YISHUN JUNIOR COLLEGE 2015 JC2 PRELIMINARY EXAM PAPER 2 H2 MATHEMATICS SOLUTION

	OR
	$ zz^* = z ^2 = 1 \Rightarrow \frac{1}{z} = z^* = \cos \alpha - i \sin \alpha$
	$z + \frac{1}{z} = \cos \alpha + i \sin \alpha + \cos \alpha - i \sin \alpha$
	$=2\cos\alpha$ (Shown)
	$z - \frac{1}{z} = \cos \alpha + i \sin \alpha - (\cos \alpha - i \sin \alpha)$
	$=2i\sin\alpha$ (Shown)
	$\left(z+\frac{1}{z}\right) \div \left(z-\frac{1}{z}\right) = \frac{z^2+1}{z} \times \frac{z}{z^2-1}$ Hence $\frac{z^2+1}{z^2-1} = \frac{2\cos\alpha}{2i\sin\alpha} = -\frac{i\cos\alpha}{\sin\alpha}$ or $-i\cot\alpha$
2i	$4y = x^2$ and $8(y-k) = x^2$
	$4y = 8(y-k) \Longrightarrow y = 2(y-k)$
	$y = 2k$ $x^{2} = 4(2k) = 8k$
	x = 4(2k) = 8k
	$x = \pm 2\sqrt{2k}$
	Diameter of the rim of the bowl = $2\sqrt{2k} - (-2\sqrt{2k})$ or $2\sqrt{2k} \times 2$
	$=4\sqrt{2k}$ (Shown)
2 ii	Conscitute of the bowl = $\pi \int_{-\infty}^{2k} 8(y_k - k) dy$
	Capacity of the bowl = $\pi \int_{k}^{\infty} \delta(y-k) dy$
	$=8\pi\left[\frac{1}{2}y^2 - ky\right]_{\mu}^{2\kappa}$
	$=8\pi\left[\frac{4}{2}k^{2}-2k^{2}-\frac{1}{2}k^{2}+k^{2}\right]$
	$\begin{bmatrix} 2 & 2 \end{bmatrix}$
	Volume of material used for the bowl = $\pi \int_0^{2k} 4y dy - 4\pi k^2$
	$=\pi\left[2y^2\right]_0^{2k}-4\pi k^2$
	$=\pi\left[8k^2-0\right]-4\pi k^2$
	$=4\pi k^2$
2:::	= capacity of the bowl
2111	$C^{2\sqrt{2k}} = 4$
	Required area = $2 \int_{0}^{1} \frac{1}{8}x^{2} + 4 - \frac{1}{4}x^{2} dx$

$$3ii = 2 \int_{0}^{+\pi^{2}} \frac{4}{4} - \frac{1}{8}x^{2} dx$$

= 30.16988933
= 30.170 (3 d.p.)
3i C: $y = \frac{x^{2} + qx - 7}{x - 2}, q < 0$
 $y = x + q + 2 + \frac{2q - 3}{x - 2}$ or $y = x + q + 2 + \frac{const}{x - 2}$
Asymptotes: $x = 2$ and $y = x + q + 2$
3ii If $y = x$ is an asymptote of C, then
 $x + q + 2 = x$
Thus $q + 2 = 0 \Rightarrow q = -2$ (Shown)
Graph of C
(-1 83.0)
(0,3.5)
(0,3.5)
(3.83,0)
(-1 - 2) \sqrt{16 - x^{2}} < 1 - (*)
 $\frac{x^{2} - 2x - 7}{x - 2} < \sqrt{16 - x^{2}}$

4iii	$gh(x) = g(h(x)) = g\left(\frac{1}{x}\right) = \ln \frac{1}{x} = -\ln x$
	$D_{\perp} = D_{\perp} = \Box^{+}$
	$g_{h} \xrightarrow{p} h \xrightarrow{p} h$
	$R_{\rm tr} = \Box$
	- gn —
4iv	$h^{2}(x) = h\left(\frac{1}{x}\right) = 1 \div \frac{1}{x} = x$
	$h^{9}(x) = h(h^{2}h^{2}h^{2}h^{2}(x)) = h(x) = \frac{1}{x}$
4v(a)	$g(x) = \ln x$ and $gh(x) = -\ln x$
	Graphs of g and gh are reflections of each other in the x -axis.
4(b)	
4V(D)	Graphs of g and g are reflections of each other in the line $y = x$.
5i	Cohort 600 Males 400 Females
	Sample $0.05 \times 600 = 30$ 20
	size
	to be surveyed.
5ii	A stratified sample is preferable in this context as the population is fairly represented .
6	22 2 + 26 2
Ū	$\mu = \frac{22.2 + 20.2}{2} = 24.2$
	$\overline{X} \sim N\left(\mu, \frac{\sigma^2}{4}\right)$
	$P(\overline{X} < 22.2) = 0.0128$
	$P\left(Z < \frac{22.2 - 24.2}{\frac{\sigma}{2}}\right) = 0.0128$
	$-\frac{4}{\sigma} = -2.2322$
	$\sigma = 1.79 (3 \text{ sf})$

7	B-Black; $R-Red$
	$\underline{1st}$ $\underline{2nd}$ $\underline{3rd}$
	$\frac{3}{6}$ B
	4 P
	$\frac{1}{7}$ B 3
	$\frac{5}{6}$ R
	B $\frac{4}{1}$ B
	$\frac{5}{8}$ $\frac{3}{7}$ $\frac{6}{7}$
	$^{\circ}$
	$\frac{2}{6}$ R
	$\frac{4}{1}$ B
	$\frac{5}{2}$ B
	$\frac{3}{8}$ 7 $\frac{7}{2}$
	$R < \frac{\overline{6}}{6} R$
	$\frac{2}{6}$ $\frac{5}{6}$ B
	$\overline{7}$ R
	$\frac{1}{\epsilon}$
	$^{\circ}$ $\sim R$
7i	Req. probability
	$=\frac{3}{8}\times\frac{3}{7}\times\frac{2}{6}+\frac{3}{8}\times\frac{3}{7}\times\frac{2}{6}+\frac{3}{8}\times\frac{2}{7}$
	$=\frac{2}{2}$
	7
	Alternatively:
	Req. probability
	$=\frac{5}{8}\times\frac{3}{7}\times\frac{2}{6}\times\frac{3!}{2!}+\frac{3}{8}\times\frac{2}{7}\times\frac{1}{6}$
	$-\frac{2}{2}$
	- 7 - (0, 11, 11, 12)
711	P(3rd ball red)
	$=\frac{5}{8}\times\frac{7}{7}\times\frac{5}{6}+\frac{5}{8}\times\frac{5}{7}\times\frac{2}{6}+\frac{5}{8}\times\frac{5}{7}\times\frac{2}{6}+\frac{5}{8}\times\frac{2}{7}\times\frac{1}{6}$
	$=\frac{3}{2}$
	8

	P(1st and 3rd ball red)
	$=\frac{3}{8}\times\frac{5}{7}\times\frac{2}{6}+\frac{3}{8}\times\frac{2}{7}\times\frac{1}{6}$
	3
	$=\frac{3}{28}$
	P(1st ball red 3rd ball red)
	P(1st and 3rd ball red)
	= $P(3rd ball red)$
	$\frac{3}{28}$ 2
	$=\frac{720}{3/2}=\frac{-7}{7}$
7iii	P(at least 2 red 1st hall red)
	5 2 2 11
	$=\frac{3}{7}\times\frac{2}{6}+\frac{2}{7}=\frac{11}{21}$
	$\neq \frac{2}{7} = P(\text{at least 2 red})$
	Hence events are not independent.
8i	$H_0: \mu = 50$
	$H_1: \mu > 50$
	Under H_0 , the test statistic is $Z = \frac{\overline{X} - \mu}{\sqrt[s]{n}} \sim N(0, 1)$ approximately (by CLT)
	where $\mu = 50$, $\overline{x} = 55$, $n = 60$, $s^2 = \frac{60}{59}(19.3)^2$
	p-value = 0.0233
	Since the p-value < 0.05 (the significance level), we reject H_0 and conclude that at the 5% level, there is sufficient evidence that the mean time required by a person to complete the sum has increased.
8ii	Since the sample size (60) is large, CLT can be used to approximate the sample mean
	time required to complete the sum to a normal distribution. Hence any assumption is not
	necessary.
8iii	p-value = 2(0.0233) = 0.0466 < 0.05
	Since the p-value < 0.05 (the significance level), we reject H_0 and conclude that at the 5%
	sum has changed.
9a	MATHEICS
	MAT
	No repeated letters : ${}^{8}P_{5} = 6720$

	1 pair of repeated letters: ${}^{3}C_{1} \times {}^{7}C_{3} \times \frac{5!}{2!} = 6300$
	2 pairs of repeated letters: ${}^{3}C_{2} \times {}^{6}C_{1} \times \frac{5!}{2!2!} = 540$
	Number of codewords
	= 6720 + 6300 + 540 = 13560
9bi	Required probability
	${}^{6}C \times \frac{5!}{5!}$
	$=\frac{0.122!2!}{1225!2!}=\frac{3}{225}$ or 0.0133 (3 sf)
01::	13560 226 The addressed contains 4 years la honce only 1 conservent is contained in the addressed
9011	The codeword contains 4 vowers, hence only 1 consonant is contained in the codeword.
	Required probability
	${}^{5}C_{1} \times 3! \times {}^{4}C_{2}$
	$=\frac{-1}{5} \frac{5}{5} \frac{5}{5} \frac{5}{5}$
	$C_1 \times \frac{1}{2!}$
	$=\frac{3}{2}$
	5
10;	
101	\uparrow^{y}
	X (200, 28.31)
	X
	\mathbf{X} X (10, 7, 05)
	$\rightarrow x$
10ii	(a) $y \text{ on } x$: $r = 0.980 (3 \text{ sf})$
	(b) $y \text{ on } \sqrt{x}$: $r = 0.991 (3 \text{ sf})$
10iii	From (i), the scatter diagram shows that the rate of increase of y decreases as x increases.
	Hence the model $y = c + d\sqrt{x}$ should be a better model. This is confirmed by the r value
	in (ii), which shows that $y = c + d\sqrt{x}$ has $r = 0.991$ which is closer to 1.
10iv	$y = 0.12102 + 2.0112\sqrt{x}$
	$= 0.121 + 2.01\sqrt{r}$ (3 sf)
	$x = 45 \Longrightarrow y = 13.6$
	Since $r \approx 1$ and estimate is obtained via interpolation hence estimate is reliable
10v	From $CC(\sqrt{x} = 8.6824 \text{ m} = 17.585)$
	$110111000, (\sqrt{x} = 0.0034, y = 17.303)$
	Hence a possible point is:
	(75.4, 17.6) (3 sf)

11i	Assume that the average rate at which people arrive at the bus stop is constant throughout,
	and that the arrivals at the bus stop are independent of other arrivals.
	The average rate may not be constant because for example, no one will take the bus
	during the wee hours where there are no bus services.
	The arrivals may not be independent because for example, family members will arrive at
	the bus stop at the same time for a family trip.
11ii	X: no. of people who arrive at the bus stop in a period of 2 minutes.
	$X \sim Po(4)$
	P(X = 5) = 0.1562934519
	= 0.156 (3 sf)
11iii	Y: no. of people who arrive at the bus stop in a period of 1 minute.
	$Y \sim Po(2)$
	P(at most 1 in 1st minute 5 in 2 minutes)
	$P(Y_1 = 0)P(Y_2 = 5) + P(Y_1 = 1)P(Y_2 = 4)$
	$-\frac{1}{P(X=5)}$
	$-\frac{0.0293050222}{0.0293050222}$
	0.1562934519
	= 0.1875 (4 sf)
	Alternatively:
	A person who arrived in the 2 minute period has an equal chance to arrive in the 1^{st} or 2^{nd}
	min.
	Req. probability
	$=\frac{0 \text{ in 1st min} + 1 \text{ in 1st min}}{2^5} = \frac{1+5}{2^5} = \frac{5}{16}$
	-0.1875
11iv	A: no, of people who arrive at the bus stop in a period of 10 min $A \sim Po(20)$
	$\lambda = 20 > 10$ Hence $A = N(20, 20)$ approx
	$\lambda = 20 > 10$. Hence $A \sim N(20, 20)$ approx.
	$P(A \le 22) \xrightarrow{\text{ca.}} P(A \le 22.5)$
	= 0.712 (3 st)
10:	
121	X: no. of successful two point shots out of <i>n</i> attempts. N = D(-0.6)
	$X \sim B(n, 0.6)$
	$P(X \ge 1) > 0.99$
	P(X=0) < 0.01
	n = 5, $P(X = 0) = 0.0102$ (3 sf)
	n = 6, $P(X = 0) = 0.00410$ (3 sf)
	Hence he needs to attempt at least 6 shots.
12ii	<i>Y</i> : no. of successful three point shots out of 60 attempts. $Y \sim B(60, 0.4)$
	n = 60 large, $np = 24 > 5$, $nq = 36 > 5$

	$Y \sim N(24, 14.4)$ approx
	$P(21 \le Y \le 28) \xrightarrow{c.c.} P(20.5 \le Y \le 28.5)$
	= 0.704 (3 sf)
12iii	A, B: no. of successful two point and three point shots out of 10 and 5 attempts
	respectively.
	C: points scored in a game.
	Then $C = 2A + 3B$
	$E(C) = 2E(A) + 3E(B)$ $Var(C) = 2^{2}Var(A) + 3^{2}Var(B)$
	= 2(10)(0.6) + 3(5)(0.4) = 4(10)(0.6)(0.4) + 9(5)(0.4)(0.6)
	=18 = 20.4
	$\overline{C} \sim N\left(18, \frac{20.4}{50}\right)$ approx by CLT
	$P(\overline{C} \ge 17) = 0.941 (3 \text{ sf})$