odd function.) $= -h(x)$			711
$\Rightarrow \cos(B-C) = \frac{1}{2}$ (b) (i) $h(x) = \arctan(x) + \arctan\left(\frac{1}{x}\right), x \neq 0$ $h'(x) = \frac{1}{1+x^2} + \frac{1}{1+\left(\frac{1}{x}\right)^2} \cdot \frac{-1}{x^2}$ $= \frac{1}{1+x^2} + \frac{x^2}{1+x^2} \cdot \frac{-1}{x^2}$ $= 0$ A1 (ii) Since $h'(x) = 0$ for all $x \neq 0$, $h(x) = c$, where c is a constant. $h(x) = h(1)$ $= \arctan(1) + \arctan(1)$ $= \frac{\pi}{4} + \frac{\pi}{4}$ $= \frac{\pi}{2}$ (iii) $h(x) = \arctan(x) + \arctan\left(\frac{1}{x}\right)$ $h(-x) = \arctan(-x) + \arctan\left(\frac{1}{x}\right)$ $= -\arctan(x) - \arctan\left(\frac{1}{x}\right)$ (\cdot : $\arctan(x)$ is an odd function.) $= -h(x)$		$(1)+(2)$ $25+24\cos(B-C)=37$	M1A1
(b) $h(x) = \arctan(x) + \arctan\left(\frac{1}{x}\right), x \neq 0$ $h'(x) = \frac{1}{1+x^2} + \frac{1}{1+\left(\frac{1}{x}\right)^2} \cdot \frac{-1}{x^2}$ $= \frac{1}{1+x^2} + \frac{x^2}{1+x^2} \cdot \frac{-1}{x^2}$ $= 0$ A1 $A1$ (ii) Since $h'(x) = 0$ for all $x \neq 0, h(x) = c$, where c is a constant. $h(x) = h(1)$ $= \arctan(1) + \arctan(1)$ $= \frac{\pi}{4} + \frac{\pi}{4}$ $= \frac{\pi}{2}$ (iii) $h(x) = \arctan(x) + \arctan\left(\frac{1}{x}\right)$ $h(-x) = \arctan(-x) + \arctan\left(\frac{1}{x}\right)$ $= -\arctan(x) - \arctan\left(\frac{1}{x}\right)$ ($\therefore \arctan(x)$ is an odd function.) $= -h(x)$			
(b) $h(x) = \arctan(x) + \arctan\left(\frac{1}{x}\right), x \neq 0$ $h'(x) = \frac{1}{1+x^2} + \frac{1}{1+\left(\frac{1}{x}\right)^2} \cdot \frac{-1}{x^2}$ $= \frac{1}{1+x^2} + \frac{x^2}{1+x^2} \cdot \frac{-1}{x^2}$ $= 0$ A1 $A1$ (ii) Since $h'(x) = 0$ for all $x \neq 0, h(x) = c$, where c is a constant. $h(x) = h(1)$ $= \arctan(1) + \arctan(1)$ $= \frac{\pi}{4} + \frac{\pi}{4}$ $= \frac{\pi}{2}$ (iii) $h(x) = \arctan(x) + \arctan\left(\frac{1}{x}\right)$ $h(-x) = \arctan(-x) + \arctan\left(\frac{1}{x}\right)$ $= -\arctan(x) - \arctan\left(\frac{1}{x}\right)$ ($\therefore \arctan(x)$ is an odd function.) $= -h(x)$		$\Rightarrow \cos(B-C) = \frac{1}{2}$	A1
(i) $h'(x) = \arctan(x) + \arctan\left(\frac{x}{x}\right), x \neq 0$ $h'(x) = \frac{1}{1+x^2} + \frac{1}{1+\left(\frac{1}{x}\right)^2} \cdot \frac{-1}{x^2}$ $= \frac{1}{1+x^2} + \frac{x^2}{1+x^2} \cdot \frac{-1}{x^2}$ $= 0$ A1 $(ii) $ Since $h'(x) = 0$ for all $x \neq 0$, $h(x) = c$, where c is a constant. $h(x) = h(1)$ $= \arctan(1) + \arctan(1)$ $= \frac{\pi}{4} + \frac{\pi}{4}$ $= \frac{\pi}{2}$ $(iii) $ $h(x) = \arctan(x) + \arctan\left(\frac{1}{x}\right)$ $h(-x) = \arctan(-x) + \arctan\left(\frac{1}{x}\right)$ $= -\arctan(x) - \arctan\left(\frac{1}{x}\right)$ $= -\arctan(x) - \arctan\left(\frac{1}{x}\right)$ $= -h(x)$ $(iii) $ M1 $= -h(x)$ M1 $= -h(x)$	(1.)	L	
$h'(x) = \frac{1}{1+x^2} + \frac{1}{1+\left(\frac{1}{x}\right)^2} \cdot \frac{-1}{x^2}$ $= \frac{1}{1+x^2} + \frac{x^2}{1+x^2} \cdot \frac{-1}{x^2}$ $= 0$ A1 (ii) Since $h'(x) = 0$ for all $x \neq 0$, $h(x) = c$, where c is a constant. $h(x) = h(1)$ $= \arctan(1) + \arctan(1)$ $= \frac{\pi}{4} + \frac{\pi}{4}$ $= \frac{\pi}{2}$ (iii) $h(x) = \arctan(x) + \arctan\left(\frac{1}{x}\right)$ $h(-x) = \arctan(-x) + \arctan\left(\frac{1}{x}\right)$ $= -\arctan(x) - \arctan\left(\frac{1}{x}\right)$ (: $\arctan(x)$ is an odd function.) $= -h(x)$		$h(x) = \arctan(x) + \arctan\left(\frac{1}{x}\right), x \neq 0$	
$= \frac{1}{1+x^2} + \frac{x^2}{1+x^2} \cdot \frac{-1}{x^2}$ $= 0$ A1 (ii) Since $h'(x) = 0$ for all $x \neq 0$, $h(x) = c$, where c is a constant. $h(x) = h(1)$ $= \arctan(1) + \arctan(1)$ $= \frac{\pi}{4} + \frac{\pi}{4}$ $= \frac{\pi}{2}$ (iii) $h(x) = \arctan(x) + \arctan\left(\frac{1}{x}\right)$ $h(-x) = \arctan(-x) + \arctan\left(\frac{1}{x}\right)$ $= -\arctan(x) - \arctan\left(\frac{1}{x}\right)$ (: $\arctan(x)$ is an odd function.) $= -h(x)$		(x)	
(ii) Since $h'(x) = 0$ for all $x \neq 0$, $h(x) = c$, where c is a constant. R1 $h(x) = h(1)$ $= \arctan(1) + \arctan(1)$ $= \frac{\pi}{4} + \frac{\pi}{4}$ $= \frac{\pi}{2}$ (iii) $h(x) = \arctan(x) + \arctan\left(\frac{1}{x}\right)$ $h(-x) = \arctan(-x) + \arctan\left(\frac{1}{x}\right)$ $= -\arctan(x) - \arctan\left(\frac{1}{x}\right)$ (: $\arctan(x)$ is an odd function.) $= -h(x)$		$h'(x) = \frac{1}{1+x^2} + \frac{1}{1+\left(\frac{1}{x}\right)^2} \cdot \frac{-1}{x^2}$	M1A1
(ii) Since $h'(x) = 0$ for all $x \neq 0$, $h(x) = c$, where c is a constant. R1 $h(x) = h(1)$ $= \arctan(1) + \arctan(1)$ $= \frac{\pi}{4} + \frac{\pi}{4}$ $= \frac{\pi}{2}$ (iii) $h(x) = \arctan(x) + \arctan\left(\frac{1}{x}\right)$ $h(-x) = \arctan(-x) + \arctan\left(\frac{1}{x}\right)$ $= -\arctan(x) - \arctan\left(\frac{1}{x}\right)$ (: $\arctan(x)$ is an odd function.) $= -h(x)$		$\frac{1}{x^2} - 1$	A1
(ii) Since $h'(x) = 0$ for all $x \neq 0$, $h(x) = c$, where c is a constant. $h(x) = h(1)$ $= \arctan(1) + \arctan(1)$ $= \frac{\pi}{4} + \frac{\pi}{4}$ $= \frac{\pi}{2}$ (iii) $h(x) = \arctan(x) + \arctan\left(\frac{1}{x}\right)$ $h(-x) = \arctan(-x) + \arctan\left(\frac{1}{x}\right)$ $= -\arctan(x) - \arctan\left(\frac{1}{x}\right)$ (:: $\arctan(x)$ is an odd function.) $= -h(x)$		$-\frac{1}{1+x^2} + \frac{1}{1+x^2} \cdot \frac{1}{x^2}$	
Since $h'(x) = 0$ for all $x \neq 0$, $h(x) = c$, where c is a constant. $h(x) = h(1)$ $= \arctan(1) + \arctan(1)$ $= \frac{\pi}{4} + \frac{\pi}{4}$ $= \frac{\pi}{2}$ (iii) $h(x) = \arctan(x) + \arctan\left(\frac{1}{x}\right)$ $h(-x) = \arctan(-x) + \arctan\left(\frac{1}{x}\right)$ $= -\arctan(x) - \arctan\left(\frac{1}{x}\right)$ (: $\arctan(x)$ is an odd function.) $= -h(x)$		=0	A1
$h(x) = h(1)$ $= \arctan(1) + \arctan(1)$ $= \frac{\pi}{4} + \frac{\pi}{4}$ $= \frac{\pi}{2}$ (iii) $h(x) = \arctan(x) + \arctan\left(\frac{1}{x}\right)$ $h(-x) = \arctan(-x) + \arctan\left(\frac{1}{x}\right)$ $= -\arctan(x) - \arctan\left(\frac{1}{x}\right) \text{ ($\cdot \cdot : \arctan(x) : is an odd function.)}$ $= -h(x)$ M1 $= -h(x)$	(ii)		
$= \arctan(1) + \arctan(1)$ $= \frac{\pi}{4} + \frac{\pi}{4}$ $= \frac{\pi}{2}$ (iii) $h(x) = \arctan(x) + \arctan\left(\frac{1}{x}\right)$ $h(-x) = \arctan(-x) + \arctan\left(-\frac{1}{x}\right)$ $= -\arctan(x) - \arctan\left(\frac{1}{x}\right) \text{ ($\cdot : \arctan(x)$ is an odd function.)}$ $= -h(x)$ M1 $= -h(x)$			R1
$= \arctan(1) + \arctan(1)$ $= \frac{\pi}{4} + \frac{\pi}{4}$ $= \frac{\pi}{2}$ (iii) $h(x) = \arctan(x) + \arctan\left(\frac{1}{x}\right)$ $h(-x) = \arctan(-x) + \arctan\left(-\frac{1}{x}\right)$ $= -\arctan(x) - \arctan\left(\frac{1}{x}\right) \text{ (\cdots arctan(x) is an odd function.)}$ $= -h(x)$ A1		h(x) = h(1)	M1
$= \frac{\pi}{4} + \frac{\pi}{4}$ $= \frac{\pi}{2}$ (iii) $h(x) = \arctan(x) + \arctan\left(\frac{1}{x}\right)$ $h(-x) = \arctan(-x) + \arctan\left(-\frac{1}{x}\right)$ $= -\arctan(x) - \arctan\left(\frac{1}{x}\right) (\because \arctan(x) \text{ is an odd function.})$ $= -h(x)$ A 1		$= \arctan(1) + \arctan(1)$	
$= \frac{\pi}{2}$ (iii) $h(x) = \arctan(x) + \arctan\left(\frac{1}{x}\right)$ $h(-x) = \arctan(-x) + \arctan\left(-\frac{1}{x}\right)$ $= -\arctan(x) - \arctan\left(\frac{1}{x}\right) (\because \arctan(x) \text{ is an odd function.})$ $= -h(x)$ M1 $= -h(x)$		$=\frac{\pi}{m}+\frac{\pi}{m}$	A1
(iii) $h(x) = \arctan(x) + \arctan\left(\frac{1}{x}\right)$ $h(-x) = \arctan(-x) + \arctan\left(-\frac{1}{x}\right)$ $= -\arctan(x) - \arctan\left(\frac{1}{x}\right) (\because \arctan(x) \text{ is an odd function.})$ $= -h(x)$ M1 $= -h(x)$		4 4	
(iii) $h(x) = \arctan(x) + \arctan\left(\frac{1}{x}\right)$ $h(-x) = \arctan(-x) + \arctan\left(-\frac{1}{x}\right)$ $= -\arctan(x) - \arctan\left(\frac{1}{x}\right) (\because \arctan(x) \text{ is an odd function.})$ $= -h(x)$ M1 $= -h(x)$		$=\frac{\pi}{2}$	
$h(x) = \arctan(x) + \arctan\left(\frac{1}{x}\right)$ $h(-x) = \arctan(-x) + \arctan\left(\frac{1}{x}\right)$ $= -\arctan(x) - \arctan\left(\frac{1}{x}\right) \text{ ($\cdot : \arctan(x)$ is an odd function.)}$ $= -h(x)$ M1 $= -h(x)$	()		
$= -\arctan(x) - \arctan\left(\frac{1}{x}\right) \left(\because \arctan(x) \text{ is an odd function.}\right) $ $= -h(x)$ R1	(111)	$h(x) = \arctan(x) + \arctan\left(\frac{1}{x}\right)$	
=-h(x)		$h(-x) = \arctan(-x) + \arctan\left(-\frac{1}{x}\right)$	M1
		= $-\arctan(x) - \arctan\left(\frac{1}{x}\right)$ (: $\arctan(x)$ is an odd function.)	R1
		=-h(x)	
		For $x < 0$, $h(x) = -\frac{\pi}{2}$.	A1

9	Function, Composite functions, AP, Factorial	Max mark: 15
(a)	$\int f(x) = x - 2$	
(i)	4.68 [†] y	
	$\mathbf{f2}(x) = \mathbf{f}(x)$	
	(-2,0) 1 (2,0) 6	
	(2,0)	G1
	†	
(ii)	Zeros of $f = \pm 2$	A1
(h)	$\frac{2 \text{clos of } f = \pm 2}{6.67 \text{fy}}$	Al
(i)		G2
	$\mathbf{f3}(x) = \mathbf{f}(\mathbf{f}(x))$	
	(0,0) ×	
	(0,0) $(4,0)$ $(4,0)$	
(ii)	Zeros of $f \circ f$ are $\pm 4, 0$.	A1
(c) (i)	7.02 19	
	(-6,0)(-2,0) (2,0) (6,0) ×	
	11.73	
	$\mathbf{f4}(x) = \mathbf{f}(\mathbf{f}(\mathbf{f}(x)))$	
	Zeros of f^3 are $\pm 6, \pm 2$.	A1
(ii)	Zeros of f^4 are $\pm 8, \pm 4, 0$	A1
(iii)	Zeros of f^{8} are $\pm 16, \pm 12, \pm 8, \pm 4, 0$	A1
(d)	N = 2n + 1	A1
(i)		
(ii)	$\sum_{r=0}^{N} a_r = 2(4+8+12+16++4n)$	A1
	r=1	
	=8(1+2+3++n)	
	$=8\cdot\frac{n}{2}(1+n)$	M1(AP sum)
	=4n(1+n)	A1
(iii)		M1
()	$a_1 \cdot a_2 \cdot a_3 \cdot \dots \cdot a_N = (-1)^n (4 \cdot 8 \cdot 12 \cdot 16 \cdots 4n)^2$	
	$= (-1)^n 4(1 \cdot 2 \cdot 3 \cdot 4 \cdots n)^2$	A1
	$= \left(-1\right)^n 4\left(n!\right)^2$	A1

STUDENT NAME:	0	2	5	0	1	2				
		(AM	INA1	ΠΟΝ	1 C	ODE	•			
TEACHER NAME:	8	8	2	0	-	7	7 :	2	0	1

ST. JOSEPH'S INSTITUTION YEAR 5 END OF YEAR EXAMINATION 2020

CANDIDATE SESSION NUMBER

MATHEMATICS: ANALYSIS AND APPROACHES 8 October 2020

HIGHER LEVEL 1 hr 30 mins

PAPER 1

Thursday 0800 - 0930 hrs

INSTRUCTIONS TO CANDIDATES

- Write your name and teacher's name in the spaces provided.
- Do not open this examination paper until instructed to do so.
- **Section A**: Answer all questions showing working and answers in the spaces provided in the exam paper.
- **Section B**: Answer all questions using the foolscap paper provided.
- The use of calculators is **not** permitted in this paper.
- A clean copy of the **Mathematics: Analysis and Approaches formula booklet** is required for this paper.
- Unless otherwise stated in the question all numerical answers must be given exactly or to three significant figures.
- The maximum mark for this examination paper is [85 marks].
- This question paper consists of **9** printed pages including the Cover Sheet.
- Sections A and B are to be submitted separately.

FOR MARKER USE ONLY:

Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8	Q9	TOTAL
									/85

Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by working and/or explanations. Where an answer is incorrect, some marks may be given for a correct method, provided this is shown by written working. You are advised to show all working.

SECTION A (40 marks)

Answer all question in the spaces provided.

1. [Maximum mark: 5]

- (a) Solve the inequality $x^2 + x 20 \ge 0$. [2]
- (b) Hence, by means of a suitable substitution, solve the inequality $x^2 + |x| 20 \ge 0$. [3]

Solution:

(a)

$$x^{2} + x - 20 \ge 0$$
$$(x+5)(x-4) \ge 0$$
$$x \le -5 \text{ or } x \ge 4$$

M1

 $\mathbf{A1}$

M1

 $\mathbf{A1}$

(b) Replace x by |x| to get $\mathbf{A1}$

$$|x| \le -5$$
 or $|x| \ge 4$
rejected $x \ge 4$ or $x \le -4$

2

2. [Maximum mark: 4]

A function f is defined by

$$f(x) = x^2 + x, \quad x \le -\frac{1}{2}.$$

- (a) Find an expression for f^{-1} . [3]
- (b) Find the range of f^{-1} . [1]

Solution:

(a)

$$y = x^{2} + x$$

$$y = \left(x + \frac{1}{2}\right)^{2} - \frac{1}{4}$$

$$\left(x + \frac{1}{2}\right)^{2} = y + \frac{1}{4}$$

$$x + \frac{1}{2} = \pm\sqrt{y + \frac{1}{4}}$$

$$x = -\frac{1}{2} \pm\sqrt{y + \frac{1}{4}}$$

Since $x \leq -\frac{1}{2}$, we reject the positive square root.

Hence $f^{-1} = -\frac{1}{2} - \sqrt{x + \frac{1}{4}}$

(b) R
$$_{f^{-1}} = D _{f} = \left(-\infty, -\frac{1}{2}\right].$$

R1

M1

A1

A1

3. [Maximum mark: 6]

- (a) Expand $\frac{1}{(1-3x)^2}$ in ascending powers of x up to the term in x^3 .
- (b) Hence, expand $\left(\frac{1-x}{1-3x}\right)^2$ in ascending powers of x up to the term in x^2 . [3]
- (c) State the range of values of x such that the expansions above are valid. [1]

Solution:

(a) Using Binomial expansion,

$$(1-3x)^{-2} = 1 + (-2)(-3x) + \frac{(-2)(-3)}{2!}(-3x)^2 + \frac{(-2)(-3)(-4)}{3!}(-3x)^3 + \cdots$$

$$= 1 + 6x + 27x^2 + 108x^3 + \cdots$$
A1

(b) Hence

$$\left(\frac{1-x}{1-3x}\right)^2 = (1-x)^2(1-3x)^{-2}$$
$$= (1-2x+x^2)(1+6x+27x^2+\cdots)$$
$$= 1+4x+16x^2+\cdots$$

M1

 $\mathbf{A1}$

 $\mathbf{A1}$

A1 for $1 - 2x + x^2$

(c) The expansion is valid for $|x| < \frac{1}{3}$.

Turn Over

4

[Maximum mark: 8]

A function g(x) is given by the rule $g(x) = \frac{x^2 + 6}{3 - x^2}$.

- [2]State the maximal domain of g.
- Find the equations of the asymptotes of y = g(x). [4]
- (c) Describe a single transformation that maps the graph of y = g(x) onto the graph of y = h(x), where $h(x) = \frac{x^2 - 2x + 7}{2 + 2x - x^2}$. [2]

Solution:

(a) For
$$g(x) = \frac{x^2 + 6}{3 - x^2}$$
 to be defined, we need $3 - x^2 \neq 0$. (M1)

Hence the maximal domain of g is $\{x \in \mathbb{R} \mid x \neq \pm \sqrt{3}\}\$ or $\mathbb{R} \setminus \{\pm \sqrt{3}\}$.

(b)
$$g(x) = \frac{x^2 + 6}{3 - x^2} = -1 + \frac{9}{3 - x^2}$$
 (M1)

The asymptotes are

$$y = -1, x = \sqrt{3},$$
 A1

$$x = \sqrt{3}$$
, A1
 $x = -\sqrt{3}$.

(c)
$$h(x) = \frac{x^2 - 2x + 7}{2 + 2x - x^2} = \frac{(x - 1)^2 + 6}{3 - (x - 1)^2}$$
 M1

Hence the transformation needed is a translation by $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$.

5

Turn Over

 $\mathbf{A1}$

 $\mathbf{A1}$

5. [Maximum mark: 8]

The r^{th} term of a series is given by the expression $U_r = 2^{r+2} - r(r-2)$, where $r \in \mathbb{Z}^+$.

Given that

$$\sum_{r=1}^{n} r^2 = \frac{n}{6}(n+1)(2n+1),$$

show that

$$\sum_{r=1}^{n} U_r = 8(2^n - 1) - \frac{n}{6}(n+1)(2n-5).$$

Hence or otherwise, find

$$\sum_{r=1}^{n} \left(2^r - \left(\frac{r}{2} \right) \left(\frac{r}{2} - 1 \right) \right)$$

giving your answer in terms of n.

Solution:

$$S_n = \sum_{r=1}^n \left(2^{r+2} - r(r-2) \right)$$

$$= \sum_{r=1}^n 2^{r+2} - \sum_{r=1}^n r^2 + \sum_{r=1}^n 2r$$

$$= \frac{2^3 (1 - 2^n)}{1 - 2} - \frac{n}{6} (n+1)(2n+1) + \frac{n}{2} (2 + 2n)$$

A1 - correct sum of GP, **A1** - correct sum of AP $= 8(-1+2^n) - \frac{n(n+1)}{6}(2n+1-6)$ $= 8(2^n-1) - \frac{n(n+1)}{6}(2n-5) \quad \text{(shown.)}$

$$\sum_{r=1}^{n} \left(2^{r} - \left(\frac{r}{2} \right) \left(\frac{r}{2} - 1 \right) \right) = \sum_{r=1}^{n} \left[\left(\frac{1}{4} \right) (2^{r+2}) - \left(\frac{1}{2} \cdot r \right) \left(\frac{1}{2} \right) (r - 2) \right]$$

$$= \frac{1}{4} \sum_{r=1}^{n} U_{r}$$

$$= \left(\frac{1}{4} \right) \left(8(2^{n} - 1) - \frac{n}{6} (n+1)(2n-5) \right)$$

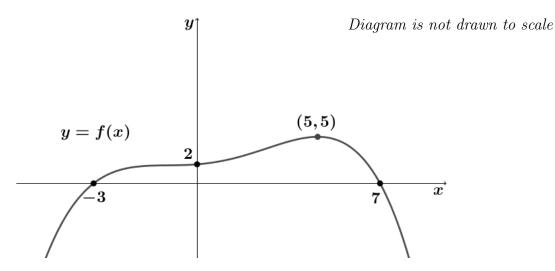
$$= 2(2^{n} - 1) - \frac{n}{24} (n+1)(2n-5)$$

M1 - split Σ

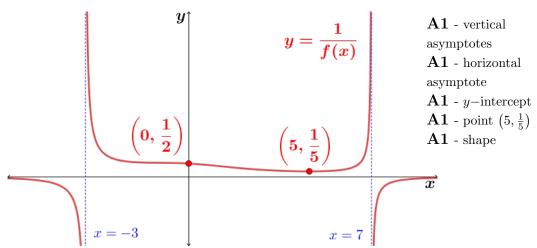
M1 - use of AP, GP or given sum formula

A1

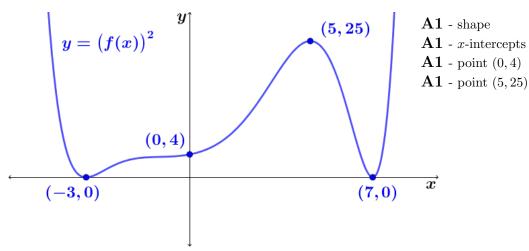
 \mathbf{AG}


M1

A1 or the next line directly


 $\mathbf{A1}$

6. [Maximum mark: 9]


The graph of a polynomial function y = f(x) is shown below. The curve cuts the x-axis at x = -3 and x = 7, cuts the y-axis at y = 2, and has a maximum point at (5,5).

(a) On the set of axes below, sketch the graph of $y = \frac{1}{f(x)}$, labelling its asymptotes, turning points, and axial intercepts clearly. [5]

(b) On the set of axes below, sketch the graph of $y = (f(x))^2$, labelling its turning points and axial intercepts clearly. [4]

[3]

[7]

[2]

Do **NOT** write solutions on this page.

SECTION B (45 marks)

Answer all questions on the foolscap paper provided. Please start each question on a new page.

7. [Maximum mark: 10]

(a) A boy claims to have found a function that only produces prime numbers. He then writes the function as

$$\pi(n) = n^2 + n + 5, \quad n \in \mathbb{Z}^+.$$

Prove or disprove his claim.

(b) A girl claims to have discovered a formula that reads

$$\sum_{r=1}^{n} \frac{r}{(r+1)!} = 1 - \frac{1}{(n+1)!}, \quad n \in \mathbb{Z}^{+}.$$

Prove her discovery using mathematical induction.

8. [Maximum mark: 18]

(a) Show that $5x^2 + nx - 1 = 0$ has 2 real roots for all real values of n.

Let $P(x) = (x^2 - 6x + m^2)(5x^2 + nx - 1)$ for some real constants m and n.

- (b) Find the range of values of m for which P(x) = 0 yields only real roots. [4]
- (c) If the sum of the roots of P(x) = 0 is 10 and one of the roots is $3 \sqrt{7}i$, where $i^2 = -1$,
 - (i) find the value of n; and,
 - (ii) find the possible values of m. [6]
- (d) Find the remainder when P(x) is divided by 2x 1, leaving your answer in terms of m and n.
- (e) Solve the inequality P(x) < 0 for m = n = 3. [4]

Do **NOT** write solutions on this page.

9. [Maximum mark: 17]

Suppose $z = \frac{4\sqrt{2}i}{\sqrt{6} + \sqrt{2}i}$, where $i^2 = -1$.

(a) Show that
$$z = 1 + \sqrt{3}i$$
. [2]

- (b) Hence, find in terms of n, [4]
 - (i) $arg(z^n)$
 - (ii) $|z^n|$
- (c) If $w^2 = z$, find the possible values of w, leaving your answer in the form $re^{i\theta}$ where r > 0 and $\theta \in (-\pi, \pi]$.

Let $z^n = r(f(n) + i g(n))$ for all $n \in \mathbb{Z}^+$, where f and g are trigonometric functions of n and $r = |z^n|$.

(d) Find
$$f(1), f(2)$$
 and $f(3)$. [4]

(e) Calculate the product of the first 12 values of f(n), that is, evaluate

$$f(1) \times f(2) \times f(3) \times \cdots \times f(11) \times f(12).$$

[3]

End of Paper

7. Proof by Counterexample, Mathematical Induction	Maximum mark: 10
(a)	
$\pi(4) = 4^2 + 4 + 5 = 25$ is clearly <u>not prime</u> .*	$M1\underline{R1}$ - substitution
	to disprove claim
Therefore, the claim is not true.	A1
*Any valid counterexample is acceptable.	
(b)	
Let $P(n)$ be the statement $\sum_{r=1}^{n} \frac{r}{(r+1)!} = 1 - \frac{1}{(n+1)!}$ for any $n \in \mathbb{Z}^+$.	
For $n = 1$:	A1 (A0 for bad
LHS = $\sum_{r=1}^{1} \frac{r}{(r+1)!} = \frac{1}{(1+1)!} = \frac{1}{2}$	presentation)
RHS = $1 - \frac{1}{(1+1)!} = 1 - \frac{1}{2} = \frac{1}{2}$	
Therefore, $P(1)$ is true.	
Assume that $P(k)$ is true for some $k \in \mathbb{Z}^+$, i.e.,	M1
$\sum_{r=1}^{k} \frac{r}{(r+1)!} = 1 - \frac{1}{(k+1)!}$	
For $n = k + 1$:	
$\sum_{k=1}^{k+1} r \sum_{k=1}^{k} r $ $k+1$	
$\sum_{r=1}^{k+1} \frac{r}{(r+1)!} = \sum_{r=1}^{k} \frac{r}{(r+1)!} + \frac{k+1}{((k+1)+1)!}$	M1 - correct sum
$=1-\frac{1}{(k+1)!}+\frac{k+1}{(k+2)!}$	A1 - use of $P(k)$
$=1-\frac{k+2}{(k+2)!}+\frac{k+1}{(k+2)!}$	
$=1-\frac{k+2-(k+1)}{(k+2)!}$	M1 - single fraction
$=1-\frac{1}{(k+2)!}$	
	A1
$=1-\frac{1}{((k+1)+1)!}$	
Therefore, $P(k+1)$ is true.	
Since $P(1)$ is true and $P(k+1)$ is also true whenever $P(k)$ is true for any	A1 - only if all are
$k \in \mathbb{Z}^+$, then by mathematical induction $P(n)$ is true for all $n \in \mathbb{Z}^+$.	correct

8. Polynomials, Sum and Product, Remainder Theorem	Maximum mark: 18
(a)	
$y = 5x^2 + nx - 1$ has discriminant $\Delta_n = n^2 - 4(5)(-1) = n^2 + 20$	Α1 - Δ
which is always positive no matter what n is.	R1 (tolerate $n^2 > 0$)
Thus, $5x^2 + nx - 1 = 0$ always yields 2 real roots whatever n is.	AG
(b)	
Let $\Delta_m = 36 - 4m^2$ be the discriminant of the factor $x^2 - 6x + m^2$.	A1
P yields no complex roots if and only if $\Delta_m \geq 0$. (as $\Delta_n > 0$ for all n .)	R1
$\Delta_m = 36 - 4m^2 \ge 0 \Longrightarrow m^2 \le 9 \Longrightarrow -3 \le m \le 3$	M1A1
(c)(i)	
The sum of the roots is 10 means $6 - \frac{n}{5} = 10 \Longrightarrow n = -20$.	M1A1
(c)(ii)	
Since $3 - \sqrt{7}i$ is a root, so is $3 + \sqrt{7}i$ as <u>all coefficients are real</u> .	$A1\underline{R1}$ - real coeff.
Thus, $m^2 = (3 - \sqrt{7}i)(3 + \sqrt{7}i) = 16$	M1
Therefore, $m = \pm 4$.	A1
(d)	
The remainder is given by $P\left(\frac{1}{2}\right)$.	M1 - seen anywhere
$P\left(\frac{1}{2}\right) = \left(\left(\frac{1}{2}\right)^2 - 6\left(\frac{1}{2}\right) + m^2\right) \left(5\left(\frac{1}{2}\right)^2 + \left(\frac{1}{2}\right)n - 1\right)$	
$P\left(\frac{1}{2}\right) = \left(\left(\frac{1}{2}\right)^2 - 6\left(\frac{1}{2}\right) + m^2\right) \left(5\left(\frac{1}{2}\right)^2 + \left(\frac{1}{2}\right)n - 1\right)$ $= \left(m^2 - \frac{11}{4}\right) \left(\frac{n}{2} + \frac{1}{4}\right)$	A1
(e)	
For $m = n = 3$,	
$P(x) = (x^2 - 6x + 9)(5x^2 + 3x - 1) = (x - 3)^2(5x^2 + 3x - 1).$	M1
$P(x) < 0 \Longrightarrow \underline{5x^2 + 3x - 1 < 0} \text{ and } x \neq 3$	$\underline{\mathbf{A1}}$ - award even
	if no " $x \neq 3$ "
$\implies \frac{-3 - \sqrt{29}}{10} < x < \frac{-3 + \sqrt{29}}{10}$	M1A1

9. Complex Numbers		Maximum mark: 17
(a)		
$z = \frac{4\sqrt{2}i}{\sqrt{6} + \sqrt{2}i} \times \frac{\sqrt{6} - \sqrt{2}i}{\sqrt{6} - \sqrt{2}i} = \frac{8\sqrt{3}}{6 + \sqrt{2}i}$	$\frac{\mathbf{i}+8}{2} = 1 + \sqrt{3}\mathbf{i}$	M1A1
(b)	Im $1+\sqrt{3}i$	
(i)	z =2	
$\arg z^n = n \times \arg z = \frac{n\pi}{3}$	$\sqrt{3}$	(M1)A1
(ii)	$-\frac{5\pi}{3}$ $\arg z = \frac{\pi}{3}$	
$ z^n = z ^n = 2^n$	$\arg z = \frac{\pi}{3}$ 1 Re	(M1)A1
(c) Method 1	(c) Method 2	
Let $w = re^{i\theta}$ so that $w^2 = r^2e^{i2\theta}$.	Let $w = a + ib$ so that	
As $w^2 = z \Longrightarrow r^2 e^{i 2\theta} = 1 + \sqrt{3} i$	$w^2 = a^2 - b^2 + 2ab i = 1 + \sqrt{3} i$	
$=2e^{i\pi/3}=2e^{-i5\pi/3}$ (as above)	$a^2 - b^2 = 1 \text{ and } 2ab = \sqrt{3}$	M1
Thus, $r^2 = 2$ and $2\theta = \frac{\pi}{3}$ or $-\frac{5\pi}{3}$	$\implies 4b^4 + 4b^2 - 3 = 0$	
So $r = \sqrt{2}$ and $\theta = \frac{\pi}{6}$ or $-\frac{5\pi}{6}$	$\implies (2b^2 - 1)(2b^2 + 3) = 0$	A1
Therefore, $w = \sqrt{2}e^{i\pi/6}$	$\implies b = \pm \frac{1}{\sqrt{2}} \text{ and } a = \pm \frac{\sqrt{3}}{\sqrt{2}}$	A1
or $w = \sqrt{2}e^{-i 5\pi/6}$.	$w = \sqrt{2}e^{i\pi/6} \text{ or } \sqrt{2}e^{-i5\pi/6}$	A1
(d)		
$z^n = 2^n \operatorname{cis}\left(\frac{n\pi}{3}\right) = r\left(\operatorname{cos}\left(\frac{n\pi}{3}\right) + \mathrm{i}\right)$	$\sin\left(\frac{n\pi}{3}\right)$	(M1A1) - de Moivre's
$\int y = \cos x$	<i>f</i> (6)	
0.5	f(5)	
f (1)		
0 π/3 2π/3 π	$4\pi/3$ $5\pi/3$ 2π $7\pi/3$	
f(2)	<i>f</i> (4)	
$f(1) = \cos\left(\frac{\pi}{3}\right) = \frac{1}{2}$	A1	
$f(2) = \cos\left(\frac{2\pi}{3}\right) = -\frac{1}{2} \text{ and } f(3) = \cos\left(\frac{2\pi}{3}\right)$	A1	
(e)		
The first six values of f are $\frac{1}{2}$, $-\frac{1}{2}$,	$-1, -\frac{1}{2}, \frac{1}{2}, 1.$ (See graph above.)	M1
The product of every six terms is –	-	A1 - seen anywhere
Thus, $f(1) \times \cdots \times f(12) = (f(1) \times f(12)) = (f(1) \times f(12)$	1 1	A1
, , , , , , , , , , , , , , , , , , ,	$(-16)^2$ 256	

STUDENT NAME:		0	2	5	0	1	2				
OTODERT NAME.		EX	AMI	NAT	ION	C	ODE	E			
TEACHER NAME:		8	8	2	0	-		7	2	0	1

ST. JOSEPH'S INSTITUTION YEAR 5 END OF YEAR EXAMINATION 2020

CANDIDATE SESSION NUMBER

MATHEMATICS: ANALYSIS AND APPROACHES 8 October 2020

HIGHER LEVEL 1 hr 30 mins

PAPER 1

Thursday 0800 - 0930 hrs

INSTRUCTIONS TO CANDIDATES

- Write your name and teacher's name in the spaces provided.
- Do not open this examination paper until instructed to do so.
- **Section A**: Answer all questions showing working and answers in the spaces provided in the exam paper.
- Section B: Answer all questions using the foolscap paper provided.
- The use of calculators is **not** permitted in this paper.
- A clean copy of the **Mathematics: Analysis and Approaches formula booklet** is required for this paper.
- Unless otherwise stated in the question all numerical answers must be given exactly or to three significant figures.
- The maximum mark for this examination paper is [85 marks].
- This question paper consists of **9** printed pages including the Cover Sheet.
- Sections A and B are to be submitted separately.

FOR MARKER USE ONLY:

Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8	Q9	TOTAL
									/85

Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by working and/or explanations. Where an answer is incorrect, some marks may be given for a correct method, provided this is shown by written working. You are advised to show all working.

SECTION A (40 marks)

Answer all question in the spaces provided.

1.	[Maximum mark: 5]	
	(a) Solve the inequality $x^2 + x - 20 \ge 0$.	[2]
	(b) Hence, by means of a suitable substitution, solve the inequality $x^2 + x - 20 \ge 0$.	[3]
		-
		-
		-
		-
		-
		-
		-
		. -
		-
		_
		-
		-
		-
		-
		-

2

	2.	[Maximum]	mark:	4
--	----	-----------	-------	---

A function	n f	is	${\it defined}$	by
------------	-----	----	-----------------	----

$$f(x) = x^2 + x, \quad x \le -\frac{1}{2}.$$

	$\frac{1}{2}$	
(a)	Find an expression for f^{-1} .	[3]
(b)	Find the range of f^{-1} .	[1]
		•
		•
		•
		-
		•
		•
		•
		i

3

3.	Maximum	mark:	6	
----	---------	-------	---	--

(a) Expand $\frac{1}{(1-3x)^2}$ in ascending powers of x up to the term in x^3 .	[2
(b) Hence, expand $\left(\frac{1-x}{1-3x}\right)^2$ in ascending powers of x up to the term in x^2 .	[3
(c) State the range of values of x such that the expansions above are valid.	[1

4

4. [Maximum mark: 8	8	1
---------------------	---	---

A function $g(x)$ is given by the rule $g(x) = \frac{x^2 + 6}{3 - x^2}$.	
(a) State the maximal domain of g .	[2]
(b) Find the equations of the asymptotes of $y = g(x)$.	[4]
(c) Describe a single transformation that maps the graph of $y=g(x)$ onto the graph of $y=h(x)$, where $h(x)=\frac{x^2-2x+7}{2+2x-x^2}$.	f [2]
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-
······································	-
······································	-
	-
	-
	-
	-
	-
	-
	-
	-
	•
	-

5

	-		_
_	Maximum		വ
า	HMISSIMIIM	mark	- X I
, .	ITATOVIIIIOIII	mun iz.	OI

The r^{th} term of a ser	ries is given by the	expression $U_r = 2^{r+2}$	$r^2 - r(r-2)$, where	re $r \in \mathbb{Z}^+$.
-----------------------------------	----------------------	----------------------------	------------------------	---------------------------

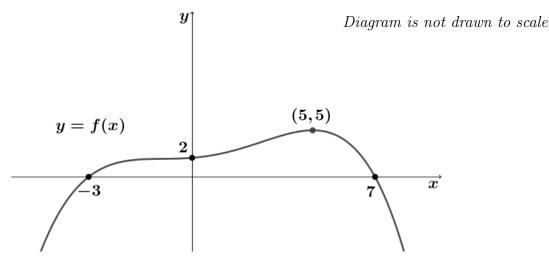
Given that

$$\sum_{r=1}^{n} r^2 = \frac{n}{6}(n+1)(2n+1),$$

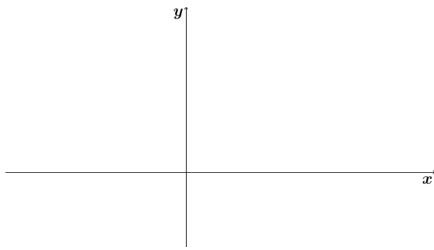
show that

$$\sum_{r=1}^{n} U_r = 8(2^n - 1) - \frac{n}{6}(n+1)(2n-5).$$

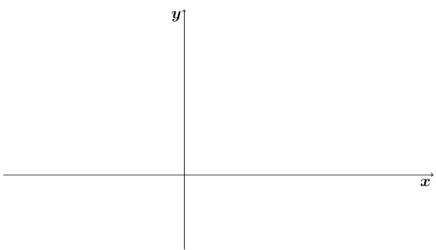
Hence or otherwise, find


giving your answer in terms of n.

$$\sum_{r=1}^{n} \left(2^r - \left(\frac{r}{2} \right) \left(\frac{r}{2} - 1 \right) \right)$$



6. [Maximum mark: 9]


The graph of a polynomial function y = f(x) is shown below. The curve cuts the x-axis at x = -3 and x = 7, cuts the y-axis at y = 2, and has a maximum point at (5,5).

(a) On the set of axes below, sketch the graph of $y = \frac{1}{f(x)}$, labelling its asymptotes, turning points, and axial intercepts clearly. [5]

(b) On the set of axes below, sketch the graph of $y = (f(x))^2$, labelling its turning points and axial intercepts clearly. [4]

[3]

[7]

[2]

Do **NOT** write solutions on this page.

SECTION B (45 marks)

Answer all questions on the foolscap paper provided. Please start each question on a new page.

7. [Maximum mark: 10]

(a) A boy claims to have found a function that only produces prime numbers. He then writes the function as

$$\pi(n) = n^2 + n + 5, \quad n \in \mathbb{Z}^+.$$

Prove or disprove his claim.

(b) A girl claims to have discovered a formula that reads

$$\sum_{r=1}^{n} \frac{r}{(r+1)!} = 1 - \frac{1}{(n+1)!}, \quad n \in \mathbb{Z}^{+}.$$

Prove her discovery using mathematical induction.

8. [Maximum mark: 18]

(a) Show that $5x^2 + nx - 1 = 0$ has 2 real roots for all real values of n.

Let $P(x) = (x^2 - 6x + m^2)(5x^2 + nx - 1)$ for some real constants m and n.

- (b) Find the range of values of m for which P(x) = 0 yields only real roots. [4]
- (c) If the sum of the roots of P(x) = 0 is 10 and one of the roots is $3 \sqrt{7}i$, where $i^2 = -1$,
 - (i) find the value of n; and,
 - (ii) find the possible values of m. [6]
- (d) Find the remainder when P(x) is divided by 2x 1, leaving your answer in terms of m and n.
- (e) Solve the inequality P(x) < 0 for m = n = 3. [4]

Do **NOT** write solutions on this page.

9. [Maximum mark: 17]

Suppose $z = \frac{4\sqrt{2}i}{\sqrt{6} + \sqrt{2}i}$, where $i^2 = -1$.

(a) Show that
$$z = 1 + \sqrt{3}i$$
. [2]

- (b) Hence, find in terms of n, [4]
 - (i) $arg(z^n)$
 - (ii) $|z^n|$
- (c) If $w^2 = z$, find the possible values of w, leaving your answer in the form $re^{i\theta}$ where r > 0 and $\theta \in (-\pi, \pi]$.

Let $z^n = r(f(n) + i g(n))$ for all $n \in \mathbb{Z}^+$, where f and g are trigonometric functions of n and $r = |z^n|$.

(d) Find
$$f(1), f(2)$$
 and $f(3)$. [4]

(e) Calculate the product of the first 12 values of f(n), that is, evaluate

$$f(1) \times f(2) \times f(3) \times \cdots \times f(11) \times f(12).$$

[3]

End of Paper

STUDENT NAME:	CA	NDI	DAT	ES	SES	SIC	NC	NUN	/IBEI	R
SIODENI NAME	 0	2	5	0	1	2				
TEACHER NAME:	 EX	ΆMI	INAT	101	۱ C	OD	E			
	8	8	2	0	Ι.	_	7	2	0	2

ST JOSEPH'S INSTITUTION YEAR 5 END OF YEAR EXAMINATION 2020

MATHEMATICS: ANALYSIS AND APPROACHES 15 October 2020

HIGHER LEVEL 1 hr 30 mins

PAPER 2

Thursday 0800 – 0930 hrs

INSTRUCTIONS TO CANDIDATES

- Write your name and teacher's name in the spaces provided.
- Do not open this examination paper until instructed to do so.
- **Section A**: Answer all questions showing working and answers in the spaces provided in the exam paper.
- Section B: Answer all questions using the writing paper provided
- The use of a scientific or examination graphical calculator is permitted in this paper.
- TI-Nspire calculators must be in Press-to-Test mode and cleared of all previous data.
- TI-84+ graphical calculators must only have permitted apps and be RAM cleared.
- A clean copy of the **Mathematics: Analysis and Approaches formula booklet** is required for this paper.
- Unless otherwise stated in the question, all numerical answers must be given exactly or correct to three significant figures.
- The maximum mark for this examination paper is [85 marks].
- This question paper consists of **11** printed pages including the Cover Sheet.
- Sections A and B are to be submitted separately.

FOR MARKER USE ONLY:

TOTAL	Q9	Q8	Q7	Q6	Q5	Q4	Q3	Q2	Q1
/85									

Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by working and/or explanations. In particular, solutions found from a graphic display calculator should be supported by suitable working, for example, if graphs are used to find a solution, you should sketch these as part of your answer. Where an answer is incorrect, some marks may be given for a correct method, provided this is shown by written working. You are advised to show all working.

SECTION A (40 marks)

Answer all questions in the spaces provided.

1	[Maximum]	mark:	41
-	TILMANIALMIA	111661 170	• •

Find exactly, the range of values of $k, k \in \mathbb{R}$, for which the following equation has real roots
$kx^{2} + (k-1)x + (k-1) = 0$.

TURN OVER

Solve the following system of equations

\log_{x-1}	У	=	3,
\log_{y+1}			1
\log_{v+1}	x	=	$\overline{}$

TURN OVER

3 [Maximum mark: 7]

Farmer Adam has a fenced rectangular field, measuring 10 metres by 4 metres, for his goat, Billy, to graze. To keep Billy from running away, Adam attaches a rope to a wooden post at one corner of his field, and the other end of the rope to Billy. The length of Billy's rope, x metres, where 4 < x < 10, is such that Billy can graze an area that is exactly $\frac{3}{4}$ of Adam's field.

metr	res, where $4 < x < 10$, is such that Billy can graze an area that is exactly $\frac{3}{4}$ or	f Adam's field.
(a)	Show that x satisfies the equation $x^{2} \arcsin\left(\frac{4}{x}\right) + 4\sqrt{x^{2} - 16} = 60.$	[5]
(b)	Find the value of x .	[2]
•••••		
•••••		
• • • • • •		

.....

4

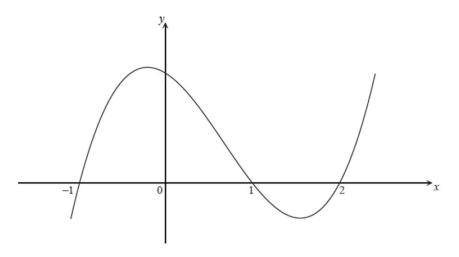
4 [Maximum mark: 7]

Let f and g be the following functions

$$f(x) = x^{4} + 0.2x^{3} - 5.8x^{2} - x + 4, \quad 0 \le x \le p,$$

$$g(x) = -3 + 2\sin(x - 1), \qquad -\frac{\pi}{2} + 1 \le x \le \frac{\pi}{2} + 1.$$

- (a) Find the largest value of p in 3 significant figures for which f has an inverse. [2]
- **(b)** Solve the equation $f^{-1}(x)=1$. [2]
- (c) Hence, solve $(f^{-1} \circ g)(x) = 1$. [3]



5	[Maximum mark:	7]					
The a	rithmetic sequence	$\{u_n\}, n \in \mathbb{Z}^+$	has first	term $u_1 = 1.6$	and common	difference	d = 1.5.

The	geometric sequence $\{v_n\}, n \in \mathbb{Z}^+$ has first term $v_1 = 3$ and common ratio $r = 1.2$.	
(a)	Find an expression for $u_n - v_n$ in terms of n .	[2]
(b)	List all the possible values of n for which $u_n > v_n$.	[3]
(c)	Find the greatest value of $u_n - v_n$, giving your answer to 4 significant figures.	[2]
• • • • •		••••
• • • • •		
• • • • •		
• • • • •		
• • • • •		
• • • • •		
• • • • •		••••
• • • • •		••••
• • • • •		••••
• • • • •		• • • •
• • • • •		
• • • • •		••••
• • • • •		
• • • • •		

6 [Maximum mark: 9]

The diagram shows the graph of $y = f(x) = x^3 + ax^2 + bx + c$, $x \in \mathbb{R}$, where a, b, and c are real constants. The graph cuts the x-axis at the points (-1,0), (1,0) and (2,0).

- (a) Find the value of a, of b, and of c. [3]
- **(b)** The graph of y = f(x) is translated by $\binom{m}{0}$ to the graph of y = g(x) such that the y-intercept of y = g(x) is also its **minimum** turning point. Find the value of m. [2]
- (c) Using the value of m to 3 significant figures, sketch the graph of y = g(-|x|), labelling its x-intercepts. [4]

	• • •	• • •	• • •	• • •	• • •	• • • •			• • •	• • •	• • •	• • •	• • • •	• • •	• • •	• • • •	• • •	• • • •	• • • •	• • • •		• • • •	• • •	• • •		• • • •	• • • •	• • • •	• • • •	• • • • •	
• • • • •	• • •	• • •	• • •	• • •					• • •	• • •	• • •	• • •		• • •	• • •	• • • •	• • •	• • • •	• • • •	• • • •		• • • •	• • •	• • •		• • • •	• • • •	• • • •			
								. 																							
							. 	. 																							
• • • • •	• • •	• • •	• • •	• • •	• • •	• • • •			• • •	• • •	• • •	• • •	• • • •	• • •	• • •	• • • •	• • •	• • • •	• • • •		• • • •	• • • •		• • •	• • • •	• • • •	• • • •	• • • •	• • • •	• • • • •	• • • • •
• • • • •	• • •	• • •	• • •	• • • •		• • • •			• • •	• • •	• • •	• • •	• • • •	• • •	• • •	• • • •	• • •	• • • •	• • • •	• • • •		• • • •	• • •	• • •		• • • •	• • • •	• • • •			
	• • •	• • •	• • •	• • •	• • •		• • • •		• • •	• • •	• • •	• • • •		• • •	• • •	• • • •	• • •			• • • •		• • • •	• • •	• • •		• • • •	• • • •	• • • •			• • • • •
• • • • •	• • •	• • •	• • •	• • •	• • •	• • • •			• • •	• • •	• • •	• • • •	• • • •	• • •	• • •	• • • •	• • •	• • • •	• • • •	• • • •		• • • •	• • •	• • •	• • • •	• • • •	• • • •	• • • •	• • • •	• • • • •	• • • • •
• • • • •	• • •	• • •	• • •	• • •	• • •	• • • •	• • • •		• • •	• • •	• • •	• • •		• • •	• • •	• • • •	• • •		• • • •	• • • •		• • • •	• • •	• • •		• • • •	• • • •	• • • •		• • • • •	

Year 5 Mathematics: Analysis and Approaches HL End of Year Examination 2020/P2

Do NOT write solutions on this page.

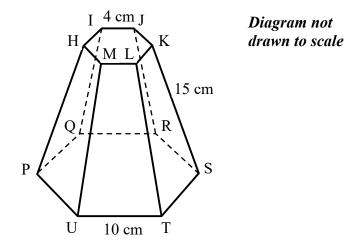
SECTION B (45 marks)

Answer all questions on the writing paper provided. Please start each question on a new page.

7 [Maximum Mark: 17]

(a) Prove that
$$\frac{\sec 2\theta - 1}{\sec 2\theta + 1} \equiv \tan^2 \theta$$
, where $-\frac{\pi}{4} < \theta < \frac{\pi}{4}$. [4]

(b) Hence, or otherwise, find the values of θ for which $3(\sec 2\theta - 1) = \sec 2\theta + 1$, where $-\frac{\pi}{4} < \theta < \frac{\pi}{4}$. [3]


It is given that the first three terms of a geometric sequence are $\sec x$, $\csc 2x$ and $\frac{1}{2} \csc x \csc 2x$ respectively, where $0 < x < \frac{\pi}{2}$.

- (c) Find the common ratio of the sequence. [2]
- (d) Find the range of values of x for which the geometric series $\sec x + \csc 2x + \frac{1}{2} \csc x \csc 2x + \dots \text{ converges.}$ [4]
- (e) Given that $x = \arccos\left(\frac{1}{2}\right)$, show that the sum to infinity of the series is $3 + \sqrt{3}$.

Do NOT write solutions on this page.

8 [Maximum Mark: 16]

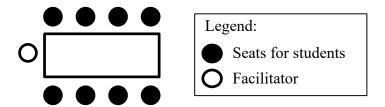
The figure shows a solid in which HIJKLM and PQRSTU are regular hexagons of sides 4 cm and 10 cm respectively. It is given that HP = IQ = JR = KS = LT = MU = 15 cm.

(a) Show that
$$\cos M\hat{U}T = \frac{1}{5}$$
. [1]

- (b) Find the exact value of the perpendicular distance from T to MU. [3]
- (c) Show that the distance between the planes HIJKLM and PQRSTU is $3\sqrt{21}$ cm. [4]
- (d) Find the length of HS. [3]
- (e) Find KĤS and HƘS. [5]

[5]

[7]


Do NOT write solutions on this page.

9 [Maximum Mark: 12]

A total of 8 students are randomly selected from three tutorial groups (TGs) to attend a focused group discussion. There are 14 students in each TG.

(a) Find the number of ways in which the students can be selected, if there are at least 2 students from each TG.

Xiaoming and Ali are among the 8 students selected. The room for the focused group discussion has a large table in the middle with 4 seats on either side of the facilitator, as shown below.

- **(b)** Find the number of ways in which the 8 students can be seated if
 - (i) Xiaoming refuses to sit on any of the 4 corner seats and Ali insists on sitting next to him,
 - (ii) Xiaoming refuses to sit on any of the 4 corner seats and Ali insists on sitting next to him but not on the seat adjacent to the facilitator.

End of Paper

Year 5 MAA HL Maths End of Year Examination 2020 Paper 2 (Markscheme) Section A

	Section A	
Qn	Suggested solution	Markscheme
1	Quadratic Discriminant	[Marks: 4]
	$kx^2 + (k-1)x + (k-1) = 0$ is a quadratic equation in x.	
	For real roots, discriminant≥0	
	$\left(k-1\right)^2 - 4k\left(k-1\right) \ge 0$	$\mathbf{M1}$ – for setting $\Delta \ge 0$
	$(k-1)(k-1-4k) \ge 0$ OR $3k^2-2k-1 \le 0$	
	$\left(k-1\right)\left(3k+1\right) \le 0$	M1 – solving quad ineq
	$-\frac{1}{2} \le k \le 1$	A1-values A1-ineq sign
2	3	
2	Logarithmic Equations	[Marks: 6]
	$\log_{x-1} y = 3 \Longrightarrow y = (x-1)^3$	M1 – change to exp form A1
	$\log_{y+1} x = \frac{1}{2} \Rightarrow x = (y+1)^{1/2} \Rightarrow y = x^2 - 1$	A1
	$\therefore (x-1)^3 = x^2 - 1 \text{ or } x = \left[(x-1)^3 + 1 \right]^{\frac{1}{2}}$	
	Method 1	
	$\frac{x^2 - x^2}{(x-1)^3} = x^2 - 1 = (x-1)(x+1)$	
	$\Rightarrow (x-1) \left[(x-1)^2 - (x+1) \right] = 0$	
	$\Rightarrow (x-1)(x^2-3x) = 0 \Rightarrow x(x-1)(x-3) = 0$	M1 – solving cubic eqn.
	x = 0.1 (rej : x > 1) or x = 3	A1 – only if $x = 0,1$ rej.
	$\therefore y = 8$	OR justify $x > 1$ A1 – for y
	Method 2 (GDC – Graph)	
	(3,8) $(1,0)$	
	$f1(x)=(x-1)^3$ $(0,-1)$	
	OR 6.67 \$\frac{1}{2}\$	M1 – solving
		$(x-1)^3 = x^2 - 1$ or $x = [(x-1)^3 + 1]^{\frac{1}{2}}$ o.e.
		$\int_{0}^{\infty} \int_{0}^{\infty} (1-1)^{3} + 1^{\frac{1}{2}}$
	$ \begin{array}{c c} & & & & & & & & & & & \\ \hline & & & & & & & & & \\ \hline & & & & & & & & \\ \hline & & & & & & & \\ \hline & & & & \\ \hline & & & & \\ \hline & & & & \\ \hline & &$	$x = \lfloor (x-1) + 1 \rfloor$ o.e.
	$f3(x)=(x-1)^3-x^2+1$	
	By GDC, $x = 0.1$, or 3	
	Since $x > 1$, $x = 3$	A1 – only if $x = 0,1$ rej.
	y=8	OR justify $x > 1$ A1-for y
L	<u> </u>	

Page 1 of 11

Qn Suggest	ted solution		Markscheme				
	13 (GDC – nSolve)						
nSolve(($(x-1)^3 = x^2 - 1, x$	0.	M1 – solving				
,			$(x+1)^3 = x^5 + 1$ o.e.				
,	$(x-1)^3 = x^2 - 1, x, 0.001$	1.	(Awarded only if all 3				
nSolve(($(x-1)^3 = x^2 - 1, x, 1.001$	3.	values of x are given before rejecting 0 and 1)				
By GDC	C, $x = 0.1$, or 3						
	>1, x=3		$\mathbf{A1}$ – only if $x = 0,1$ rej.				
y = 8			OR justify $x > 1$				
3 Area of	Sector and Triangle		A1 – for <i>y</i> [Marks: 7]				
(a) Area of			[Marks: /]				
	2 ² -16	\neg					
	*						
4							
	<u> </u>						
	10						
Area of	triangle = $\frac{1}{2}(4)(\sqrt{x^2-16})$		M1 – for $\sqrt{x^2 - 16}$				
Aica oi	$\frac{\text{drangic}}{2} = \frac{1}{2} (4) (\sqrt{x} - 10)$		A1 – for area of triangle				
$\sin \theta = \frac{1}{2}$	$\frac{4}{r} \Rightarrow \theta = \arcsin\left(\frac{4}{r}\right)$						
			A1 – for expression for θ				
Area of	$sector = \frac{1}{2}x^2\theta = \frac{1}{2}x^2 \arcsin\left(\frac{1}{2}x^2\right)$	$\left(\frac{4}{x}\right)$	$\mathbf{A1} - \text{for } 0.5x^2\theta$				
Total are	$ea = 2\sqrt{x^2 - 16} + \frac{1}{2}x^2 \arcsin\left(\frac{1}{2}x^2\right)$	$\left(\frac{4}{x}\right) = \frac{3}{4}(40) = 30$	A1 – for correct sum				
$\therefore 4\sqrt{x^2}$	$\frac{1}{-16} + x^2 \arcsin\left(\frac{4}{x}\right) = 60$		AG				
	11 (GDC – Graph)						
$\mathbf{f1}(x) = \begin{cases} 4 \cdot \\ \mathbf{f1}(x) = \end{cases}$	$\sqrt{x^2-16} + x^2 \cdot \sin^{-1}\left(\frac{4}{x^2}\right) - 60,4 < x < 10$						
	(x)						
2 -1 1	·····	× ->	(M1)				
	(7.85414,	0)					
-40	/						
By GDC	C, $x = 7.85$ (3 sf)	-	A1				
Method	12 (GDC – nSolve)						
nSolve	$= \left(4 \cdot \sqrt{x^2 - 16} + x^2 \cdot \sin^{-1}\left(\frac{4}{x}\right)\right)$	=60,x,4	(M1)				
		7.8541386					
By GDC	C (nSolve), $x = 7.85$ (3 sf)		A1				

Page 2 of 11

Qn	Suggested solution	Markscheme
4	Inverse and Composite Functions	[Marks: 7]
(a)	$f1(x)=x^{4}+0.2 \cdot x^{3}-5.8 \cdot x^{2}-x+4$	(M1) – finding min. pt.
	By GDC, $p = 1.67$ (3 sf.)	A1 – must be 3 sf.
(b)	$f^{-1}(x) = 1$ $\Rightarrow f(1) = x \text{ (Note that } 1 \in [0, 1.67])$ $\therefore x = 1 + 0.2 - 5.8 - 1 + 4 = -1.6 \text{ (exact)}$	M1 A1
(c)	$(f^{-1} \circ g)(x) = 1$ $\Rightarrow g(x) = f(1)$ $\Rightarrow g(x) = -1.6 \text{from (b)}$ $\frac{\text{Method 1 (GDC - Graph)}}{f2(x) = \begin{cases} -3 + 2i \sin(x - 1), 1 - \frac{\pi}{2} \le x \le 1 + \frac{\pi}{2} \end{cases}}$ $(1.7754, -1.6)$	A1 f.t. value of <i>x</i> in (b) (M1)
	By GDC, $x = 1.78 mtext{ (3 sf.)}$ Method 2 $-3 + 2\sin(x-1) = -1.6$ $\sin(x-1) = 0.7$	A1 f.t. value of x in (b) M1 – solving trigo eqn
	x-1=0.77540 (5 sf.) x=1.78 (3 sf.)	A1 f.t. value of x in (b)

Qn	Suggested solution	Markscheme
5	Arithmetic and Geometric Sequence	[Marks: 7]
(a)	$u_n - v_n = [1.6 + 1.5(n-1)] - 3(1.2)^{n-1}$	$\mathbf{A1}$ - for u_n $\mathbf{A1}$ - for v_n
(b)	Method 1a (GDC – Graph)	
	$\mathbf{f1}(x) = \begin{cases} 1.6 + 1.5 \cdot (x - 1) - 3 \cdot (1.2)^{x - 1}, x \ge 1 \\ (9.69538, 0) \end{cases}$	
	(2.62109,0)	(M1)
	By GDC, $2.62 < n < 9.70$ Since $n \in \mathbb{Z}^+$, $n = 3, 4, 5, 6, 7, 8, 9$	(A1) A1
	(Accept $\{n \in \mathbb{Z}^+ \mid 3 \le n \le 9\}$) Method 1b (GDC – Graph Table) $f(x) = \{1.6+1.5 \cdot (x-1)\}$	
	5. 1.3792 6. 1.63504 7. 1.642048 8. 1.35045 9. 0.70054	(M1 A1)
	By GDC, $n = 3, 4, 5, 6, 7, 8, 9$ (Accept $\{n \in \mathbb{Z}^+ 3 \le n \le 9\}$)	A1
(c)	Method 1 (GDC – Graph Table)	
	By GDC, graph table (see (b) Method 1b),	
	$u_6 - v_6 = 1.635 $ (4 sf)	N/1
	$u_7 - v_7 = 1.642 $ (4 sf)	M1
	Greatest value of $u_n - v_n = 1.642$ (4 sf)	A1 – must be 4 sf.
	Method 2 (Graph – Max. Point) 6.67 y f1(x) = $\{1.6+1.5 \cdot (x-1)-3 \cdot (1.2)^{x-1}, x \ge 1\}$ (6.53328, 1.6727) (9.69538, 0) (2.62109, 0)	
	$f_{1}(6)$ 1.63504 $f_{1}(7)$ 1.642048 Greatest value of $u_{n} - v_{n} = 1.642$ (4 sf)	M1 – justification is needed if max. pt. is used, as n (or x) $\in \mathbb{Z}^+$ A1 – must be 4 sf.

Page 4 of 11

Qn	Suggested solution	Markscheme
6	LinSolve and Graph Transformations	[Marks: 9]
(a)	Method 1 (GDC – linSolve) Substitute $(-1,0),(1,0),(2,0)$	
	Substitute $(-1,0),(1,0),(2,0)$ $ \lim_{x \to 0} \begin{cases} -1+a-b+c=0 \\ 1+a+b+c=0 \\ 8+4\cdot a+2\cdot b+c=0 \end{cases}, \{a,b,c\} $ $\{-2,-1,2\}$	M1
	$f(x) = x^3 - 2x^2 - x + 2$	
	a = -2, b = -1, c = 2	A2, 1, 0 – A2 for all correct, A1 for 2 out of 3
	Method 2 (Algebraic expansion) f(x) = (x+1)(x-1)(x+2)	M1 – factors from zeros
	$= x^{3} - 2x^{2} - x + 2$ $a = -2, b = -1, c = 2$	A2, 1, 0 – A2 for all
		correct, A1 for 2 out of 3
(b)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	(M1) – find min. pt.
	m = -1.55 (3 sf)	A1 (f.t. <i>a</i> , <i>b</i> , <i>c</i> only if roots are –1, 1, 2)
(c)	$g(x) = f(x+1.55)$ Using GDC, $f3(x) = f2(- x)$ $f(x) = f(x+1.55)$ $(2.55, 0)$ $(10.55, 0)$ $f(x) = x^3 - 2 \cdot x^2 - x + 2$ (-6.67)	(M1 – reflection in y-axis, then $ x $) A1 – shape, must be symmetrical about y-axis A1 (-2.55,0) & (2.55,0) A1 (-0.55,0) & (0.55,0) (f.t. m only if roots are $\pm (-1+m)$ and $\pm (1+m)$)

Section B

Qn	Suggested solution	Markscheme
7	Trigonometry – Arctrigo, Further Trigo Functions	[Marks: 17]
(a)	To prove $\frac{\sec 2\theta - 1}{\sec 2\theta + 1} = \tan^2 \theta$	
	$LHS = \frac{\sec 2\theta - 1}{\sec 2\theta + 1}$	
	$=\frac{\frac{1}{\cos 2\theta} - 1}{\frac{1}{\cos 2\theta} + 1}$	
	$=\frac{\cos 2\theta}{}$	M1
	$\frac{1}{1}+1$	
	$\cos 2\theta$	
	$=\frac{1-\cos 2\theta}{1-\cos 2\theta}$	A1
	$1+\cos 2\theta$	
	$= \frac{1 - \left(1 - 2\sin^2\theta\right)}{1 + (2\cos^2\theta - 1)}$	M1 A1
	$=\frac{1+(2\cos^2\theta-1)}{1+(2\cos^2\theta-1)}$	
	$2\sin^2\theta$	
	$=\frac{2\sin^2\theta}{2\cos^2\theta}$	
	$= \tan^2 \theta = RHS \text{ (proven)}$	AG
	tan o mis (proven)	AG
(b)	$3(\sec 2\theta - 1) = \sec 2\theta + 1$	
	$\frac{\sec 2\theta - 1}{\sec 2\theta + 1} = \frac{1}{3}$	
	500 20 11 5	
	Using (b),	
	$\tan^2\theta = \frac{1}{3}$	M1
	$\tan \theta = \frac{\pi}{3}$	IVII
	$\tan \theta = \pm \frac{1}{\sqrt{3}}$	
	$\tan \theta = \pm \sqrt{3}$	
	$\theta = \pm \frac{\pi}{6}$ (accept ± 0.524 , but must be in radians)	A1 A1
	$\theta = \pm \frac{1}{6}$ (accept ± 0.324 , but must be in radians)	A1 A1
(c)	GP: $\sec x + \csc 2x + \frac{1}{2}\csc x \csc 2x$	
	$oldsymbol{\mathcal{L}}$	
	Common ratio, $r = \frac{U_2}{U_1} = \frac{U_3}{U_2}$	
	$m{U}_1 - m{U}_2$	
	$\frac{1}{2}\csc x \csc 2x$	
	$\therefore r = \frac{\frac{1}{2}\csc x \csc 2x}{\csc 2x} = \frac{1}{2}\csc x = \frac{1}{2\sin x}$	M1 A1 (Either form)
(d)	Series converges when $ r < 1$	
	$\left \frac{1}{2}\csc x \right < 1$	A1

Qn	Suggested solution	Markscheme
	Method 1: by GDC	Method 1
	1.1 *Doc RAD : X 6.67 ** (0.524,1) 6 f1(x) = { $\frac{1}{2} \cdot \csc(x) , 0 < x < \frac{\pi}{2} }$	M1 Sketch by GDC
	From the graph, the solution for $\left \frac{1}{2} \csc x \right < 1$ is $0.524 < x < \frac{\pi}{2}$	A1 A1
	Method 2: Analytical	Mathad 2
	$\left \frac{1}{2\sin x} \right < 1$	Method 2
	$\left \sin x\right > \frac{1}{2}$	
	We know also that $ \sin x < 1$ for $0 < x < \frac{\pi}{2}$	
	$\left \frac{1}{2} < \left \sin x \right < 1 \right $	
	$\frac{1}{2} < \sin x < 1 \left(\because \sin x > 0 \text{for } 0 < x < \frac{\pi}{2}\right)$	M1
	Solving, by graph or reasoning, we have	
	$\frac{\pi}{6} < x < \frac{\pi}{2}$	A1 A1
(e)	$S_{\infty} = \frac{\frac{1}{\cos x}}{1 - \frac{1}{2\sin x}}$	M1 (S_{∞} formula applied)
	$= \frac{2\sin x}{\cos x \left(2\sin x - 1\right)} \dots (*)$	
	At $x = \arccos\left(\frac{1}{2}\right)$,	
	$\Rightarrow \cos x = \frac{1}{2} \text{(i.e. } \sec x = 2\text{)}$	
	$\Rightarrow \sin x = \frac{\sqrt{3}}{2} \left(\text{for } 0 < x < \frac{\pi}{2} \right)$	A1

Page **7** of **11**

Qn	Suggested solution	Markscheme
	From (*),	
	$2\left(\frac{\sqrt{3}}{2}\right)$	
	$S_{\infty} = \frac{2}{\sqrt{2}}$	
	$S_{\infty} = \frac{2\left(\frac{\sqrt{3}}{2}\right)}{\frac{1}{2}\left(2\left(\frac{\sqrt{3}}{2}\right) - 1\right)}$	
	$=\frac{2\sqrt{3}}{\sqrt{3}-1}$	A1 (o.e.)
	$=\frac{2\sqrt{3}}{\sqrt{3}-1}\cdot\frac{\sqrt{3}+1}{\sqrt{3}+1}$	A1
	$=\sqrt{3}\left(\sqrt{3}+1\right)=3+\sqrt{3} \text{ (shown)}$	AG
8	Trigonometry – Solutions of Triangles, 3D	[Marks: 16]
(a)	Consider the face MLTU.	
	M 4 cm L 15 cm	
	$U = \frac{1}{3} \times \frac{10 \text{ cm}}{10 \text{ cm}} \text{ T}$	
	Let X be the foot of M on UT. Then, MXU is a rt angle triangle, with $MU = 15$, and $UX = 3$.	A1 $(UX = 3 \text{ cm})$
	$\cos M\hat{U}T = \frac{3}{15}$	
	$=\frac{1}{5}$ (shown)	AG
(b)	Let Y be the foot of the perpendicular of T on MU.	
	<u>Method 1</u> : $\cos Y \hat{U} T = \cos M \hat{U} X = \frac{1}{5}$ (same angle)	(M1)
	$YT = 10 \sin Y\hat{U}T$	
	$=10\sqrt{1-\cos^2 Y\hat{U}T} \left(\sin YUT > 0, \text{ since } Y\hat{U}T \text{ is acute}\right)$	
	$=10\sqrt{1-\left(\frac{1}{5}\right)^2}=10\frac{\sqrt{24}}{5}$	A1
	$=2\sqrt{24}=4\sqrt{6}$	A1 (o.e., exact)
	Method 2: By Equating Area of ΔMUT	
	$\frac{1}{2} \times 15 \times YT = \frac{1}{2} \times 10 \times \sqrt{15^2 - 3^2}$	M1
	$YT = \frac{10}{15} \times \sqrt{216} = \frac{2}{3} \times \sqrt{9 \times 24} = 2\sqrt{24} = 4\sqrt{6}$	A1 ($\sqrt{216}$) A1 (ans)

Qn	Suggested solution	Markscheme
(c)	I \J	
	$H \stackrel{8 \text{ cm}}{\smile} K$	
	$H \longrightarrow K$	
	15 cm / h	
	A regular hexagon	
	$\frac{P}{6} = \frac{1}{20} =$	
	equilateral triangles.	
	HK = 2IJ = 8 cm	A1
	Similarly, $PS = 2UT = 20 \text{ cm}$	A1
	Let h be the height of the solid.	
	By Pythagoras' Theorem, $h^2 + 6^2 = 15^2$	M1
	$h^2 = 225 - 36$	A1
	$h = \sqrt{189}$	
	$=3\sqrt{21}$ (shown)	AG
(d)	H 8 cm K	
	15 cm / h	
	$P \stackrel{\square}{\underset{6}{\longleftarrow}} S$	
	Method 1: (Pythagora's Theorem on rt. angle below HP)	
	$HS^2 = h^2 + (20 - 6)^2$	M1 A1 (Pyth. on the rt.
		angle Δ , with base 14)
	$=\left(3\sqrt{21}\right)^2 + 14^2$	
	= 385	
	$HS = \sqrt{385} = 19.621$	
	=19.6 cm (to 3 s.f.)	A1
	Method 2: (Cosine rule on $\triangle HPS$)	
	$\cos HPS = \frac{6}{15}$	A1
	$=\frac{2}{5}$	
	J	
	By cosine rule, $HS^2 = 15^2 + 20^2 - 2(15)(20)\cos HPS$	M1
	$HS^{2} = 15^{2} + 20^{2} - 2(15)(20)\left(\frac{2}{5}\right)$	
	$\therefore HS = \sqrt{385} = 19.621$	
	=19.6 cm (to 3 s.f.)	A1

Page **9** of **11**

Qn	Suggested solution	Markscheme
(e)	H 8 cm K	
	15 cm	
	$P \stackrel{\longleftarrow}{\stackrel{\longleftarrow}{6}} 20 \text{ cm} \qquad S$	
	$\hat{KHS} = \hat{HSP}$ (alternate angles, $\hat{HK} // \hat{PS}$)	
	$\tan H\hat{S}P = \frac{h}{14} = \frac{3\sqrt{21}}{14}$	M1
	$\hat{HSP} = 44.479^{\circ}$	
	$\therefore K\hat{H}S = 44.479^{\circ}$	A1
	$=44.5^{\circ}$ (to 3 s.f.) (accept 0.776 rad)	AI
	By sine rule,	
	$\frac{\sin H\hat{K}S}{HS} = \frac{\sin K\hat{H}S}{15}$	M1
	HS 15 HS sin KĤS	
	$\sin H\hat{K}S = \frac{HS\sin K\hat{H}S}{15}$	
	$=\frac{19.621\sin 44.479^{\circ}}{1}$	
	$ \begin{array}{r} 15 \\ = 0.91651 \end{array} $	A1 64 6 (1)
	$= 0.91631$ $H\hat{K}S = \sin^{-1}(0.91651)$	A1 f.t. from (b)
	= 66.421° (rej., acute angle) or 113.57°	
	$=114^{\circ}$ (to 3 s.f.)	A1
	(Equivalently, in radians, reject acute angle 1.16	
	and accept the obtuse angle 1.98 rad.)	
	Alternate methods for finding HKS includes using cosine	
	or by geometrical reasoning.	
9	Permutations and Combinations	[Marks: 12]
(a)	Identifying the two sets of cases: (2, 3, 3) and (2, 2, 4) Case 1: All possible combinations of (2, 3, 3)	
	$= {}^{14}C_2 \times {}^{14}C_3 \times {}^{14}C_3 \times \frac{3!}{2!}$	M1 A1
	= 36 171 408	
	Case 2: Possible combinations of choosing 2, 2, 4	
	$= {}^{14}C_2 \times {}^{14}C_2 \times {}^{14}C_4 \times \frac{3!}{2!}$	M1 A1
	= 24 867 843	
	Total cases = 36 171 408 + 24 867 843 = 61 039 251	A1

Qn	Suggested solution	Markscheme
(b)	(i) Wherever XM sits, Ali has 2 choices beside him.	
	No. of ways = ${}^4C_1 \times {}^2C_1 \times 6!$	M1 M1
	= 5760	A1
	(ii)	
	Method 1: by Complement	
	No. of ways with Ali at corner seats adjacent to the	
	Facilitator = ${}^{2}C_{1} \times 1 \times 6!$	M1
	=1440	A1
		M1 (complement)
	Required no. of ways = $5760-1440$ = 4320	M1 (complement) A1
	= 4320	
	Method 2: Case by Case	
	Case 1: XM sits 1 seat away from Facilitator, and Ali has	
	only 1 choice.	M1 (cases)
	No. of ways = ${}^{2}C_{1} \times 1 \times 6!$	
	=1440	A1
	Case 2: XM sits 2 seats away from Facilitator, and Ali has	
		A1
		A1
	= 4320	
	Case 1: XM sits 1 seat away from Facilitator, and Ali has only 1 choice. No. of ways = ${}^{2}C_{1} \times 1 \times 6!$ = 1440	M1 (cases) A1 A1

STUDENT NAME:	
TEACHER NAME:	

ST JOSEPH'S INSTITUTION YEAR 5 END OF YEAR EXAMINATION 2021

MATHEMATICS: ANALYSIS AND APPROACHES 7 October 2021

HIGHER LEVEL 1.5 hours

PAPER 1

Thursday 0800 – 0930 hrs

INSTRUCTIONS TO CANDIDATES

- Write your name and your teacher's name in the spaces provided.
- Do not open this examination paper until instructed to do so.
- **Section A**: Answer all questions showing working and answers in the spaces provided in the exam paper.
- **Section B**: Answer all questions using the writing paper provided.
- The use of calculators is **not** permitted in this paper.
- A clean copy of the **Mathematics: Analysis and Approaches formula booklet** is required for this paper.
- Unless otherwise stated in the question, all numerical answers are to be given exactly or correct to three significant figures.
- The maximum mark for this examination paper is [85 marks].
- This question paper consists of 10 printed pages including the Cover Sheet.
- Sections A and B are to be submitted separately.

FOR MARKER USE ONLY:

TOTA	Q8	Q7	Q6	Q5	Q4	Q3	Q2	Q1

Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by working and/or explanations. Where an answer is incorrect, some marks may be given for a correct method, provided this is shown by written working. You are advised to show all working.

SECTION A (40 marks)

Answer all questions in the spaces provided.

1	[Maximum mark: 5]
	Define a function f , including its maximal domain, such that its inverse exists and is given by
	$f^{-1}(x) = \frac{e^x}{e^x - 1}, \ x \neq 0, \ x \in \mathbb{R}.$

TURN OVER

2	[Maximum mark: 6]						
	The sum of the first n terms of a sequence is $\sum_{r=1}^{n} u_r = n^2 + n - 1,$						
	for $n \in \mathbb{Z}^+$.						
	(a) (i) Find u_1 .						
	(ii) Find an expression for u_n in terms of n for any positive integer $n \ge 2$.	[4]					
	(b) Hence , state with reason whether the sequence is arithmetic or not.	[2]					
••••							
••••							
••••							
• • • • •							
••••							
• • • • •		• • •					
••••							
••••		•••					
••••		• • •					
••••		•••					
••••		•••					
••••		• • •					
••••		•••					
••••		•••					
••••		• • •					
••••		• • •					
••••		•••					

3	[Max	ximum mark: 9]	
	Cons	ider the function $f(x) = 2(x-1)^2 - 2$.	
	(a)	State the minimum value of f .	[1]
	(b)	Find the zeros of $y = f(x)$.	[2]
	(c)	State the coordinates of the turning point of $y = \frac{1}{f(x)}$.	[2]
	(d)	Sketch the graph of $y = \frac{1}{f(x)}$ in the given axes on the next page, clearly indicating t asymptotes and turning points.	the [4]
•••••	•••••		
•••••	•••••		•••
•••••	• • • • • • •		• • •
•••••	• • • • • • •		• • •
•••••	• • • • • • •		• • •
	• • • • • • •		· • • •
			· • • •
			· • • •
			· • • •
			•••
•••••	•••••		•••
•••••	•••••		•••
•••••	•••••		•••
•••••	• • • • • • • • • • • • • • • • • • • •		• • •
	• • • • • • •		• • • •
			· • • •
			· • • •

3

MORE SPACE IS AVAILABLE ON THE NEXT PAGE **TURN OVER**

	• • • • • • • • • • • • • • • • • • • •	•••••		• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • •	• • • • • •
					•••••	• • • • • • • • •	
		• • • • • • • • • • • • • • • • • • • •	• • • • • • • • •		•••••	• • • • • • • • •	
		• • • • • • • • • • • • • • • • • • • •	• • • • • • • • •		•••••	• • • • • • • • •	
						• • • • • • • • •	
					•••••	• • • • • • • • •	
			• • • • • • • • •		•••••	• • • • • • • • •	• • • • •
	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •			•••••	• • • • • • • • •	• • • • • •
	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •			•••••	• • • • • • • • •	• • • • • •
	• • • • • • • • • • • • • • • • • • • •				•••••	• • • • • • • • • • • • • • • • • • • •	
	$oldsymbol{y}\uparrow$						
	2.5 -						
	2 -						
	1.5 -						
	1 -						
	0.5 -						
-2.5 -2 -1.5 -1 -0.5	0	0.5	1	1.5	2	2.5	\overrightarrow{x}
	-0.5 -						
	-1 -						
	–1.5 -						
	-2 -						
	-2.5 -						

4	[Ma	ximum mark: 8]	
	Let	$g(x) = x + \sin x, -\pi \le x \le \pi.$	
	(a)	Find the values of x for which $g'(x) \ge 0$.	[2]
	(b)	Hence or otherwise, show that g is one-one.	[2]
	(c)	Solve for x such that $g(x) = g^{-1}(x)$.	[4]
	• • • • • •		
•••••	• • • • •		.
••••	• • • • •		
	• • • • • •		
	• • • • •		
	• • • • • •		
	• • • • •		
	• • • • • •		
	• • • • •		
	• • • • •		
	• • • • •		
	• • • • • •		
	• • • • •		
	• • • • • •		.
	• • • • • •		
	• • • • • •		
			.
	• • • • • •		

5	[Maximum mark: 8]							
	For t	his question, leave all answers in factorial form, in terms of m and/or n .						
m boys and n girls are to be seated in a row, where m and n are positive.								
	Find the number of ways this can be done in each of the following cases:							
	(a)	there are no restrictions;	[1]					
	(b)	the n girls are seated together;	[2]					
	(c)	a particular boy and a particular girl must be adjacent;	[2]					
	(d)	no boys are adjacent given that there are equal numbers of boys and girls. Leave you answer in terms of n .	r [3]					
• • • • •			••••					
• • • • • •	• • • • • • •		• • • •					
	•••••							
• • • • •			· • • • •					
• • • • • •								
• • • • • •								
• • • • •			· • • • •					
• • • • •			· • • • •					
• • • • •			· • • • •					
• • • • • •								
• • • • • •								
			• • • • •					
•••••	• • • • • • •							

5

TURN OVER

6 [Maximum mark: 4]

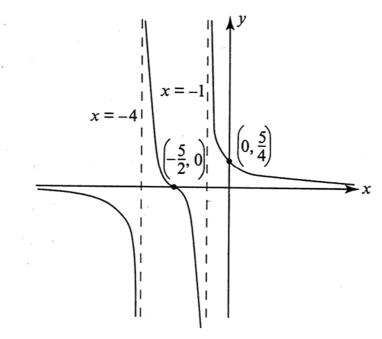
Mr Ang invested half of his savings in a bond that paid **simple** interest at r % per annum and received a total of \$550 in interests after 2 years.

He invested the remaining in another bond that paid interest at r % per annum compounded annually and received a total of \$605 in interests after 2 years.

Find the value of r.

Do **NOT** write solutions on this page.

SECTION B (45 marks)


Answer all questions on the writing paper provided. Please start each question on a new page.

7 [Maximum mark: 18]

The diagram shows the graph of the function y = f(x) where

$$f(x) = \frac{ax+b}{x^2+cx+d}$$

with $f\left(-\frac{5}{2}\right) = 0$, $f\left(0\right) = \frac{5}{4}$. The lines x = -4, x = -1 and the x-axis are all asymptotes.

- (a) Using the information given, find the value of c and of d and show that a=2, b=5.
- (b) Using the values of a, b, c, and d found in (a), find the value of A and of B for which

$$f(x) = \frac{A}{x+4} + \frac{B}{x+1}.$$
 [3]

(c) Show that
$$\left(-\frac{5}{2},0\right)$$
 is a point of inflexion. [3]

- (d) State the set of values of x for which f'(x) < 0. [2]
- (e) State the set of values of x for which f''(x) > 0. [2]
- (f) Sketch the graph of y = f'(x), clearly indicating any intercepts with the axes, the coordinates of any local maximum or minimum points and the equations of the asymptotes (if any). [4]

Do **NOT** write solutions on this page.

8 [Maximum mark: 27]

(a) Consider the quadratic equation $2z^2 - (2-2i)z - 5i = 0$.

(i) Show that
$$(2-2i)^2 = -8i$$
. [1]

- (ii) Write down $(2+2i)^2$ in Cartesian form. [1]
- (iii) Using the quadratic formula, show that the roots of the quadratic equation are given by $\frac{1}{2}(1-i)\pm\sqrt{2i}$. [3]
- (iv) Using the result in (a)(ii), express each of the roots in the form a+ib, where a and b are real numbers. [4]

Let $z = \cos \theta + i \sin \theta$.

(b) (i) Find
$$|z|$$
. [2]

(ii) Deduce that
$$\frac{1}{z} = z^*$$
, where z^* is the conjugate of z. [1]

(iii) Find
$$z + \frac{1}{z}$$
. [2]

(iv) Show that
$$z^2 + \frac{1}{z^2} = 2\cos 2\theta$$
. [3]

- (c) It is given that each of the four roots of the equation $5z^4 11z^3 + 16z^2 11z + 5 = 0$ has modulus equal to 1.
 - (i) Using the results in (b), show that

$$10\cos^2\theta - 11\cos\theta + 3 = 0.$$
 [3]

(ii) Hence find these roots. [7]

End of Paper

Year 5 HL MAA End of Year Examination 2021 Paper 1 (Mark Scheme)

Qn	Suggested Solutions	Marks
1	Inverse Function	[Maximum
		mark: 5]
	Let $y = \frac{e^x}{e^x - 1}$. $\Rightarrow x = \frac{e^y}{e^y - 1}$ $\Rightarrow xe^y - x = e^y$ $\Rightarrow (y - 1)e^x = y$ $\Rightarrow (x - 1)e^y = x$ OR $\Rightarrow e^x = \frac{y}{y - 1}$	M1 – swap x and y OR let $x = f^{-1}(y)$
	$\Rightarrow e^{y} = \frac{x}{x-1}$ $\Rightarrow x = \ln\left(\frac{y}{y-1}\right)$	M1 – correctly making y OR x the subject
	$\Rightarrow y = \ln\left(\frac{y}{x-1}\right)$ $\Rightarrow f^{-1}(y) = \ln\left(\frac{y}{y-1}\right)$ $\frac{x}{x-1} > 0 \Rightarrow x(x-1) > 0 \text{ OR}$ $y = \frac{x}{x-1}$	A1 – correct rule for f^{-1} (M1) – valid
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	attempt to solve > 0
	Thus, $f(x) = \ln\left(\frac{x}{x-1}\right), x < 0 \text{ or } x > 1.$	domain
2	Arithmetic Sequences and Series	[Maximum mark: 6]
(a)	(i) $u_1 = \sum_{r=1}^{1} u_r = 1^2 + 1 - 1 = 1$	M1 - n = 1 A1
	(ii) $u_n = \sum_{r=1}^n u_r - \sum_{r=1}^{n-1} u_r = \left(n^2 + n - 1\right) - \left((n-1)^2 + (n-1) - 1\right) = 2n, \ n \ge 2$	$M1$ – use of " $S_n - S_{n-1}$ " A1
(b)	The sequence is not arithmetic as the first three terms are 1, 4 and 6; and, $6-4 \neq 4-1$.	R1 – no common difference with evidence
	Note: This is a hence question.	A1 – A0 for invalid reasoning
3	Quadratic, Reciprocal and Modulus Functions	[Maximum mark: 9]
(a)	-2	A1
(b)	$2(x-1)^2 - 2 = 0 \Rightarrow x - 1 = \pm 1 \Rightarrow x = 0, 2$	M1 – equate to $0A1$ – 0 and 2

Qn	Suggested Solutions	Marks
(c)	(1,-0.5)	A1A1
(d)	y y y y y y y y y y	A1 – shape (2 symmetric branches w.r.t. x = 0 above the x-axis) A1 – shape (2 symmetric branches w.r.t. x = 0 below the x-axis)
	(1, -2)	A1 – at least two correct vertical asymptotes A1 – horizontal
4	Trigonometric & 1-1 Functions and Derivatives	asymptote [Maximum
4	Trigonometric & 1-1 Functions and Derivatives	mark: 8]
(a)	$g'(x) = 1 + \cos x \ge 0 \Rightarrow x \in [-\pi, \pi]$ (entire domain)	A1 – g'
		$A1 - A0$ for \mathbb{R}
(b)	$g'(x) \ge 0$ and $g'(x) = 0$ only when $x = \pm \pi$ imply that g is <u>strictly</u>	R1 – <u>strictly</u>
	increasing. (Award R1 as long as "strictly increasing" is deduced.)	increasing
	Thus, no horizontal line can intersect the graph of g more than once.	R1 – HLT
	Therefore, g is one-one.	AG
(c)	Solving $g(x) = g^{-1}(x)$ is equivalent to solving $g(x) = x$.	(M1) – solving
		for g(x) = x $A1 - 0$
	Thus, $x + \sin x = x \Rightarrow \sin x = 0 \Rightarrow x = 0, \pm \pi$	A1 - 0 $A1A1 - \pm \pi$
5	Counting Techniques	[Maximum mark: 8]
(a)	(m+n)!	A1
(b)	n!(m+1)!	A1-n!
		A1 - (m+1)!
	Note: A0A0 for $n!+(m+1)!$	
(c)	2!(m+n-1)!	A1 - 2! A1 - (m+n-1)!
	Note: A0A0 if the factors were added instead	A 1
(d)	$n!_{n+1}C_n \times n! = n!_{n+1}P_n = n!(n+1)!$	A1-n!
	Remark: Only the form $n!(n+1)!$ gets full marks.	$(M1) - {}_{n+1}P_n$ A1 - (n+1)!
	Note: A0A0A0 for $n!+(n+1)!$ gets run marks.	A1 - (n+1)!
	11016. $\Lambda U \Lambda U \Lambda U \Pi \Pi (n + 1)$:	

	[Maximum mark: 4]
interest rate r %, i.e., if we let P be the principal, then $I = P \times \frac{r}{100}$.	
After 1 year, both bonds yield the same interest I .	
On the 2nd year, bond A will still yield the same interest I , but Bond B will yield not only the interest from the original principal, which is still I , but also yield interest from the interest earned in the first year,	
i.e., $I \times \frac{r}{100}$. Thus, the total interest payments are:	
Bond A Bond B	
Year 1 I I	
Year 2 I $I+I\times\frac{r}{100}$	
Total Interest 550 605	
From Bond A: $I + I = 550$	(A1) – Bond A
From Bond B: $I + \left(I + I \times \frac{r}{100}\right) = 605$	(A1) – Bond B
100	M1 - valid attempt to find r
Therefore, the interest rate is $r = \frac{55}{275} \times 100\% = 20\%$	A1
OR	OR
Bond A: $550 = \frac{P \cdot r \cdot 2}{100} \Rightarrow P = \frac{27500}{r}$	(A1) – Bond A
Bond B: $P + 605 = P\left(1 + \frac{r}{100}\right)^2$	(A1) – Bond B
$r = r = r = 100 \cdot 10000$	M1 - valid attempt to find r
$\Rightarrow 605 = 550 + \frac{275r}{100}$	
	A1

Qn	Suggested Solutions	Marks
7	Simultaneous eq, Rational function, Techniques of Differentiation, Gradient graph, decreasing function, concavity	[Maximum mark: 18]
(a)	$f(x) = \frac{ax+b}{x^2 + cx + d}$ Since $x = -4$, $x = -1$ are asymptotes,	M1
	$x^{2} + cx + d = (x+4)(x+1) = x^{2} + 5x + 4$ $\Rightarrow c = 5, d = 4$	A1[$c = 5, d = 4$]
	$f(0) = \frac{5}{4}$ $\frac{b}{d} = \frac{5}{4} \Rightarrow b = 5$	Results of Substitution of $f\left(-\frac{5}{2}\right) = 0, f\left(0\right) = \frac{5}{4}$:
	a 4	A1A1 $\left[\frac{b}{d} = \frac{5}{4};$ $-\frac{5}{2}a + b = 0\right]$
	$f\left(-\frac{5}{2}\right) = 0,$ $-\frac{5}{2}a + b = 0 \Rightarrow a = 2$	AG [$a = 2, b = 5$]
(b)	$\therefore a = 2, b = 5, c = 5, d = 4.$ $2x + 5 \qquad A \qquad B$	
(~)	$\frac{2x+5}{x^2+5x+4} = \frac{A}{x+4} + \frac{B}{x+1}$ $\Rightarrow 2x+5 = A(x+1) + B(x+4)$	M1
	$\Rightarrow \begin{cases} A+B=2\\ A+4B=5 \end{cases}$ $\Rightarrow A=1, B=1$	A1A1
	[accept cover-up rule]	
(c)	$f(x) = \frac{1}{x+4} + \frac{1}{x+1}$ $f'(x) = \frac{-1}{(x+4)^2} - \frac{1}{(x+1)^2}$	M1
	$f''(x) = \frac{2}{(x+4)^3} + \frac{2}{(x+1)^3}$	
	It is given that $f\left(-\frac{5}{2}\right) = 0$.	
	$f''\left(-\frac{5}{2}\right) = 2\left(\left(-2.5+4\right)^{-3} + \left(-2.5+1\right)^{-3}\right) = 2\left(\left(1.5\right)^{-3} + \left(-1.5\right)^{-3}\right) = 0$	M1
	Since $f''\left(\frac{-5}{2}\right) = 0$ and $f''\left(\left(-\frac{5}{2}\right)^{-}\right)f''\left(\left(-\frac{5}{2}\right)^{+}\right) < 0$,	R1
	hence $\left(-\frac{5}{2},0\right)$ is a point of inflexion.	AG

Qn	Suggested Solutions	Marks
(d)	For $f'(x) < 0$, $x \in \mathbb{R} \setminus \{-4, -1\}$ OR $x < -4$ or $-4 < x < -1$ or $x > -1$.	A1A1
(e)	For $f''(x) > 0, -4 < x < -\frac{5}{2}$ or $x > -1$.	A1A1
(f)	$y = 0$ $\begin{pmatrix} x = -4 \\ -\frac{5}{2}, -\frac{8}{9} \end{pmatrix}$ $\begin{pmatrix} 0, -\frac{17}{16} \end{pmatrix}$	A1 – shape (1 st & 3 rd piece) A1- shape(2 nd piece) A1 – max point $\left(-\frac{5}{2}, -\frac{8}{9}\right) & y$ intercept $\left(0, -\frac{17}{16}\right)$ A1 – 3 asymptotes

8	Quadratic eq, complex no in cartesian form, square roots, modulus of complex no, double angle, solve trigo equation polynomial eq, FTA	[Maximum mark:27]
(a)(i)	$(2-2i)^2 = 2^2 + (2i)^2 - 2(2)(2i)$	M1
	=4-4-8i	
	=-8i (shown)	AG
(ii)	$\left(2+2\mathrm{i}\right)^2=8\mathrm{i}$	A1
(iii)	$2z^2 - (2 - 2i)z - 5i = 0$	
	$z = \frac{(2-2i) \pm \sqrt{(2-2i)^2 - 4(2)(-5i)}}{4}$	M1
	$= \frac{(2-2i) \pm \sqrt{-8i + 40i}}{4}$	A1
	$=\frac{2(1-i)\pm 4\sqrt{2i}}{4}$	A1
	$= \frac{1}{2} (1 - i) \pm \sqrt{2i} (shown)$	AG
(iv)	From (ii),	
	$\left(2+2\mathrm{i}\right)^2=8\mathrm{i},$	
	$\Rightarrow (1+i)^2 = 2i$	M1
	$\Rightarrow \sqrt{2i} = 1 + i$	A1
	Let $z_1 = \frac{1}{2}(1-i) + \sqrt{2i}$ and $z_2 = \frac{1}{2}(1-i) - \sqrt{2i}$	
	$z_1 = \frac{1}{2}(1-i) + \sqrt{2i} = \frac{1}{2}(1-i) + (1+i) = \frac{3}{2} + \frac{1}{2}i$	A1
		A1
	$z_2 = \frac{1}{2}(1-i) - \sqrt{2i} = \frac{1}{2}(1-i) - (1+i) = -\frac{1}{2} - \frac{3}{2}i$	
(b)(i)	$ z = \sqrt{\cos^2 \theta + \sin^2 \theta} = 1$	M1A1
(ii)	$z = \cos\theta + i\sin\theta$	
	Since $ z = 1 \Rightarrow z * z = 1$	R1
	$\Rightarrow \frac{1}{z} = z^* \text{ (deduced)}$	
(iii)	Since $\frac{1}{z} = z^* = \cos \theta - i \sin \theta$,	
	$z + \frac{1}{1} = \cos\theta + i\sin\theta + \cos\theta - i\sin\theta$	
	\mathcal{Z}	M1
	$=2\cos\theta$	A1
		<u> </u>

(iii)	$\frac{1}{r^2} = (\cos\theta - i\sin\theta)^2 = \cos^2\theta - \sin^2\theta - 2i\sin\theta\cos\theta (1)$	A1
	$z^{2} = (\cos \theta + i \sin \theta)^{2} = \cos^{2} \theta - \sin^{2} \theta + 2i \sin \theta \cos \theta (2)$	A1
	$(1) + (2) \Rightarrow z^2 + \frac{1}{z^2} = 2\left(\cos^2\theta - \sin^2\theta\right) = 2\cos 2\theta \text{ (shown)}$	M1AG
	Alternatively,	N/4F
	$z^{2} + \frac{1}{z^{2}} = \left(z + \frac{1}{z}\right)^{2} - 2$	M1[$z^2 + \frac{1}{z^2} = \left(z + \frac{1}{z}\right)^2 - 2$]
	$= \left(2\cos\theta\right)^2 - 2$	A1 [$_{z+\frac{1}{z}=2\cos\theta}$]
	$=4\cos^2\theta-2$	$\mathbf{M1}$ [double angle]
	$=2\cos 2\theta$	AG
(c)(i)	$P(z) = 5z^4 - 11z^3 + 16z^2 - 11z + 5 = 0$	
	Divide throughout by z^2 ,	M1
	$5z^2 - 11z + 16 - 11\left(\frac{1}{z}\right) + 5\left(\frac{1}{z^2}\right) = 0$	1411
	$\Rightarrow 5\left(z^2 + \frac{1}{z^2}\right) - 11\left(z + \frac{1}{z}\right) + 16 = 0$	A1
	$\Rightarrow 5(2\cos 2\theta) - 11(2\cos \theta) + 16 = 0$	
	$\Rightarrow 5(2\cos^2\theta - 1) - 11\cos\theta + 8 = 0$	M1[double angle]
	$\Rightarrow 10\cos^2\theta - 11\cos\theta + 3 = 0 \text{ (shown)}$	AG
(ii)	$(5\cos\theta - 3)(2\cos\theta - 1) = 0$	M1
	$\Rightarrow \cos \theta = \frac{3}{5} or \cos \theta = \frac{1}{2}$	A1A1
	$\Rightarrow \sin \theta = \pm \frac{4}{5} or \sin \theta = \pm \frac{\sqrt{3}}{2}$	
	$z = \cos\theta + i\sin\theta = \frac{3}{5} \pm i\frac{4}{5}, \frac{1}{2} \pm i\frac{\sqrt{3}}{2}$	A1A1A1A1
	Remark: If students were to forget $\pm i.e. \sin \theta = \pm \frac{4}{5}$ or $\sin \theta = \pm \frac{\sqrt{3}}{2}$	
	By FTA, since all the coefficients of $P(z)$ are real, complex roots	
	occur in conjugate pairs. Hence, the roots are $\frac{3}{5} \pm i \frac{4}{5}$, $\frac{1}{2} \pm i \frac{\sqrt{3}}{2}$.	

STUDENT NAME: $_$	
TEACHER NAME:	

ST. JOSEPH'S INSTITUTION YEAR 5 END OF YEAR EXAMINATION 2021

MATHEMATICS: ANALYSIS AND APPROACHES 13 October 2021

HIGHER LEVEL 1.5 hours

PAPER 2

Wednesday 0800 – 0930 hrs

INSTRUCTIONS TO CANDIDATES

- Write your name and teacher's name in the spaces provided.
- Do not open this examination paper until instructed to do so.
- **Section A:** Answer all questions showing working and answers in the spaces provided in the exam paper.
- **Section B:** Answer all questions using the foolscap paper provided.
- The use of a scientific or examination graphical calculator is permitted in this paper.
- TI-Nspire calculators must be in Press-to-Test mode and cleared of all previous data.
- TI-84+ graphical calculators must only have permitted apps and be ram cleared.
- A clean copy of the **Mathematics: Analysis and Approaches formula booklet** is required for this paper.
- Unless otherwise stated in the question all numerical answers must be given exactly or to three significant figures.
- The maximum mark for this examination paper is [85 marks].
- This question paper consists of 9 printed pages including the Cover Sheet.
- Sections A and B are to be submitted separately.

FOR MARKER USE ONLY:

TOTAL	Q9	Q8	Q7	Q6	Q5	Q4	Q3	Q2	Q1
/85									

Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by working and/or explanations. In particular, solutions found from a graphic display calculator should be supported by suitable working, for example, if graphs are used to find a solution, you should sketch these as part of your answer. Where an answer is incorrect, some marks may be given for a correct method, provided this is shown by written working. You are advised to show all working.

SECTION A (40 marks)

Answer all questions in the spaces provided.

1 [Maximum i	mark: 4]
--------------	----------

By making y the subject, solve the system of equations, for 0.6 < x < 1.3 and 0.6 < y < 1.3,

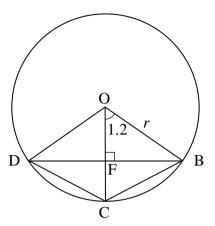
$$\sin x + \sin y = 1.5$$

$$\cos x + \cos y = 1.2$$

2	[Ma	ximum mark: 6]	
	(a)	Differentiate $y = \ln \left[\frac{(x-2)(x+1)}{x^2} \right]$ with respect to x .	[4]
	(b)	Find the maximum value of y.	[2]
	• • • • • • •		· • • •
	• • • • • •		· • • •
••••	• • • • • •		•••
••••	• • • • • • •		• • • •
••••	• • • • • • •		•••
••••	• • • • • •		.
••••	• • • • • • •		, • • •
••••	• • • • • • •		•••
••••	• • • • • • •		•••
••••	• • • • • •		•••
••••	• • • • • • •		•••
			•••
			· • • •
	• • • • • •		.
	• • • • • • •		· • • •

3	[Max	ximum mark: 7]
	α, β	and γ are angles in a triangle.
	(a)	Show that $\cos \gamma = -\cos(\alpha + \beta)$. [2]
	(b)	Given that $\sin \alpha = \frac{5}{13}$ and $\cos \beta = -\frac{3}{5}$, without solving for α , β and γ , find the value of $\cos \gamma$.
••••	•••••	
• • • • • •		
• • • • • •	•••••	
• • • • • •	• • • • • • •	
• • • • • •	•••••	
• • • • • •	• • • • • • •	
• • • • • •	•••••	
• • • • • •	• • • • • • •	
••••	• • • • • • • • • • • • • • • • • • • •	
•••••		
••••	• • • • • • • • • • • • • • • • • • • •	
•••••		
•••••		
•••••		
•••••		
•••••		
•••••		
••••		
••••		
•••••	• • • • • •	

4	Maximum	mark:	71
-	IVIAMIIIIUIII	mar iz.	, ,


It is given that $h(x) = \frac{1}{\sqrt[3]{8-3x}}$.

- (a) (i) Find the binomial expansion for h(x), in ascending powers of x, up to and including the term in x^2 . Give the coefficients as **exact** fractions in their simplest form.
 - (ii) State the range of values of x for which the expansion is valid. [4]
- (b) By putting $x = \frac{1}{16}$ into the expansion in (a)(i), find an approximate value of $\sqrt[3]{16}$, as a fraction in its lowest terms, in the form $\frac{a}{b}$, where a and b are integers.

 	•••••	

5 [Maximum mark: 6]

The diagram below shows a circle with centre O and radius r cm. The points B, C and D lie on the circumference of the circle. F is the point of intersection of lines BD and OC and BD is perpendicular to OC.

It is given that $\angle FOB = 1.2$ radians.

(a) Find BF in terms of r .	[1]
-------------------------------	-----

(b) Given that the area bounded by CF, BF and the minor arc BC is 20 cm^2 , find the value of r. [5]

	•••	 		•••	 	• • •		•••	 	 	 •••		• • •	 				 				
•••••	• • •	 •••	•••	• • •	 • • •	• • •		• • • •	 •••	 •••	 •••	• • • •	• • • •	 •••	• • •		• • • •	 	• • • •	••••		••••
•••••	• • • •	 	•••	• • •	 • • •	• • •	• • • •	• • •	 • • • •	 • • • •	 •••	• • • •	•••	 • • • •	• • • •		• • • •	 	• • • •	••••	• • • • •	••••
•••••	• • •	 •••	•••	• • •	 • • •	• • •	• • • •	• • •	 •••	 • • • •	 •••	• • • •	• • •	 • • • •	• • • •		• • • •	 	• • • •	••••	• • • • •	••••
	• • •	 • • • •		• • •	 •••	• • •		•••	 • • • •	 • • • •	 •••		• • • •	 • • • •	• • • •	• • • •	• • • •	 		••••		••••
•••••	• • •	 •••	•••	• • •	 • • •	• • •	• • • •	• • • •	 •••	 • • • •	 •••	• • • •	• • •	 • • • •	• • • •		• • • •	 	• • • •	••••		••••
•••••	• • •	 •••	•••	• • •	 • • •	• • •	• • • •	• • •	 •••	 • • • •	 •••	• • • •	• • •	 • • • •	• • • •		• • • •	 	• • • •	••••	• • • • •	••••
	• • •	 •••	•••	• • •	 • • •	• • •		• • • •	 • • •	 • • •	 •••		• • •	 • • •	• • •			 	• • • •	••••		
•••••	• • •	 •••		• • •	 • • •	• • •		• • • •	 •••	 • • • •	 •••		• • •	 • • • •	• • • •			 	• • • •	••••		
	• • •	 •••		• • •	 •••	• • •		•••	 •••	 • • • •	 •••		• • •	 • • • •	• • • •			 	• • • •	••••		
	• • •	 •••		• • •	 •••	• • •		•••	 •••	 • • • •	 •••		• • •	 • • • •	• • • •			 	• • • •	••••		
	• • • •	 		• • •	 •••	• • •		•••	 • • • •	 • • • •	 •••		• • • •	 • • • •	• • • •		• • • •	 				

6	[Maximum	mark:	10]
•	L		- ~ 1

(a) Using the result

$$\sum_{r=1}^{n} \left(\frac{r}{2^r} \right) = 2 - \frac{n+2}{2^n},$$

show that

$$\sum_{r=1}^{n} (r-n)(2^{-r}+1) = 2\left(1-\frac{1}{2^n}\right) - \frac{1}{2}n(n+1).$$

[7]

(b) Find the positive values of n such that

$$\sum_{r=1}^{n} (r-n)(2^{-r}+1) > -\ln 12.$$

[3]

Do NOT write solutions on this page

SECTION B (45 marks)

Answer all questions on the foolscap paper provided. **Please start each question on a new page.**

7 [Maximum Mark: 15]

Let $f(x) = \frac{\pi}{2}x - x \arctan x$.

(a) Find the value of
$$f''(1)$$
. [2]

(b) Using L'Hopital's Rule, show that as
$$x \to \infty$$
, $y \to 1$. [4]

(c) Explain why the inverse function
$$f^{-1}$$
 exists. [1]

(d) Find the composite function
$$(f \circ f^{-1})(x)$$
, stating clearly its domain. [2]

(e) Solve the equation
$$f(x) = f^{-1}(x)$$
. [3]

The graph of y = f(x) is mapped onto the graph of y = g(x) through a sequence of transformations as follows:

I: a translation of magnitude 1 unit in the direction of the x-axis;

II: a stretch parallel to the x-axis by a factor of 2;

III: a stretch parallel to the y-axis by a factor of 4.

(f) Point P
$$\left(1, \frac{\pi}{4}\right)$$
 lies on the graph of $y = f(x)$. Find the image of P on the graph of $y = g(x)$.

8 [Maximum Mark: 12]

Let $e^{xy} = -xy$, where x > 0 and y < 0.

(a) Show that
$$\frac{dy}{dx} = -\frac{y}{x}$$
. [3]

(b) Show that
$$\frac{d^2y}{dx^2} = -\frac{2}{x}\frac{dy}{dx}$$
. [2]

(c) Find the value of
$$k$$
 such that $\frac{d^3y}{dx^3} = -\frac{k}{x}\frac{d^2y}{dx^2}$. [3]

(d) Hence, deduce and simplify an expression for
$$\frac{d^n y}{dx^n}$$
 in terms of n , x and y . [4]

9 [Maximum Mark: 18]

The function f is defined by $f(x) = \frac{12+16x-x^2}{x-6}$, $x \neq 6$.

- (a) Express f in the form $f(x) = A + Bx + \frac{c}{x-6}$, where A, B and C are constants to be determined. [4]
- (b) Sketch the graph of y = f(x), indicating clearly the coordinates of any turning points, axes intercepts and asymptotes. [5]
- (c) (i) Show that f'(x) < 0 for all $x \in \mathbb{R}, x \neq 6$.
 - (ii) Explain whether f(x) is a decreasing function. [4]

Let g(x) = kx, where $k \in \mathbb{R}$.

(d) Find the range of values of k for which the graphs of y = f(x) and y = g(x) do not intersect. [5]

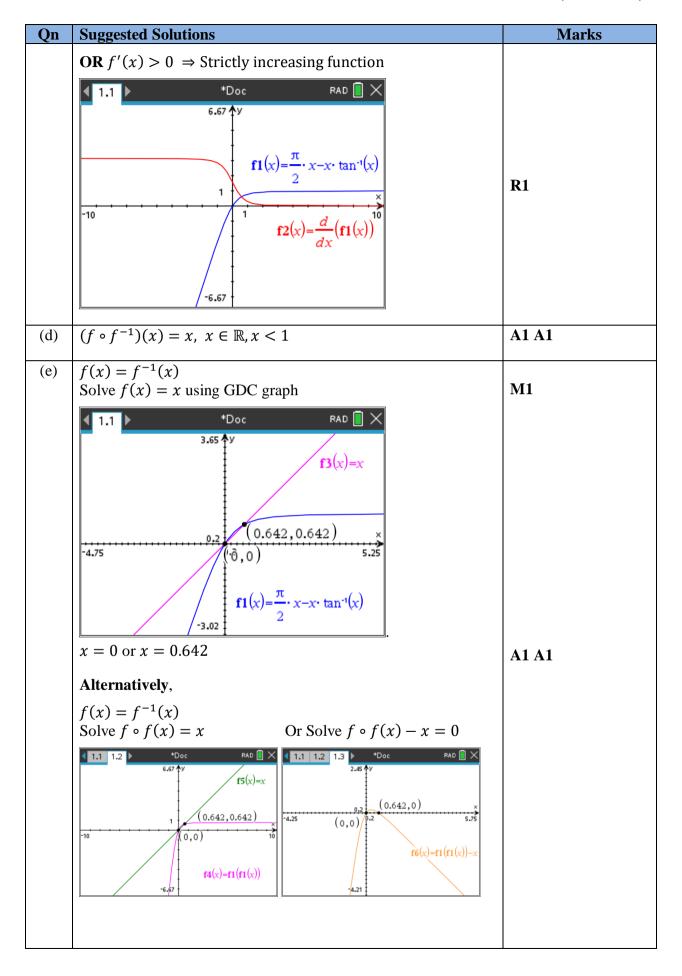
End of Paper

Year 5 HL MAA End of Year Examination 2021 Paper 2 (Markscheme)

Section A

Qn	Suggested solution	Markscheme
1	Trigonometry (Solving Equations)	[Marks: 4]
	Rearrange equations in terms of y: $y = \sin^{-1}(1.5 - \sin x)$ $y = \cos^{-1}(1.2 - \cos x)$ Using GDC,	M1
	$f2(x) = \{\cos^{-1}(1.2 - \cos(x)), 0.6 < x < 1.3\}$ $(0.61394, 1.17817)$ $f1(x) = \{\sin^{-1}(1.5 - \sin(x)), 0.6 < x < 1.3\}$ $-0.52 \ 0.05 \ 0.1$ 2.48	M1
	x = 0.614, y = 1.18,	A1
	x = 1.18, y = 0.614	A1
2	Differentiation	[Marks: 6]
(a)	$y = \ln \frac{(x-2)(x+1)}{x^2} = \ln(x-2) + \ln(x+1) - \ln x^2$ $\frac{dy}{dx} = \frac{1}{x-2} + \frac{1}{x+1} - \frac{2}{x}$	M1
	$\int dx x-2 x+1 x$	A1 A1 A1 o.e.
(b)	*Doc RAD : X 6.67 \(\forall y \) \[\begin{picture}(-4, 0.117783)_1 \\ \forall 10 \\ \forall 5.67 \end{picture} \] Maximum $y = 0.118$	M1
3	Trigonometry (Special angles, Formulae)	[Marks: 7]
(a)	$cos \gamma = cos[\pi - (\alpha + \beta)]$	M1
(u)	$= \cos \pi \cos(\alpha + \beta) + \sin \pi \sin(\alpha + \beta)$	A1

Qn	Suggested solution	Markscheme
	$=-\cos(\alpha+\beta)$	AG
(b)	$\cos \beta = -\frac{3}{5}$ implies β is in the 2 nd quadrant, and	
	α is in the 1 st quadrant.	
	β is obtuse and α is acute	(R1)
	$\cos \gamma$	
	$=-\cos(\alpha+\beta)$	
	$= -\cos\alpha\cos\beta + \sin\alpha\sin\beta$	D. # 1
	$= -\frac{12}{13} \left(-\frac{3}{5} \right) + \frac{5}{13} \left(\frac{4}{5} \right)$	M1
	56	$A1 - \frac{12}{13}, A1 - \frac{4}{5}$
	$=\frac{56}{65}$	
		A1

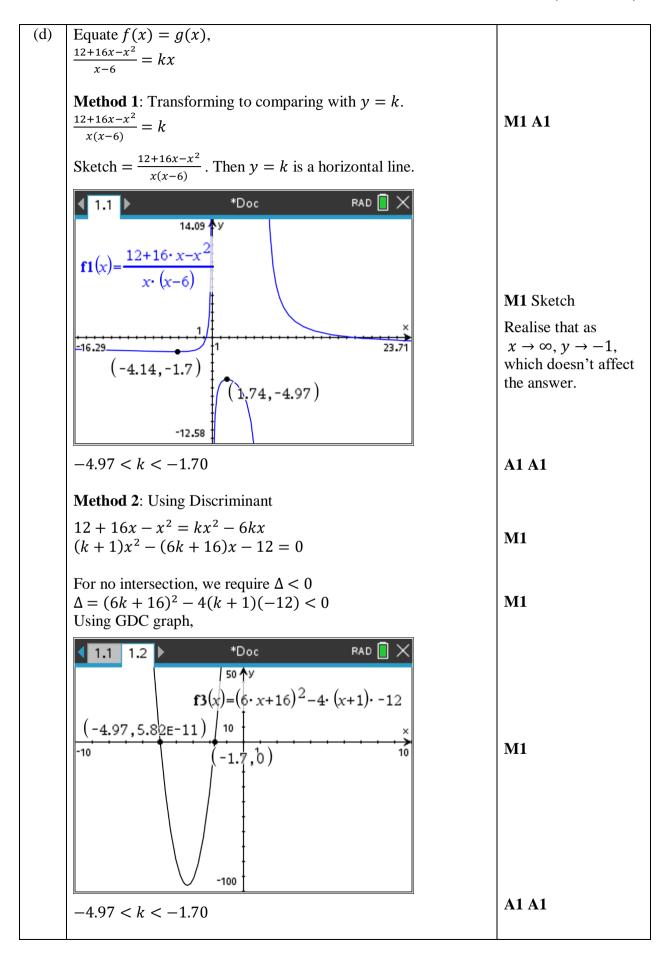

$ \begin{array}{c c} \textbf{4} & \textit{Binomial Expansion} & [\text{Marks: 7}] \\ \hline (ai) & \frac{1}{\sqrt[3]{8-3x}} \\ & = (8-3x)^{-\frac{1}{3}} \\ & = \frac{1}{2} \left(1-\frac{3}{8}x\right)^{-\frac{1}{3}} \\ & = \frac{1}{2} \left[1+\left(-\frac{1}{3}\right)\left(-\frac{3}{8}x\right)+\left(-\frac{1}{3}\right)\left(-\frac{3}{8}x\right)^2+\cdots\right] \\ & = \frac{1}{2} \left[1+\frac{1}{8}x+\frac{1}{32}x^2+\cdots\right] \\ & = \frac{1}{2}+\frac{1}{16}x+\frac{1}{64}x^2+\cdots \\ \hline (aii) & x <\frac{8}{3} \text{ or } -\frac{8}{3}< x<\frac{8}{3} \\ \hline (b) & \frac{1}{\sqrt[3]{8-3}}=\frac{1}{2}+\frac{1}{16}\left(\frac{1}{16}\right)+\frac{1}{64}\left(\frac{1}{16}\right)^2+\cdots \\ & \frac{1}{\sqrt[3]{125}}=\frac{1}{2}+\frac{1}{16}\left(\frac{1}{16}\right)+\frac{1}{64}\left(\frac{1}{16}\right)^2+\cdots \\ & \frac{\sqrt[3]{16}}{5}=\frac{8257}{16384} \\ & \sqrt[3]{16}=\frac{41285}{16384} \\ \hline \textbf{S} & \textit{Trigonometry} \\ \hline (a) & \text{Using trigonometric ratio,} \\ & \sin 1.2=\frac{BF}{r} \\ \hline \end{array} $	Qn	Suggested solution	Markscheme
(ai) $\frac{1}{\sqrt[3]{8-3x}}$ $= (8-3x)^{-\frac{1}{3}}$ $= \frac{1}{2}\left(1-\frac{3}{8}x\right)^{-\frac{1}{3}}$ $= \frac{1}{2}\left[1+\left(-\frac{1}{3}\right)\left(-\frac{3}{8}x\right)+\left(-\frac{1}{3}\right)\left(-\frac{3}{8}x\right)^2+\cdots\right]$ $= \frac{1}{2}\left[1+\frac{1}{8}x+\frac{1}{32}x^2+\cdots\right]$ $= \frac{1}{2}+\frac{1}{16}x+\frac{1}{64}x^2+\cdots$ A1 (aii) $ x <\frac{8}{3} \text{ or } -\frac{8}{3}< x<\frac{8}{3}$ (b) $\frac{1}{\sqrt[3]{8-3}\left(\frac{1}{16}\right)}=\frac{1}{2}+\frac{1}{16}\left(\frac{1}{16}\right)+\frac{1}{64}\left(\frac{1}{16}\right)^2+\cdots$ $= \frac{1}{\sqrt[3]{125}}=\frac{1}{2}+\frac{1}{16}\left(\frac{1}{16}\right)+\frac{1}{64}\left(\frac{1}{16}\right)^2+\cdots$ M1 $\frac{\sqrt[3]{16}}{\sqrt[3]{16}}=\frac{8257}{16384}$ A1 ft 5 Trigonometry Using trigonometric ratio, sin 1.2 = $\frac{BF}{r}$			
$= (8 - 3x)^{-\frac{1}{3}}$ $= \frac{1}{2} \left(1 - \frac{3}{8}x\right)^{-\frac{1}{3}}$ $= \frac{1}{2} \left[1 + \left(-\frac{1}{3}\right) \left(-\frac{3}{8}x\right) + \left(-\frac{1}{3}\right) \left(-\frac{3}{8}x\right)^2 + \cdots\right]$ $= \frac{1}{2} \left[1 + \frac{1}{8}x + \frac{1}{32}x^2 + \cdots\right]$ $= \frac{1}{2} + \frac{1}{16}x + \frac{1}{64}x^2 + \cdots$ $= \frac{1}{3} + \frac{1}{3}$	(ai)	1	
$= \frac{1}{2} \left(1 - \frac{3}{8} x \right)^{-\frac{1}{3}}$ $= \frac{1}{2} \left[1 + \left(-\frac{1}{3} \right) \left(-\frac{3}{8} x \right) + \left(-\frac{1}{3} \right) \left(-\frac{3}{8} x \right)^{2} + \cdots \right]$ $= \frac{1}{2} \left[1 + \frac{1}{8} x + \frac{1}{32} x^{2} + \cdots \right]$ $= \frac{1}{2} + \frac{1}{16} x + \frac{1}{64} x^{2} + \cdots$ $= \frac{1}{2} + \frac{1}{16} x + \frac{1}{64} x^{2} + \cdots$ $= \frac{1}{3} + \frac{1}{3} $		$\sqrt[3]{8-3x}$	
$\begin{vmatrix} \frac{1}{2} \left[1 + \left(-\frac{1}{3} \right) \left(-\frac{3}{8} x \right) + \left(-\frac{1}{3} \right) \left(-\frac{3}{8} x \right)^2 + \cdots \right] \\ = \frac{1}{2} \left[1 + \frac{1}{8} x + \frac{1}{32} x^2 + \cdots \right] \\ = \frac{1}{2} + \frac{1}{16} x + \frac{1}{64} x^2 + \cdots \\ = \frac{1}{2} + \frac{1}{16} x + \frac{1}{64} x^2 + \cdots \\ \begin{vmatrix} \frac{1}{3} \left(\frac{1}{16} \right) \\ \frac{1}{3} \left(\frac{1}{3} \right) \end{vmatrix} = \frac{1}{2} + \frac{1}{16} \left(\frac{1}{16} \right) + \frac{1}{64} \left(\frac{1}{16} \right)^2 + \cdots \\ \frac{1}{3} \left(\frac{1}{3} \right) = \frac{1}{2} + \frac{1}{16} \left(\frac{1}{16} \right) + \frac{1}{64} \left(\frac{1}{16} \right)^2 + \cdots \\ \frac{3\sqrt{16}}{5} = \frac{8257}{16384} \\ \frac{3\sqrt{16}}{16} = \frac{41285}{16384} \\ \frac{5}{16384} \qquad \qquad A1 \text{ ft} \\ \frac{5}{16384} \qquad \qquad B1 \text{ ft} \\ \frac{5}{16384} \qquad \qquad B1 \text{ ft} \\ \frac{1}{16} \left(\frac{1}{16} \right) = \frac{BF}{r} \\ \frac{1}{16} \left(\frac{1}{16} \right) = \frac{BF}{r} \\ \frac{1}{16} \left(\frac{1}{16} \right) = \frac{A16 \times A164}{16322} \\ \frac{A16 \times A164}{$			
$= \frac{1}{2} \left[1 + \frac{1}{8}x + \frac{1}{32}x^2 + \cdots \right]$ $= \frac{1}{2} + \frac{1}{16}x + \frac{1}{64}x^2 + \cdots$ A1 $(aii) x < \frac{8}{3} \text{ or } -\frac{8}{3} < x < \frac{8}{3}$ (b) $\frac{1}{\sqrt[3]{8 - 3\left(\frac{1}{16}\right)}} = \frac{1}{2} + \frac{1}{16}\left(\frac{1}{16}\right) + \frac{1}{64}\left(\frac{1}{16}\right)^2 + \cdots$ $\frac{1}{\sqrt[3]{125}} = \frac{1}{2} + \frac{1}{16}\left(\frac{1}{16}\right) + \frac{1}{64}\left(\frac{1}{16}\right)^2 + \cdots$ M1 $\frac{\sqrt[3]{16}}{\sqrt[3]{16}} = \frac{8257}{16384}$ A1 ft $\sqrt[3]{16} = \frac{41285}{16384}$ A1 ft S Trigonometry (a) Using trigonometric ratio, sin 1.2 = $\frac{BF}{r}$		$=\frac{1}{2}\left(1-\frac{3}{8}x\right)^{-\frac{1}{3}}$	M1 o.e.
$= \frac{1}{2} + \frac{1}{16}x + \frac{1}{64}x^{2} + \cdots$ $= \frac{1}{2} + \frac{1}{16}x + \frac{1}{64}x^{2} + \cdots$ $ x < \frac{8}{3} \text{ or } -\frac{8}{3} < x < \frac{8}{3}$ $(b) \frac{1}{\sqrt[3]{8-3(\frac{1}{16})}} = \frac{1}{2} + \frac{1}{16}(\frac{1}{16}) + \frac{1}{64}(\frac{1}{16})^{2} + \cdots$ $\frac{1}{\sqrt[3]{\frac{125}{16}}} = \frac{1}{2} + \frac{1}{16}(\frac{1}{16}) + \frac{1}{64}(\frac{1}{16})^{2} + \cdots$ $\frac{\sqrt[3]{16}}{\sqrt[3]{16}} = \frac{8257}{16384}$ $\sqrt[3]{16} = \frac{41285}{16384}$ A1 ft S Trigonometry (a) Using trigonometric ratio, $\sin 1.2 = \frac{BF}{r}$ A1 (suppl 1023)		$= \frac{1}{2} \left[1 + \left(-\frac{1}{3} \right) \left(-\frac{3}{8}x \right) + \left(-\frac{1}{3} \right) \left(-\frac{3}{8}x \right)^2 + \dots \right]$	A1
(aii) $ x < \frac{8}{3} \text{ or } -\frac{8}{3} < x < \frac{8}{3}$ (b) $\frac{1}{\sqrt[3]{8-3\left(\frac{1}{16}\right)}} = \frac{1}{2} + \frac{1}{16}\left(\frac{1}{16}\right) + \frac{1}{64}\left(\frac{1}{16}\right)^2 + \cdots$ $\frac{1}{\sqrt[3]{\frac{125}{16}}} = \frac{1}{2} + \frac{1}{16}\left(\frac{1}{16}\right) + \frac{1}{64}\left(\frac{1}{16}\right)^2 + \cdots$ M1 $\frac{\sqrt[3]{16}}{\sqrt[3]{16}} = \frac{8257}{16384}$ A1 ft A1 ft 5 Trigonometry (a) Using trigonometric ratio, $\sin 1.2 = \frac{BF}{r}$		$= \frac{1}{2} \left[1 + \frac{1}{8}x + \frac{1}{32}x^2 + \dots \right]$	
(b) $\frac{1}{\sqrt[3]{8-3\left(\frac{1}{16}\right)}} = \frac{1}{2} + \frac{1}{16}\left(\frac{1}{16}\right) + \frac{1}{64}\left(\frac{1}{16}\right)^{2} + \cdots$ $\frac{1}{\sqrt[3]{\frac{125}{16}}} = \frac{1}{2} + \frac{1}{16}\left(\frac{1}{16}\right) + \frac{1}{64}\left(\frac{1}{16}\right)^{2} + \cdots$ $\frac{\sqrt[3]{16}}{\sqrt[3]{16}} = \frac{8257}{16384}$ $\sqrt[3]{16} = \frac{41285}{16384}$ A1 ft 5 Trigonometry (a) Using trigonometric ratio, $\sin 1.2 = \frac{BF}{r}$ A1 (count 0.022)		2 10 01	A1
$\frac{1}{\sqrt[3]{8-3\left(\frac{1}{16}\right)}} = \frac{1}{2} + \frac{1}{16}\left(\frac{1}{16}\right) + \frac{1}{64}\left(\frac{1}{16}\right) + \cdots$ $\frac{1}{\sqrt[3]{\frac{125}{16}}} = \frac{1}{2} + \frac{1}{16}\left(\frac{1}{16}\right) + \frac{1}{64}\left(\frac{1}{16}\right)^2 + \cdots$ $\frac{3\sqrt[3]{16}}{5} = \frac{8257}{16384}$ A1 ft $\sqrt[3]{16} = \frac{41285}{16384}$ A1 ft $\frac{3}{\sqrt{16}} = \frac{41285}{16384}$ Using trigonometric ratio, $\sin 1.2 = \frac{BF}{r}$ A1 (2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	(aii)	$ x < \frac{8}{3} \text{ or } -\frac{8}{3} < x < \frac{8}{3}$	A1
$ \sqrt{16} $ $ \frac{\sqrt[3]{16}}{5} = \frac{8257}{16384} $ $ \sqrt[3]{16} = \frac{41285}{16384} $ A1 ft $ \frac{5}{16384} $ [Marks: 6] (a) Using trigonometric ratio, $\sin 1.2 = \frac{BF}{r}$	(b)	V (10)	
$\sqrt[3]{16} = \frac{41285}{16384}$ A1 ft 5 Trigonometry [Marks: 6] (a) Using trigonometric ratio, $\sin 1.2 = \frac{BF}{r}$		$\frac{1}{\sqrt[3]{\frac{125}{16}}} = \frac{1}{2} + \frac{1}{16} \left(\frac{1}{16}\right) + \frac{1}{64} \left(\frac{1}{16}\right)^2 + \cdots$	M1
5 Trigonometry [Marks: 6] (a) Using trigonometric ratio, $\sin 1.2 = \frac{BF}{r}$		$\frac{\sqrt[3]{16}}{5} = \frac{8257}{16384}$	A1 ft
(a) Using trigonometric ratio, $\sin 1.2 = \frac{BF}{r}$		$\sqrt[3]{16} = \frac{41285}{16384}$	A1 ft
$\sin 1.2 = \frac{BF}{r}$			[Marks: 6]
r	(a)		
A1 (40 022-)			
		$BF = r \sin 1.2$	A1 (accept 0.932r)

Qn	Suggested solution	Markscheme
(b)	$OF = r \cos 1.2$	A1
	Area of sector OBC = $\frac{1}{2}r^2(1.2) = 0.6r^2$	A1
	Area of triangle OBF = $\frac{1}{2} (r \cos 1.2) (r \sin 1.2)$	A1
	Hence,	
	$0.6r^2 - \frac{1}{2}(r\cos 1.2)(r\sin 1.2) = 20$	
	$0.6r^2 - \frac{1}{2}r^2(\cos 1.2)(\sin 1.2) = 20$	
	Using GDC,	M1
	■ 1.1 * Doc RAD : ×	
	$n \text{Solve} \left(0.6 \cdot x^{\frac{2}{3}} - 0.5 \cdot x^2 \cdot \sin(1.2) \cdot \cos(1.2) = 20^{\bullet}\right)$	
	6.81096671538	
	n = 6.911 s 6.91 cm (to 2.0f)	A1
	$r = 6.811 \approx 6.81 \mathrm{cm} (\mathrm{to} 3 \mathrm{sf})$	

Qn	Suggested solution	Markscheme
6	Sigma Notation	[Marks: 10]
(a)	$\sum_{r=1}^{n} (r-n)(2^{-r}+1)$ $= \sum_{r=1}^{n} \left(\frac{r}{2^{r}}\right) - \sum_{r=1}^{n} \left(\frac{n}{2^{r}}\right) + \sum_{r=1}^{n} (r) - n(n)$	M1 – arranging
	$=2-\frac{n+2}{2^n}-n\left[\frac{\frac{1}{2}\left(1-\frac{1}{2^n}\right)}{1-\frac{1}{2}}\right]+\frac{n}{2}(1+n)-n(n)$	A1 n(n) M1A1 -2 nd term GP S _n A1 -3 rd term AP S _n
	$=2-\frac{2}{2^n}-\frac{n}{2^n}-n\left(1-\frac{1}{2^n}\right)+\frac{1}{2}n(1+n)-n^2$	M1
	$= 2\left(1 - \frac{1}{2^n}\right) - \frac{n}{2^n} + \frac{n}{2^n} - n + \frac{1}{2}n(1+n) - n^2$	
	$= 2\left(1 - \frac{1}{2^n}\right) - n(n+1) + \frac{1}{2}n(1+n)$	A1
	$= 2\left(1 - \frac{1}{2^n}\right) - \frac{1}{2}n(1+n)$	AG
(b)	*Doc RAD \times 9.62 Y $r = 1$ $r = 1$ (2.35815, -2.48491)	(M1) (M1) – both intersections
	n = 1, 2	A1

Section B

Qn	Suggested Solutions	Marks
7	Functions and Calculus	[Marks: 15]
(a)	Using GDC graph, plot the graph of $y = \frac{d^2}{dx^2} f(x)$, and substitute $x = 1$. $\frac{d^2}{dx^2} (f4(x)) _{x=1}$	M1 A1
(b)	Let L be the limit. $L = \lim_{x \to \infty} \left(\frac{\pi}{2} x - x \arctan x \right)$ Observe that the terms are in the form $\infty - \infty$, which can be set up to L'Hopital's rule. $L = \lim_{x \to \infty} \left(x \left(\frac{\pi}{2} - \arctan x \right) \right)$ $L = \lim_{x \to \infty} \frac{\left(\frac{\pi}{2} - \arctan x \right)}{\frac{1}{x}} \qquad \left(\frac{0}{0} \text{ , ready for L'Hopital's Rule} \right)$ $= \lim_{x \to \infty} \frac{-\frac{1}{1+x^2}}{-\frac{1}{x^2}}$ $= \lim_{x \to \infty} \frac{x^2}{1+x^2} \left(= \lim_{x \to \infty} \frac{1}{\frac{1}{x^2}+1} \right)$ $= 1$	M1 A1 A1 AG
(c)	EITHER f passes horizontal line test *Doc RAD : X 6.67 \(\frac{1}{2} \) 1.1 \(\frac{1}{2} \) 6.67 \(\frac{1}{2} \) 7.10 \(\frac{1}{2} \) 7.2 \(\frac{1}{2} \) 7.3 \(\frac{1}{2} \) 7.4 \(\frac{1}{2} \) 7.5 \(\frac{1}{2} \) 7.6 \(\frac{1}{2} \) 7.7 \(R1


Page 7 of 11

Qn	Suggested Solutions	Marks		
(f)	Tracing the sequence of transformations,	M1 any valid method		
	$\left(1, \frac{\pi}{4}\right) \to \left(2, \frac{\pi}{4}\right) \to \left(4, \pi\right)$	A1 A1		
	Accept non-exact answers: $(1,0.785) \rightarrow (2,0.785) \rightarrow (4,3.14)$			
8	Differentiation – Implicit and Higher Order Derivatives	[Marks: 12]		
(a)	$e^{xy} = -xy$	[Marks. 12]		
	Differentiating implicitly w.r.t. x ,			
	$e^{xy} \left(x \frac{dy}{dx} + y \right) = -\left(x \frac{dy}{dx} + y \right)$	M1 Implicit		
	$x(e^{xy} + 1)\frac{dy}{dx} = -y(e^{xy} + 1)$	M1 Product in chain		
	l αλ	4		
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{-y(\mathrm{e}^{xy}+1)}{x(\mathrm{e}^{xy}+1)}, x \neq 0$	A1 (collecting $\frac{dy}{dx}$)		
	$\therefore \frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{y}{x}$	AG		
	Alternatively, Taking ln, we have			
	$xy = \ln(-xy)$			
	$\Rightarrow xy = \ln x + \ln(-y) \text{ since } x > 0, y < 0$			
	Differentiating implicitly w.r.t. x ,			
	$x \frac{dy}{dx} + y = \frac{1}{x} + \frac{1}{x}(-1)\frac{dy}{dx}$	M1 Implicit		
	$\int dx \qquad x - y \qquad dx$	M1 Implicit		
	$\Rightarrow \left(x - \frac{1}{y}\right) \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{x} - y$			
	$\Rightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\frac{1}{x} - y}{x - \frac{1}{x}}$	A1 (collecting $\frac{dy}{dx}$)		
	y y	A1		
	$\Rightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{y - xy^2}{x^2y - x}$	AI		
	$\Rightarrow \frac{dy}{dx} = \frac{y(1-xy)}{x(xy-1)} = -\frac{y}{x}$	AG		
(b)	From (a), we have $\frac{dy}{dx} = -\frac{y}{x}$.			
	$x \frac{dy}{dx} = -y$			
	Differentiating w.r.t. x ,	M1 Implicit		
	$x\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} + \frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{\mathrm{d}y}{\mathrm{d}x}$	A1 Product		
	$\Rightarrow x \frac{d^2 y}{dx^2} = -2 \frac{dy}{dx} \qquad \Rightarrow \frac{d^2 y}{dx^2} = -\frac{2}{x} \frac{dy}{dx}$	AG		
	$\frac{dx^{-}}{dx} = \frac{dx}{dx} + \frac{x}{x} \frac{dx}{dx}$			
	Alternatively,			
	$\frac{\mathrm{d}}{\mathrm{d}x} \left(\frac{\mathrm{d}y}{\mathrm{d}x} \right) = -\frac{\mathrm{d}}{\mathrm{d}x} \left(\frac{y}{x} \right)$			
	$\Rightarrow \frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = -\frac{x \frac{\mathrm{d}y}{\mathrm{d}x} - y}{x^2}$	M1 Implicit		
		M1 Implicit		
	$\Rightarrow \frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = -\frac{1}{x} \left(\frac{\mathrm{d}y}{\mathrm{d}x} - \frac{y}{x} \right)$	A1 Quotient		
	$\Rightarrow \frac{d^2y}{dx^2} = -\frac{1}{x} \left(\frac{dy}{dx} + \frac{dy}{dx} \right) \qquad \Rightarrow \frac{d^2y}{dx^2} = -\frac{2}{x} \frac{dy}{dx}$	AG		

Qn	Suggested Solutions	Marks
(c)	$x \frac{d^2 y}{dx^2} = -2 \frac{dy}{dx}$ Differentiating again w.r.t. x , $\Rightarrow x \frac{d^3 y}{dx^3} + \frac{d^2 y}{dx^2} = -2 \frac{d^2 y}{dx^2}$ $\Rightarrow x \frac{d^3 y}{dx^3} = -3 \frac{d^2 y}{dx^2}$	M1 Implicit M1 Product
	$\Rightarrow \frac{d^3y}{dx^3} = -\frac{3}{x} \frac{d^2y}{dx^2}$ Hence, $k = 3$	A1
(d)	Generalising from $\frac{dy}{dx}$, $\frac{d^2y}{dx^2}$ and $\frac{d^3y}{dx^3}$ $ \frac{d^ny}{dx^n} = -\frac{n}{x}\frac{d^{n-1}y}{dx^{n-1}} $ $ = \left(-\frac{n}{x}\right)\left(-\frac{n-1}{x}\frac{d^{n-2}y}{dx^{n-2}}\right) $ $ = \left(-\frac{n}{x}\right)\left(-\frac{n-1}{x}\right)\left(-\frac{2}{x}\right)\left(-\frac{1}{x}\right)y $ $ = \frac{(-1)^n n!}{x^n}y $	M1 M1 A1 A1
	$-\frac{1}{x^n}y$	
9	Functions, Sketching, Discriminant	[Marks: 17]
(a)	By long division, $f(x) = \frac{12+16x-x^2}{x-6}$ $= -x + 10 + \frac{72}{x-6}$ $= -x + 10 + \frac{72}{x-6}$ $\frac{-x^2 + 6x}{10x + 12}$ $\frac{10x - 60}{72}$	(M1) by any valid method, e.g. long division A1 A1 A1 for each of A, B, C
(b)	*Doc RAD \times 54.72 \wedge y f2(x)=-x+10 f1(x)=\frac{-x^2+16 \cdot x+12}{x-6} (-0.718,0) (16.7,0) x=6 -45.28	A1 Shape A1 Vertical asymptote A1 Oblique asymptote A1 Both zeros A1 y-intercept

Page 9 of 11

Qn	Suggested Solutions	Marks
(c,i)	$f'(x) = -1 - \frac{72}{(x-6)^2} \ \forall x \in \mathbb{R} \setminus \{6\}$	M1 A1
	Since $-\frac{72}{(x-6)^2} < 0$, therefore	
	$f'(x) = -1 - \frac{72}{(x-6)^2}$	
	<-1	R1
	$< 0 \forall x \in \mathbb{R} \setminus \{6\}$	AG
(c,ii)	No, not decreasing.	
	Counter-example: $f(1) = -\frac{27}{5}$, $f(14) = 5$.	A1
	That is, although $1 < 14$, $f(1) > f(14)$	
	[For decreasing function, $x_1 < x_2 \Rightarrow f(x_1) > f(x_2)$ Although $f'(x) < 0$ where defined, the discontinuity at $x = 6$ is a source of counter-examples where $x_1 < x_2 \Rightarrow f(x_1) < f(x_2)$.]	

STUDENT NAME:	
TEACHER NAME:	

ST. JOSEPH'S INSTITUTION YEAR 5 END OF YEAR EXAMINATION 2022

MATHEMATICS: ANALYSIS AND APPROACHES 6 October 2022
HIGHER LEVEL 1 hour 30 minutes
PAPER 1
Thursday 0800 – 0930 hrs

INSTRUCTIONS TO CANDIDATES

- Write your name and teacher's name in the spaces provided.
- Do not open this examination paper until instructed to do so.
- **Section A**: Answer all questions showing working and answers in the spaces provided in the exam paper.
- **Section B**: Answer all questions using the foolscap paper provided.
- The use of calculators is **not** permitted in this paper.
- A clean copy of the Mathematics: Analysis and Approaches formula booklet is required for this paper.
- Unless otherwise stated in the question all numerical answers must be given exactly or correct to three significant figures.
- The maximum mark for this examination paper is [85 marks].
- This question paper consists of **9** printed pages including the Cover Sheet.
- Sections A and B are to be submitted separately.

FOR MARKER USE ONLY:

Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8	TOTAL
								/ 85

Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by working and/or explanations. Where an answer is incorrect, some marks may be given for a correct method, provided this is shown by written working. You are therefore advised to show all working.

SECTION A (40 marks)

Answer **all** questions in the **spaces** provided.

L	[Maximum mark: 5]
	In the expansion of $\left(k - \frac{1}{x}\right)^9$, where <i>k</i> is a non-zero real constant, the coefficient of the
	term in x^{-7} is -144 . Find the possible values of k .

2	[Maximum mark: 6]
	Solve the equation $2\cos 2x - 4\cos x = 1$, for $-\pi \le x \le \pi$.

3	[Ma	eximum mark: 7]	
	Con	sider the cubic function $f(x) = -3x^3 + 8x^2 - 9x + 10$, for $x \in \mathbb{R}$.	
	(a)	Show that $x = 2$ is a root of $f(x) = 0$.	[1]
	(b)	Express $f(x)$ as a product of two factors.	[3]
	(c)	Hence, show that there are exactly two real solutions for the equation	
		$-3y^6 + 8y^4 - 9y^2 + 10 = 0.$	[3]
	•••••		•••••
	•••••		•••••
	•••••		•••••
			•••••
	•••••		•••••
	•••••		•••••
	•••••		•••••
	•••••		•••••
	•••••		•••••

4	[Maximum	mark:	71
~	LIVIANIIIIUIII	mai iz.	, ,

The curve C has equation $x^2 \tan y = 9$, where $0 < y < \frac{\pi}{2}$ and $x \ne 0$. Find $\frac{dy}{dx}$, simplifying your answer in terms of x. (a) [4] Given that $\frac{d^2y}{dx^2} = \frac{54(x^4 - 27)}{(x^4 + 81)^2}$, explain why the curve has a point of inflexion at $x = \sqrt[4]{27}$. [3]

5	Maximum	mark.	01
ગ	Maxilliulli	mark:	וע

The complex numbers u and w are defined by u = -1 + 7i and w = 3 + 4i where $i^2 = -1$.

(a) Find
$$u - 2w$$
 and $\frac{u}{w}$ in the form $x + iy$, where x and y are real. [3]

Points A and B represent the complex numbers u and w respectively on an Argand diagram with O as the origin.

(b) Given that angle AOB =
$$\arg\left(\frac{u}{w}\right)$$
, find angle AOB. [2]

(c)	Hence show that $\arctan\left(\frac{4}{3}\right) + \arctan 7 = \frac{3\pi}{4}$.	[4]
	\3/	

6 [Maximum mark: 6]

The table below shows the values of two functions p and q and their first derivatives when $x = \sqrt{3}$, $x = \frac{1}{\sqrt{3}}$ and x = 1.

х	p(x)	p'(x)	q(x)	q'(x)
$\sqrt{3}$	2	$\sqrt{2}$	1	$\frac{1}{2}$
$\frac{1}{\sqrt{3}}$	1	5	$-\pi$	$-\sqrt{2}$
1	π	-2	-1	3

Find the derivative of the composite function $(p \circ q)(\cot 2x)$ when $x = \frac{\pi}{12}$.

Do **NOT** write solutions on this page.

SECTION B (45 marks)

Answer all questions on the foolscap paper provided. Please start each question on a new page.

7 [Maximum mark: 20]

Consider an arithmetic series

$$\ln x + \ln (x^a) + \ln (\sqrt{x}) + \dots$$
 where $x \in \mathbb{R}$, $x > 1$ and $a \in \mathbb{R}$, $a \neq 0$.

- (a) Find the value of a. [3]
- (b) Find the common difference of the series in the form $d \ln x$ where $d \in \mathbb{Q}$. [2]
- (c) The sum of the first n terms of the series is equal to $\ln(x^{-4.5})$. Find the value of n. [5]

Consider the geometric series

$$\lg x + \lg(x^b) + \lg(\sqrt{x}) + \dots$$
 where $x \in \mathbb{R}$, $x > 1$ and $b \in \mathbb{R}$, $b \neq 0$.

- (d) Find the possible values of b. [5]
- (e) The sum to infinity of the above series is equal to $2+\sqrt{2}$ when b>0. Find the value of x.

8 [Maximum mark: 25]

The function f is defined by $f(x) = \frac{1}{x^2 - 2x - 8}$, where $x \in \mathbb{R}$, $x \ne p$, $x \ne q$ and p < q.

- (a) Find the value of p and of q. [3]
- (b) Sketch the graph of y = f(x), clearly indicating any asymptotes with their equations. State clearly the coordinates of any local maximum or minimum points and any points of intersection with the coordinate axes. [5]

The function g is defined by $g(x) = \frac{1}{x^2 - 2x - 8}$, where $x \in \mathbb{R}$, x > 4.

- (c) Find the inverse function of g and state its domain. [7]
- (d) Sketch the graph of $y = g^{-1}(x)$ on the same sketch as the graph of y = f(x). [3]

[Question 8 continues on the next page]

The function h is defined by $h(x) = \arctan \frac{x}{7}$, where $x \in \mathbb{R}$.

(e) Find the value of m such that $(h \circ g)(m) = \frac{\pi}{4}$.

Give your answer in the form
$$a + \frac{b}{7}\sqrt{c}$$
, where $a, b, c \in \mathbb{Z}^+$. [7]

End of Paper

Year 5 Mathematics: Analysis and Approaches HL End of Year Examination 2022 Paper 1 (Mark Scheme)

Qn	Suggested Solutions for Section A	Marks
1	SL1.9 Binomial theorem	[Maximum mark: 5]
	General term	
	$=\binom{9}{r}\left(-\frac{1}{r}\right)^r k^{9-r}$	(M1)
	For x^{-7} , $r = 7$	A1
	Identifying the correct term as	
	$\binom{9}{7}k^2\left(-\frac{1}{x}\right)^7$ or $\binom{9}{2}\left(-\frac{1}{x}\right)^7k^2$	M1
	Thus $\binom{9}{7}k^2(-1)^7 = -144$	
	Since $\binom{9}{2} = 36$ or $\binom{9}{7} = 36$	A1
	$k^2 = 4$	A 4
	$k = \pm 2$	A1
2	CI 2 (CI 2 9 Double and Trips acception	[Marinana marks 6]
<u> </u>	SL3.6, SL3.8 Double angle, Trigo equation $2 \cos 2x - 4 \cos x = 1$	[Maximum mark: 6]
	$4\cos^2 x - 2 - 4\cos x - 1 = 0$	M1
	$4\cos^2 x - 4\cos x - 3 = 0$	
	Using $4\cos^2 x - 4\cos x - 3 = 0$,	
	$(2\cos x + 1)(2\cos x - 3) = 0$	M1
	$\cos x = -\frac{1}{2}$ or	A1
	$\cos x = \frac{3}{2} \text{ (rejected because } -1 \le \cos x \le 1\text{)}$	A1 (with rejection)
	Reference angle = $\frac{\pi}{3}$	
	$x = -\frac{2\pi}{3} \text{ or } \frac{2\pi}{3}$	A1A1

Year 5 Mathematics: Analysis and Approaches HL End of Year Examination 2022 Paper 1 (Mark Scheme)

Qn	Suggested Solutions for Section A	Marks
3	AHL2.12 Polynomial functions	[Maximum mark: 7]
(a)	f(2) = -3(8) + 8(4) - 9(2) + 10 f(2) = 0 Therefore by Factor Theorem, $x = 2$ is a root of $f(x) = 0$.	A1 AG
(b)	Since $f(2) = 0$, METHOD ONE $-3x^3 + 8x^2 - 9x + 10$ $= (x - 2)(-3x^2 + bx - 5)$, where b is a constant. Compare coeff of x : $-9 = -2b - 5$ $b = 2$ $f(x) = (x - 2)(-3x^2 + 2x - 5)$ METHOD TWO By long division $-3x^2 + 2x - 5$ $x - 2) - 3x^3 + 8x^2 - 9x + 10$ $-3x^3 + 6x^2$ $2x^2 - 4x$ $-5x + 10$ $-5x + 6$	(M1) by inspection A1 A1 (M1) A1
(c)	Therefore $f(x) = (x-2)(-3x^2 + 2x - 5)$ $-3y^6 + 8y^4 - 9y^2 + 10 = 0$	A1
	$\Rightarrow (y^2 - 2)(-3y^4 + 2y^2 - 5) = 0$ \Rightarrow y^2 = 2 or $3y^4 - 2y^2 + 5 = 0$	M1 (for replacement of x)
	Since $y = \pm \sqrt{2}$ and $3y^4 - 2y^2 + 5 = 0$ has no real solution as its discriminant $= -56 < 0$, therefore $-3y^6 + 8y^4 - 9y^2 + 10 = 0$ has exactly two real solutions which are $y = \pm \sqrt{2}$.	A1 R1 (discriminant value must be evaluated and shown explicitly and must be correct) AG

Year 5 Mathematics: Analysis and Approaches HL End of Year Examination 2022 Paper 1 (Mark Scheme)

Qn	Suggested Solutions for Section A	Marks
4	SL5.8, AHL5.14 Inflexion point, Implicit differentiation	[Maximum mark: 7]
(a)	METHOD ONE:	
	$x^2 \tan y = 9$	
	Differentiating wrt <i>x</i> ,	
	$2x \tan y + x^2 \sec^2 y \frac{\mathrm{d}y}{\mathrm{d}x} = 0$	A1A1 (for each term)
	Using $\sec^2 y = 1 + \tan^2 y$,	M1 (use sec ² y identity)
	$\frac{dy}{dx} = \frac{-2x \times \frac{9}{x^2}}{x^2 \left(1 + \frac{81}{x^4}\right)}$ $\frac{dy}{dx} = \frac{-18x}{x^4 + 81}$	A1
	METHOD TWO:	
	Make tan y the subject.	
	$\tan y = \frac{9}{r^2}$	
	, A	
	$\sec^2 y \frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{18}{x^3}$	A1A1 (LHS and RHS)
	430 70	
	$\frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{18}{x^3} \times \cos^2 y$	M1 (use toa-cah-soh)
	$\frac{dy}{dx} = -\frac{18}{x^3} \times \frac{x^4}{x^4 + 81}$ $\frac{dy}{dx} = \frac{-18x}{x^4 + 81}$	A1
	METHOD THREE:	
	$y = \tan^{-1}\left(\frac{9}{x^2}\right)$	M1 (make y the subject)
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{1 + \left(\frac{9}{x^2}\right)^2} \times \left(\frac{(-2)(9)}{x^3}\right)$	A1A1 (arctan deriv and chain rule)
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{-18x}{x^4 + 81}$	A1

Year 5 Mathematics: Analysis and Approaches HL End of Year Examination 2022 Paper 1 (Mark Scheme)

Qn	Suggested Solutions for Section A	Marks
(b)	$\frac{d^2 y}{dx^2} = \frac{54(x^4 - 27)}{(x^4 + 81)^2}$ $\frac{d^2 y}{dx^2} = 0$ $x^4 - 27 = 0$ $x = \sqrt[4]{27}$	M1 (find x)
	As x approaches $\left(\sqrt[4]{27}\right)^{-}$, $\frac{d^{2}y}{dx^{2}} < 0$; As x approaches $\left(\sqrt[4]{27}\right)^{+}$, $\frac{d^{2}y}{dx^{2}}x > 0$.	A1 (correct sign of $\frac{d^2y}{dx^2}$)
	Since $\frac{d^2y}{dx^2}$ changes sign as x approaches $(\sqrt[4]{27})^-$ to $(\sqrt[4]{27})^+$	R1
	Therefore at = $\sqrt[4]{27}$, C has a point of inflexion.	AG
5	AHL1.12 Complex numbers (modulus and argument)	[Maximum mark: 9]
(a)	u-2w	
	= -1 + 7i - (6 + 8i) = -7 - i	A1
	$\frac{u}{w} = \frac{(-1+7i)(3-4i)}{(3+4i)(3-4i)}$ $-3+21i+4i+28$	M1 (multiply with the correct conjugate)
	<u>- 0 + 2 11 + 11 + 2 0</u>	
	$\frac{-3 + 21i + 4i + 28}{9 + 16}$ = 1 + i	A1

Year 5 Mathematics: Analysis and Approaches HL End of Year Examination 2022 Paper 1 (Mark Scheme)

Qn	Suggested Solutions for Section A	Marks
(c)	Since $arg(w) = arc tan \left(\frac{4}{3}\right)$ and	A1 (value of arg(w))
	$\arg(u) = \pi - \arctan \left \frac{7}{-1} \right $ (because $\arg(u)$ lies in the 2 nd quadrant)	M1 (find $\arg(u)$ in 2^{nd} quad)
	$\Rightarrow \arctan 7 = \pi - \arg(u)$ $\arctan 7 = \pi - [\arg(w) + \left(\frac{\pi}{4}\right)]$ $\arctan \left(\frac{4}{3}\right) + \arctan 7 = \pi - \left(\frac{\pi}{4}\right)$	A1 (follows the M1 above; arg (u) in terms of arg (w) and angle AOB)
	$\therefore \arctan\left(\frac{4}{3}\right) + \arctan 7 = \frac{3\pi}{4}$	A1 (AG)
6	AHL5.15 Differentiation techniques	[Maximum mark: 6]
	$\frac{d}{dx}(p \circ q)(\cot 2x)$ $= (p'(q(\cot 2x)) \times q'(\cot 2x) \times (-2\csc^2 2x)$ *	M1A1 (chain rule) * A1 (for $-2\csc^2 2x$)
	$\left \frac{\mathrm{d}}{\mathrm{d}x} (p \circ q)(\cot 2x) \right _{x = \frac{\pi}{12}}$	
	$= (p'(q(\cot\frac{\pi}{6})) \times q'(\cot\frac{\pi}{6}) \times (-2\csc^2\frac{\pi}{6})$	(M1) sub
	$= (p'(q(\sqrt{3}) \times q'(\sqrt{3}) \times (-2 \times \frac{1}{0.25}))$	$\mathbf{A1} \text{ (for } \cot \frac{\pi}{6} = \sqrt{3} \text{)}$
	$= (p'(1)) \times \frac{1}{2} \times (-8)$	
	= 8	A1

Year 5 Mathematics: Analysis and Approaches HL End of Year Examination 2022 Paper 1 (Mark Scheme)

Qn	Suggested Solutions for Section B	Marks
7	SL1.2, SL1.3, SL1.5, SL1.7, SL1.8 – Arithmetic Series,	
	Geometric Series, Exponents and Logarithms	
(a)	$\ln\left(x^{a}\right) - \ln x = \ln\left(\sqrt{x}\right) - \ln\left(x^{a}\right)$ $a - 1 = \frac{1}{2} - a$	M1 for equating common difference A1
	$a = \frac{3}{4}$	A1
(b)	Common difference = $\ln(x^a) - \ln x$ or $\ln(\sqrt{x}) - \ln(x^a)$ Common difference = $\ln(x^{a-1})$ or $\ln(x^{\frac{1}{2}-a})$	M1
	Common difference = $-\frac{1}{4} \ln x$	A1 FT
(c)	$S_n = \frac{n}{2} \left[2 \ln x + (n-1) \left(\frac{-1}{4} \ln x \right) \right]$	M1
	$S_n = \left(n + \frac{n - n^2}{8}\right) \ln x \text{ or } \left(\frac{9n - n^2}{8}\right) \ln x \text{ or } \left(\frac{n(9 - n)}{8}\right) \ln x$	A1 FT
	$n + \frac{n - n^2}{8} = -4.5$ or $\frac{9n - n^2}{8} = -4.5$ or $\frac{n(9 - n)}{8} = -4.5$	M1 for equating sum
	$n^{2}-9n-36=0$ $(n+3)(n-12)=0$ Since $n > 0$, $n = 12$	A1 FT for correct factorisation A1 FT
(d)	$\frac{\lg\left(x^{b}\right)}{\lg x} = \frac{\lg\left(\sqrt{x}\right)}{\lg\left(x^{b}\right)}$	M1 for equating common ratio
	$\frac{b}{1} = \frac{\frac{1}{2}}{b}$	M1 for power law
	$b^2 = \frac{1}{2}$	A1
	$b = \pm \frac{1}{\sqrt{2}} \text{or} \pm \frac{\sqrt{2}}{2}$	A1 A1
	Do NOT accept $b = \pm \sqrt{\frac{1}{2}}$.	

Year 5 Mathematics: Analysis and Approaches HL End of Year Examination 2022 Paper 1 (Mark Scheme)

Qn	Suggested Solutions for Section B	Marks
(e)	$S_{\infty} = \frac{\lg x}{1 - b} = \frac{\lg x}{1 - \frac{\sqrt{2}}{2}}$	M1
	$S_{\infty} = \frac{2\lg x}{2 - \sqrt{2}}$	A1 FT for using $b > 0$
	$\frac{2\lg x}{2-\sqrt{2}} = 2+\sqrt{2}$	M1 for equating sum
	$ \lg x = 1 \\ x = 10 $	A1 FT for correct simplifying using $b > 0$ A1 FT for using $b > 0$
8	SL2.2 , SL2.3, SL2.5, SL2.6, SL2.7, SL2.8, SL2.10, AHL2.13, AHL2.14, AHL2.16, AHL3.9 – Function and Graph, Rational Function, Reciprocal Function, Inverse Function, Composite Function and Inverse Trigonometric Function	[Maximum mark: 25]
(a)	$x^2-2x-8=(x+2)(x-4)$	M1
	p = -2, $q = 4$	A1 A1
(b)	$v=0$ $(1,\frac{-1}{9})$ $(0,\frac{-1}{8})$ $v=\frac{1}{x^2-2\cdot x-8}$ $x=4$ Shape of the graph of $y=f(x)$ with 3 parts or sections $v=\frac{1}{x^2-2\cdot x-8}$ $x=4$ Vertical asymptotes: $x=-2$, $x=4$	A1 A1
	Horizontal asymptotes: $x = -2$, $x = 4$ Horizontal asymptote: $y = 0$ (x -axis) Coordinates of maximum point: $\left(1, -\frac{1}{9}\right)$	A1 A1
		A1
	Coordinates of y-intercept: $\left(0, -\frac{1}{8}\right)$	A1

Year 5 Mathematics: Analysis and Approaches HL End of Year Examination 2022 Paper 1 (Mark Scheme)

Qn	Suggested Solutions for Section B	Marks
(c)	Let $y = g(x)$ and replace/substitute y by x.	M1
	$y = \frac{1}{x^2 - 2x - 8}, x > 4$	
	Either	
	$y = \frac{1}{(x-1)^2 - 9}, x > 4$	M1 for completing square
	$(x-1)^{2} - 9 = \frac{1}{y}, x > 4$	
	$(x-1)^2 = 9 + \frac{1}{y}, x > 4 \text{ or } (x-1)^2 = \frac{9y+1}{y}, x > 4$	M1 for simplifying
	Since $x > 4$, $x - 1 = \sqrt{9 + \frac{1}{y}}$ or $x - 1 = \sqrt{\frac{9y + 1}{y}}$	A1 A1 for rejecting with reason, $x > 4$
	Or	
	$yx^2 - 2yx - 8y = 1, x > 4$	M1 for quadratic
	$yx^2 - 2yx - 8y - 1 = 0, x > 4$	equation in x
	$x = \frac{2y \pm \sqrt{4y^2 + 4y(8y + 1)}}{2y}, x > 4$	M1 for using general solution formula
	Since $x > 4$, $x = 1 + \frac{\sqrt{36y^2 + 4y}}{2y}$	A1 A1 for rejecting with reason, $x > 4$
	$x = 1 + \sqrt{9 + \frac{1}{y}}$ or $x = 1 + \sqrt{\frac{9y + 1}{y}}$ or $x = 1 + \frac{\sqrt{9y^2 + y}}{y}$	
	Replace or substitute <i>x</i> by <i>y</i> gives	
	$y = 1 + \sqrt{9 + \frac{1}{x}}$ or $y = 1 + \sqrt{\frac{9x + 1}{x}}$ or $y = 1 + \frac{\sqrt{9x^2 + x}}{x}$	
	$g^{-1}(x) = 1 + \sqrt{9 + \frac{1}{x}}, x \in \mathbb{R}, x > 0$ or	A1 for $g^{-1}(x) = \text{rule}$ A1 for domain
	$g^{-1}(x) = 1 + \sqrt{\frac{9x+1}{x}}, x \in \mathbb{R}, x > 0$ or	
	$g^{-1}(x) = 1 + \frac{\sqrt{9x^2 + x}}{x}, x \in \mathbb{R}, x > 0$	

Year 5 Mathematics: Analysis and Approaches HL End of Year Examination 2022 Paper 1 (Mark Scheme)

Qn	Suggested Solutions for Section B	Marks
(d)	00	
	$y = \begin{cases} 1 + \frac{\sqrt{9 \cdot x^2 + x}}{x}, & x > 0 \end{cases}$ $y = \frac{1}{x^2 - 2 \cdot x - 8}$ $y = \frac{1}{x^2 - 2 \cdot x - 8}$ $y = \frac{1}{x^2 - 2 \cdot x - 8}$ $y = \frac{1}{x^2 - 2 \cdot x - 8}$ $y = \frac{1}{x^2 - 2 \cdot x - 8}$ $y = \frac{1}{x^2 - 2 \cdot x - 8}$ $y = \frac{1}{x^2 - 2 \cdot x - 8}$ $x = -2$ $x = -2$	
	Shape of the graph of $y = g^{-1}(x)$ intersecting the graph of $y = f(x)$ only once at $x > 4$ Vertical asymptotes: $x = 0$ (y-axis) Horizontal asymptote: $y = 4$ Do NOT penalise for omission of the line $y = x$.	A1 FT A1 FT
(e)	$h(x) = \arctan \frac{x}{7}$ $h(g(m)) = \arctan \left(\frac{g(m)}{7}\right) \text{ or } h^{-1}(x) = 7 \tan x$ $h(g(m)) = \frac{\pi}{4} \text{ gives } \arctan \left(\frac{g(m)}{7}\right) = \frac{\pi}{4} \text{ or } g(m) = h^{-1}\left(\frac{\pi}{4}\right)$	M1 for composite function or inverse function of h
	$g(m) = 7 \tan \frac{\pi}{4} = 7$ Either $m = g^{-1}(7)$ $m = 1 + \frac{\sqrt{9(7^2) + 7}}{7}$ $m = 1 + \frac{\sqrt{7(9 \times 7 + 1)}}{7} = 1 + \frac{\sqrt{7 \times 64}}{7} = 1 + \frac{8}{7}\sqrt{7}$	A1 A1 using $g^{-1}(x)$ A1 for $a = 1$ A1 for $b = 8$ A1 for $c = 7$

Year 5 Mathematics: Analysis and Approaches HL End of Year Examination 2022 Paper 1 (Mark Scheme)

Qn	Suggested Solutions for Section B	Marks
	Or $ \frac{1}{m^2 - 2m - 8} = 7, m > 4 \text{ gives } 7m^2 - 14m - 57 = 0, m > 4 $ $ m = \frac{14 \pm \sqrt{(14)^2 + 4(7)(57)}}{2(7)} $ $ m = \frac{14 \pm \sqrt{4(7)(7 + 57)}}{2(7)} = \frac{14 \pm \sqrt{4(7)(64)}}{2(7)} = 1 \pm \frac{\sqrt{7 \times 64}}{7} $ $ m = 1 \pm \frac{8}{7}\sqrt{7} $	A1 for quadratic equation M1 using general solution for quadratic equation
	Since $m > 4$, $m = 1 + \frac{8}{7}\sqrt{7}$	A1 for $a = 1$ A1 for $b = 8$ A1 for $c = 7$

STUDENT NAME:		
TEACHER NAME:		

ST. JOSEPH'S INSTITUTION YEAR 5 END OF YEAR EXAMINATION 2022

MATHEMATICS: ANALYSIS AND APPROACHES 12 October 2022

HIGHER LEVEL 1 hour 30 minutes

PAPER 2

Wednesday 0800 - 0930 hrs

INSTRUCTIONS TO CANDIDATES

- Write your name and teacher's name in the spaces provided.
- Do not open this examination paper until instructed to do so.
- **Section A:** Answer all questions showing working and answers in the spaces provided in the exam paper.
- **Section B:** Answer all questions using the foolscap paper provided.
- The use of a scientific or examination graphical calculator is permitted in this paper.
- TI-Nspire calculators must be in Press-to-Test mode and cleared of all previous data.
- TI-84+ graphical calculators must only have permitted apps and be ram cleared.
- A clean copy of the **Mathematics: Analysis and Approaches formula booklet** is required for this paper.
- Unless otherwise stated in the question all numerical answers must be given exactly or to three significant figures.
- The maximum mark for this examination paper is [85 marks].
- This question paper consists of 9 printed pages including the Cover Sheet.
- Sections A and B are to be submitted separately.

FOR MARKER USE ONLY:

TOTAL	Q9	Q8	Q7	Q6	Q5	Q4	Q3	Q2	Q1
/85									

Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by working and/or explanations. In particular, solutions found from a graphic display calculator should be supported by suitable working, for example, if graphs are used to find a solution, you should sketch these as part of your answer. Where an answer is incorrect, some marks may be given for a correct method, provided this is shown by written working. You are advised to show all working.

SECTION A (40 marks)

Answer all questions in the spaces provided.

1 [Maxin	num mark: 4]
----------	--------------

Find the complex numbers z and w which satisfy the simultaneous equations
$\frac{z}{w} = 2i - 1$
$(3+2i)z = w+2i$, where $i^2 = -1$.

2	[Ma	ximum mark: 9]	
	(a)	Obtain the series expansion of $\sqrt{3+4x}$, up to and including the term in x^2 .	[4]
	(b)	Explain why it is not suitable to use $x = 1$ to give an approximation for $\sqrt{7}$.	[2]
	(c)	Use $x = -\frac{1}{6}$ to find an approximation for $\sqrt{7}$, giving your answer correct to 3 decimal places.	[3]
•••••	•••••		•••
•••••	• • • • • •		•••
			•••
			• • • •
			• • •
•••••			•••
			• • • •
			• • • •
			•••
	•••••		•••
			•••
			•••
			•••
			•••
			• • • •

3

[Maximum mark: 7] 3

(b)

A classroom has 12 seats, as shown in the diagram below.

	Whitebo	pard	
Door	A B	C D	Row 1
	E F	G H	Row 2
	I J	K L	Row 3

Find the number of seating arrangements for Johnston and his 11 classmates if

(a)	there are no restrictions;	[1]
(b)	Johnston wants to sit in Row 1;	[2]

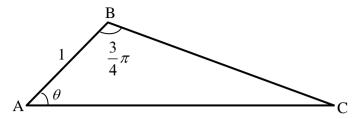
(c)	two of his classmates Samson and Jackson must not sit next to each other	
	in the same row.	[4]

	•••	•••	•••	•••	• • •	 	 	• • •	 		•••	• • •	• • • •	 •••	• • •	 •••	 •••	 •••	 	 •••	 	
••••	•••	•••	• • •		• • •	 	 •••	• • •	 	•••	• • •	• • •		 •••	• • •	 • • •	 • • •	 •••	 	 •••	 	••••
••••	•••	•••	• • •	•••	• • •	 	 •••	• • •	 	•••	• • •	• • •	• • • •	 •••	• • •	 • • • •	 • • •	 •••	 • • • •	 •••	 	••••
																						••••
	•••	•••	• • •		• • •	 	 •••	• • •	 		• • •	• • •	• • • •	 •••	• • •	 •••	 • • •	 •••	 	 •••	 	
••••	• • •	•••	• • •		• • •	 	 •••	• • •	 	•••	• • •	• • •		 •••	• • •	 • • •	 • • •	 •••	 	 •••	 	••••

4	Maximum	mark:	71

Mr. Jay places a 30% deposit for a car and takes out a loan of \$80 500 from a bank for the remaining amount. The bank charges an **annual** interest rate of 3.2% compounded monthly and Mr. Jay makes a payment of x to the bank at the end of each month.

	(a)	Find the minimum value of x , to the nearest integer, if he wants to finish repaying the loan within 7 years.	[3]
	(b)	Write down the purchase price of the car, to the nearest dollar.	[1]
	(c)	If the value of the car depreciates to half its original value at the end of the fift year, find the annual depreciation rate of the car.	:h
		State an assumption made in your calculation.	[3]
••••	•••••		•••
• • • • •	•••••		•••
• • • • •	•••••		•••
	•••••		•••
• • • • •	•••••		•••
• • • • •			•••
			•••
• • • • •	•••••		•••
			•••
			•••
			•••
• • • • •	•••••		•••


5

TURN OVER

5	[Maximum mark: 5]
	Using l'Hôpital's rule, find the exact value of
	$\lim_{x\to 0} \frac{1}{\sqrt{3x}} \left(\frac{\pi}{2} - \arccos\left(\sqrt{x}\right) \right).$
•••••	

6 [Maximum mark: 8]

Consider a triangle ABC, where AB = 1 cm, $B\hat{A}C = \theta$ rad and $A\hat{B}C = \frac{3}{4}\pi$ rad.

- (a) Show that $AC = \frac{1}{\cos \theta \sin \theta}$. [4]
- **(b)** Given that the area of triangle ABC is $\frac{7}{4}$ cm², find the value of θ and length of AC. [4]

Do NOT write solutions on this page

SECTION B (45 marks)

Answer all questions on the foolscap paper provided. **Please start each question on a new page.**

7 [Maximum Mark: 16]

The function h is defined by $h(x) = \sqrt{16 - (x-3)^2}$, $x \in (a, b)$, where $a, b \in \mathbb{R}$.

- (a) Find the value of a and of b such that the domain $D_h = (a, b)$ is the largest possible. [2]
- (b) Find the equation of the line of symmetry on the graph y = h(x). [2]
- (c) The graph of h goes through a translation of $\begin{pmatrix} p \\ 0 \end{pmatrix}$ such that the resulting graph is an even function.
 - (i) State the value of p.
 - (ii) Show that h(x-p) is an even function. [4]
- (d) Given another function $g(x) = \frac{1}{x}$, $x \in \mathbb{R}$, $x \neq 0$, find
 - (i) the rule for the function $g \circ h$,
 - (ii) the range of the function $g \circ h$. [4]

Let k(x) = -h(3x).

- (e) The point A(m, 2) on the graph of h is mapped to the point A' on the graph of k.
 - (i) Find the possible values of m.
 - (ii) Hence find the corresponding coordinates of A'. [4]

Do NOT write solutions on this page

8 [Maximum Mark: 13]

- (a) (i) Find the roots of $w^2 = -2i$ in the form p + qi, where $p, q \in \mathbb{R}$.
 - (ii) Hence solve $(1+iw)^2 = -2i$. [5]
- (b) Suppose $z_1 = -2i$ and $z_2 = i \sqrt{3}$.
 - (i) Verify that z_1 and z_2 are roots of the equation $z^3 = 8i$, where $z \in \mathbb{C}$.
 - (ii) Find the third root z_3 in the form a + bi, where $a, b \in \mathbb{R}$. [6]
- (c) On an Argand diagram, z_1 , z_2 and z_3 are represented by the points A, B and C respectively.

Find the area of triangle ABC. [2]

9 [Maximum Mark: 16]

Let $f(x) = b(x+1)e^{-2x}$, where $b > 0, x \in \mathbb{R}$.

- (a) (i) Find f'(x) in terms of b.
 - (ii) Hence find the coordinates of the maximum point of y = f(x) in terms of b. [4]
- (b) (i) Given that f(0) = 3, show that b = 3.
 - (ii) Sketch the graph of y = f(x), indicating clearly the coordinates of the turning points, axial intercepts and the equation of the asymptote.
 - (iii) State $\lim_{x \to \infty} f(x)$.
 - (iv) Find the coordinates of the point of inflexion and justify your answer.
 [9]
- (c) Using b = 3, find the exact range of values of k for which $[f(x)]^2 = k$ has three distinct real roots. [3]

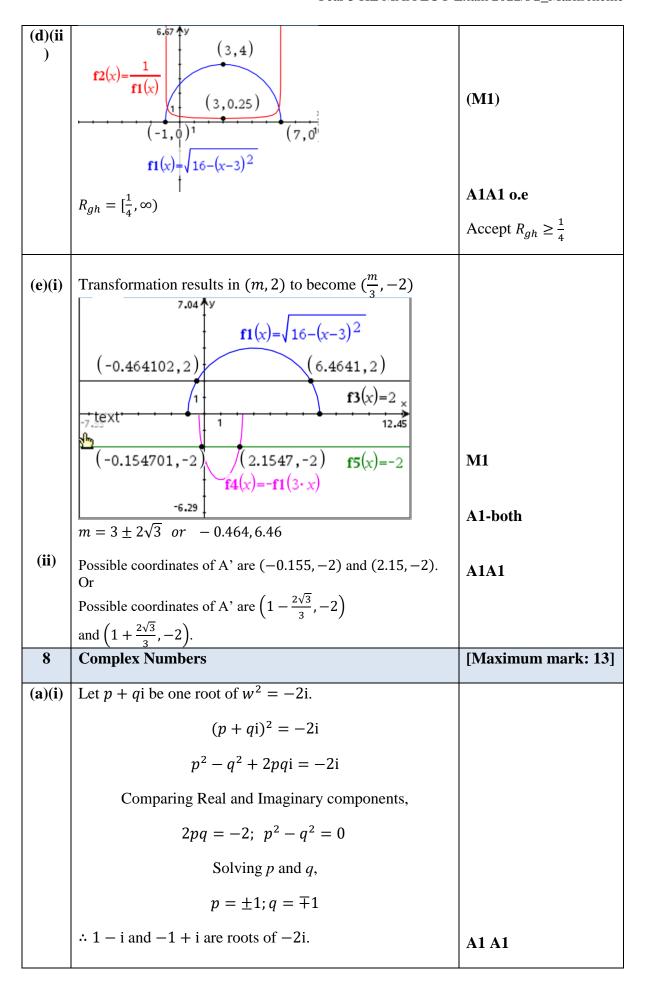
End of Paper

Year 5 HL MAA End of Year Examination 2022 Paper 2 (Mark Scheme)

On	Suggested Solutions	Marks
Qn 1	Complex Numbers – Simultaneous Linear Equations	[Maximum mark: 4]
	$\frac{z}{w} = 2i - 1 \implies z = (2i - 1)w \dots (1)$ $(3 + 2i)z = w + 2i \dots (2)$	
	Method 1: GDC linsolve	Method 1
	linSolve $\left\{ \begin{bmatrix} z = (2 \cdot i - 1) \cdot w \\ (3 + 2 \cdot i) \cdot z = w + 2 \cdot i \end{bmatrix}, \{z, w\} \right\}$ $\left\{ \frac{3}{10} + \frac{2}{5} \cdot i, \frac{1}{10} - \frac{1}{5} \cdot i \right\}$	M2 Use of linsolve
	z = 0.3 + 0.4i	A1
	w = 0.1 - 0.2i	A1
	Mothed 2. Applytical	Method 2
	Method 2: Analytical	Withou 2
	Subst (1) into (2), (3+2i)(2i-1)w = w+2i	M1 Any valid mathed for
	(-7+4i)w-w=2i	M1 Any valid method for solving simultaneous linear equations
	$w = \frac{2i}{-8 + 4i}$	A1 Correct formulation
	$= \frac{i}{-4+2i} \cdot \frac{-4-2i}{-4-2i}$ $= \frac{2-4i}{20} = \frac{1}{10} - \frac{1}{5}i (=0.1-0.2i)$	A1
	20 10 3	
	Subst into (1), we have $z = (2i - 1) \left(\frac{1}{10} - \frac{1}{5}i \right)$	
	$= \frac{3}{10} + \frac{2}{5}i (= 0.3 + 0.4i)$	A1

Qn	Suggested Solutions	Marks
2	Binomial Series for Rational Powers	[Maximum mark: 9]
(a)	$\sqrt{3+4x} = \sqrt{3}\sqrt{1+\frac{4x}{3}}$	
	$= \sqrt{3} \left[1 + \frac{1}{2} C_1 \left(\frac{4x}{3} \right) + \frac{1}{2} C_2 \left(\frac{4x}{3} \right)^2 + \dots \right]$	M1 Apply binomial expansion A1
	$= \sqrt{3} \left[1 + \frac{\frac{1}{2}}{1!} \left(\frac{4x}{3} \right) + \frac{\left(\frac{1}{2} \right) \left(-\frac{1}{2} \right)}{2!} \left(\frac{4x}{3} \right)^2 + \dots \right]$	A1 $\frac{1}{2}C_1 = \frac{1}{2}$ and
	$= \sqrt{3} \left[1 + \frac{2}{3}x - \frac{2}{9}x^2 + \dots \right]$	$\frac{1}{2}C_2 = -\frac{1}{8} \text{ (Can be}$
	$\left(= \sqrt{3} + \frac{2\sqrt{3}}{3}x - \frac{2\sqrt{3}}{9}x^2 + \dots \right)$	evaluated by GDC) A1 Either form
	Using GDC for $\frac{1}{2}C_1$ and $\frac{1}{2}C_2$	
	1.1 1.2 1.3 *Doc RAD \times $\operatorname{nCr}\left(\frac{1}{2}, \{1,2\}\right) \cdot \left\{\frac{4}{3}, \left(\frac{4}{3}\right)^{2}\right\} \qquad \left\{\frac{2}{3}, \frac{-2}{9}\right\}$	
(b)		
(0)	The series expansion is valid for $\left \frac{4x}{3} \right < 1$, i.e. $\left x \right < \frac{3}{4}$.	A1 Validity range
	Since $x = 1$ is outside the validity range, it is not suitable.	R1
(c)	$\sqrt{3+4\left(-\frac{1}{6}\right)} \approx \sqrt{3} \left[1 + \frac{2}{3}\left(-\frac{1}{6}\right) - \frac{2}{9}\left(-\frac{1}{6}\right)^2\right]$	M1 Substitution
	$\sqrt{\frac{7}{3}} \approx \sqrt{3} \left[\frac{143}{162} \right]$	A1 $\sqrt{\frac{7}{3}}$
	$\sqrt{7} \approx \frac{429}{162} = \frac{143}{54} = 2.648 $ (3 dp)	A1 (No FT)
	1.1 1.2 *Doc RAD \sim $ \sum_{r=0}^{2} \left(\operatorname{nCr} \left(\frac{1}{2}, r \right) \cdot \left(\frac{4}{3} \cdot \frac{-1}{6} \right)^{r} \right) \qquad \frac{143}{162} $	
	$\frac{143}{162}$ 3 $\frac{143}{54}$	
	143 54 ▶ Decimal 2.64814814815	
	Note: An answer of 2.646 receives no credit, as it is a direct	
	pressing of $\sqrt{7}$ on the GDC or calculator.	

Qn	Suggested Solutions	Marks
3	P&C – Permutations	[Maximum mark: 7]
(a)	No. of ways without restrictions = 12! = 479001600	A1
(b)	No. of ways = ${}^4C_1 \times 11! = 159667200$	$M1(^4C_1)$ A1
(c)	Method 1: Complement	Method 1
	No. of ways = $12! - {}^{9}C_{1} \times 2 \times 10! = 413683200$	M1 (12!-)
		$M1(^{9}C_{1}\times 2!)$
		M1 (10!) A1
	Method 2: Cases	Method 2
	Case (1) In the same row, e.g. AC, AD, BD $3\times3\times2!\times10! = 65318400$	M1 (3×3×2!)
	Case (2) Different rows: ${}^{3}C_{2} \times 2! \times 4 \times 4 \times 10! = 348364800$	M1 (${}^{3}C_{2} \times 2!$) M1 (10!)
	Total no. of ways = $348364800 + 65318400 = 413683200$	A1
4	T: 130 (1 (1	IN
(a)	Financial Mathematics Method 1: GDC Finance Solver	[Maximum mark: 7] Method 1
(a)	Finance Solver	
	N: 84	M1 Using finance solver to find "pmt"; at least 3
	1(%): 3,2	of 5 parameters correct
	PV: 80500	N = 84
	Pmt: -1070.9423213956	
	FV: 0.	I = 3.2%
	PpY: 12 -	$A1 \left\{ PV = 80500 \right\}$
	CpY: 12 -	Ppy = 12 $FV = 0$
	PmtAt: END	FV = 0
	Finance Solver info stored into	
	tvm.n, tvm.i, tvm.pv, tvm.pmt,	
	Using GDC Finance Solver with the above values,	
	Minimum repayment value = 1071 (to nearest integer)	A1
	Method 2: Analytical	Method 2
	Loan balance after <i>n</i> months	
	$=80500\left(1+\frac{3.2}{1200}\right)^{n}-x\sum_{n=1}^{n}\left(1+\frac{3.2}{1200}\right)^{r-1}$	M1 Correct formulation
	$\left(1+\frac{1}{1200}\right) - \frac{1}{1200} = \frac{1}{1200}$	WIT Correct formulation
	94	
	$(3.2)^{84}$ $(3.2)^{r-1}$	
	nSolve $80500 \cdot \left(1 + \frac{3.2}{1200}\right)^{84} - x \cdot \sum_{n=0}^{34} \left(1 + \frac{3.2}{1200}\right)^{r-1} = 0, x^{n}$	M1 (by GDC nSolve or
	r=1	Graph-Table, or GP)
	1070.9423214	
	Minimum repayment value = 1071 (to nearest integer)	A1
(b)	80500	
(0)	Purchase price = $\frac{80500}{0.7}$ = \$115000	A1
	0.7	


Qn	Suggested Solutions		Marks
(c)	Method 1: GDC Finance Solver	· .	Method 1
	Finance Solver		
	N: 5		
	I(%): -12.944943670388)	N = 5
	PV: 115000	<u> </u>	$M1 \begin{cases} N = 5 \\ FV = -\frac{1}{2}PV \end{cases}$
	Pmt: 0	<u> </u>	
	FV: -57500)	
	PpY: 1	<u> </u>	
	CpY: 1	<u> </u>	
	PmtAt: END)	A1 (note: as long as
	Finance Solver info stored	I into	$FV = -\frac{1}{2}PV$, the
	tvm.n, tvm.i, tvm.pv, tvm.p	mt,	answer will be 12.9)
	\therefore Annual depreciation rate = 12.	.9% (3 sf)	unswer win se 1213)
	Method 2: Analytical		Method 2
	$PV\left(1 - \frac{x}{100}\right)^5 = \frac{1}{2}PV$		M1 Correct formulation
	$\left(1 - \frac{x}{100}\right)^5 = \frac{1}{2}$		
	$x = -100 \left[\left(\frac{1}{2} \right)^{\frac{1}{5}} - \right]$	1	
	=12.944 ∴ Annual depreciation rate =12.	00% (3 cf)	A1 Condone "-12.9%"
	Assumption	.970 (3 81)	22.570
	The depreciation rate is constant of	over the 5 years.	R1
5	Calculus – Limits using l'Hôpita	al's rule	[Maximum mark: 5]
	$\lim_{x \to 0} \frac{1}{\sqrt{3x}} \left(\frac{\pi}{2} - \arccos\left(\sqrt{x}\right) \right)$	$(\infty)\cdot(0)$	
	$= \lim_{x \to 0} \frac{\frac{\pi}{2} - \arccos\left(\sqrt{x}\right)}{\sqrt{3x}}$	$\left(\frac{0}{0}\right)$	(M1) Checking condition to use LH
	$= \lim_{x \to 0} \frac{-\left(-\frac{1}{\sqrt{1-x}}\right) \cdot \frac{1}{2\sqrt{x}}}{\frac{1}{2\sqrt{3x}} \cdot 3}$	(by l'Hopital's Rule)	A1 o.e. Numerator A1 o.e. Denominator
	$=\lim_{x\to 0}\frac{1}{\sqrt{3}\sqrt{1-x}}$		A1
	$=\frac{1}{\sqrt{3}}$		A1

Qn	Suggested Solutions	Marks
6	Trigonometry – Sine, Cosine Rules, Area of Triangle	[Maximum mark: 8]
(a)	B $\frac{3}{4}\pi$ A θ C	
	Using Sine Rule, $\frac{AC}{\sin\left(\frac{3}{4}\pi\right)} = \frac{1}{\sin\left(\pi - \frac{3}{4}\pi - \theta\right)}$	M1 Sine Rule with AC
	$AC = \frac{\sin\left(\frac{3}{4}\pi\right)}{\sin\left(\frac{\pi}{4} - \theta\right)}$	A1 $\sin\left(\frac{\pi}{4} - \theta\right)$
	$AC = \frac{\frac{1}{\sqrt{2}}}{\sin\left(\frac{1}{4}\pi\right)\cos\theta - \cos\left(\frac{1}{4}\pi\right)\sin\theta}$	M1 Use of Compound Angle formula
	$AC = \frac{\frac{1}{\sqrt{2}}}{\frac{1}{\sqrt{2}}\cos\theta - \frac{1}{\sqrt{2}}\sin\theta}$	A1 Evaluating Special angles
	$AC = \frac{1}{\cos \theta - \sin \theta} \qquad \text{(Shown)}$	AG
(b)	Area of triangle ABC = $\frac{1}{2}(1)\left(\frac{1}{\cos\theta - \sin\theta}\right)\sin\theta$	M1
	$\frac{7}{4} = \frac{1}{2} \left(\frac{\sin \theta}{\cos \theta - \sin \theta} \right) (*)$	
	Method 1: GDC Graph 1.6 2.1 3.1	M1
	$2 \cdot \left(\cos(x) - \sin(x)\right)$	

Page 5 of 11

Using GDC (Graph)	
$\theta = 0.66104$	
= 0.661 rad	A1
Method 2: Analytical	
From $(*)$,	
$7(\cos\theta - \sin\theta) = 2\sin\theta$	
$7\cos\theta = 9\sin\theta$	
$\tan \theta = \frac{7}{9}$	M1
Solving,	
$\theta = 0.66104$	
= 0.661 rad	A1
Continuing from either method:	
$AC = \frac{1}{\cos \theta - \sin \theta}$	
$\cos \theta - \sin \theta$	
$=\frac{\cos(0.66104)-\sin(0.66104)}{\cos(0.66104)}$	
	A1

Qn	Suggested Solutions	Marks
7	Functions, Graphs and Transformation	[Maximum mark: 16]
(a)	Largest domain occurs when $16 - (x - 3)^2 \ge 0$	A1
	$(4 - (x - 3))(4 + (x - 3)) \ge 0$	A1 - both
	$\therefore D_{\max h} = (-1,7)$	A1 - DOUI
	Alternatively: Accept GDC graphing	
	6.67 T Y	
	<u>†</u>	
	k \	
	/1 † ×	
	$(-1,0)^{1}$ $(7,0)^{0}$	
		M1
	$\mathbf{f1}(x) = \sqrt{16 - (x - 3)^2}$	1711
	1	
	$\therefore D_{\max h} = (-1,7)$	A1 - both
(b)	Using GDC to find maximum point of $h(x)$,	
	6.67 ♠У	
	(3,4)	
		(M1) – attempt to use
	/1	max. pt o.e. to
	$(-1,0)^{1}$ $(7,0)^{2}$	determine shift
	$\mathbf{f1}(x) = \sqrt{16 - (x - 3)^2}$	
	Maximum point at (3, 4)	
	Line of symmetry: $x = 3$	A1

(c)(i)	The curve has go through the translation $\begin{pmatrix} -3 \\ 0 \end{pmatrix}$	
	p = -3	A1
() 44)	•	
(c)ii)	$h(-x - (-3))$ $= \sqrt{16 - (-x + 3 - 3)^2}$	
		(M1) attempt to sub
	$=\sqrt{16-(x+3-3)^2}$	value of p
	V 10 (N 10 0)	A1 – replace – x with x
	=h(x-(-3))	R1
	Hence, $h(-x-p)$ is an even function	AG
(d)(i)	$ah(x) = \frac{1}{x}$	
	$gh(x) = \frac{1}{\sqrt{16 - (x - 3)^2}}$	A1

Alternatively, using GDC

$$cPolyRoots(x^2+2\cdot i,x) \qquad \{-1+i,1-i\}$$

 $\therefore 1 - i$ and -1 + i are roots of -2i.

A1A1

(ii) Replace w with (1 + iw)

$$1 + iw = 1 - i$$
, $-1 + i$
 $iw = -i$, $-2 + i$

w = -1, 2i + 1

A1A1

A1

(b)(i) $(-2i)^3 = -8i^3 = 8i$

$$(i - \sqrt{3})^3 = i^3 - 3\sqrt{3}i^2 + 3(\sqrt{3}^2i) - \sqrt{3}^3$$
$$= -i + 3\sqrt{3} + 9i - 3\sqrt{3}$$

-1 + 3 V 3 + 91 - 3 V 3

= 8i

A1

A1

M1

A1

(ii) Let the third root be z_3 .

Using sum of roots = 0

$$-2i + i - \sqrt{3} + z_3 = 0$$

 $z_3 = \sqrt{3} + i$

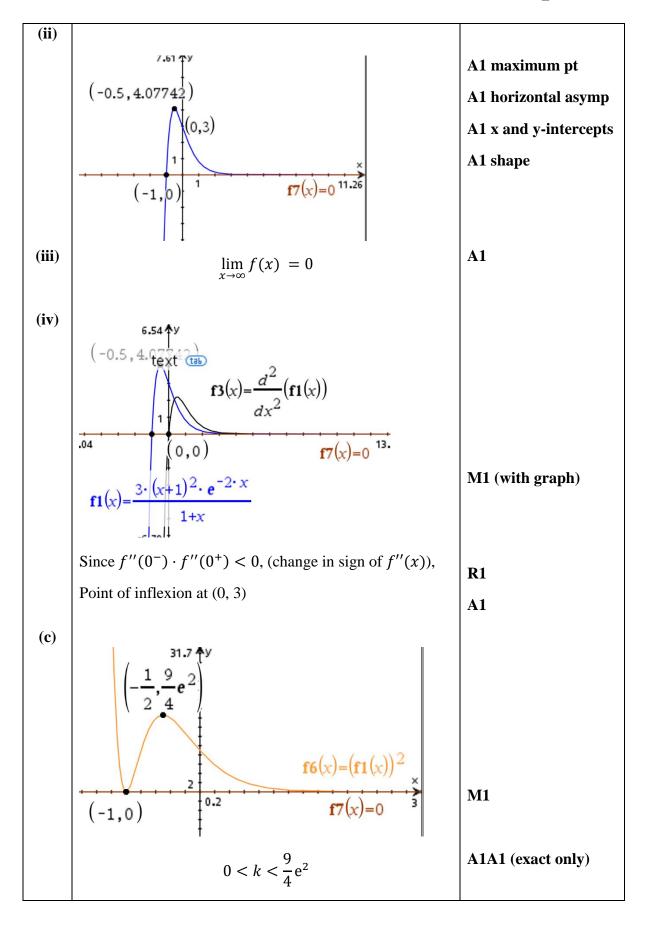
M1

A1

Alternatively, using Product of roots

$$(-2i)(i-\sqrt{3})z_3 = 8i$$

 $(2 + 2\sqrt{3}i)z_3 = 8i$


$$z_3 = \frac{8i}{2 + 2\sqrt{3}i} = \sqrt{3} + i$$

(Accept GDC $z_3 = 1.73 + i$)

M1

A1

	Alternatively, using GDC polyroots	
	cPolyRoots $(x^3 - 8 \cdot i, x)$ $\mathcal{I}\{-1.73205080757 + i, -2 \cdot i, 1.73205080757 + i\}$	M1
	$z_3 = \sqrt{3} + i$	A1
(c)	Area of triangle	M
	$= \frac{1}{2}(2\sqrt{3})(3)$ = $3\sqrt{3}$ or 5.20	M1
	$=3\sqrt{3} \ or \ 5.20$	A1
9	Differentiation	[Maximum mark: 16]
(a)(i)	$f(x) = b(x+1)e^{-2x}, x \neq -1$	
	$f'(x) = b[(x+1)(-2e^{-2x}) + e^{-2x}]$	M1 product rule
	$= be^{-2x}(-2x - 1)$	A1
(ii)	$f'(x) = 0 \Rightarrow x = -\frac{1}{2}$	
	L	A1
	Sub. $x = -\frac{1}{2}$, $f\left(-\frac{1}{2}\right) = \frac{be}{2}$	
	Maximum point at $\left(-\frac{1}{2}, \frac{be}{2}\right)$	A1 accept (-0.5,1.36b)
(T.) (A)		
(b)(i)	$f(0) = \frac{b(1)^2 e^0}{1} = 3$	A1
	b = 3	AG

