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Mathematical Formulae 

   

1. ALGEBRA 
    

Quadratic Equation 
   

  For the equation ax2 + bx + c = 0, 
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Binomial Expansion 
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where n is a positive integer and 
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2. TRIGONOMETRY 
 

Identities 
 

sin2 A + cos2 A = 1 
 

sec2 A = 1 + tan2 A 
 

cosec2 A = 1 + cot2 A 
 

sin(A  B) = sin A cos B cos A sin B 
 

cos(A  B) = cos A cos B sin A sin B 
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sin 2A = 2 sin A cos A 
 

cos 2A = cos2 A  sin2 A = 2cos2 A  1 = 1  2sin2 A 
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Formulae for ABC 
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a2  =  b2 + c2 – 2bc cos A 
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[Turn over 

1 State the values between which each of the following must lie  

    

 (a) the principal value of  tan  1 x, [1] 

     

 (b) the principal value of  cos  1 2x. [2] 

     

     

     

     

     

2 The function  f  is defined, for all values of  x, by  f(x) = (x + 3)(1 – 2x)2.  

 Find the range of values of  x  for which  f  is a decreasing function. [3] 

     

     

     

     

     
 

3 In the expansion of  (2x – 1)2 
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  Find the possible values of the constant  p. [5] 

     

     

     

     

     

4 A curve has the equation  y = 4x2 – 24x + 30.  

     

 (i) Express  4x2 – 24x + 30  in the form [a (x + h)] 2 + k. [1] 

     

 (ii) Show that the minimum point of the curve has coordinates (3, – 6). [1] 

     

 (iii) Sketch the graph of  y =  4x2 – 24x + 30 , indicating clearly the exact  x-intercept(s) and 

y-intercept. [3] 

     

 A line of gradient  m  passes through the point (0, – 10).  

     

 (iv) Given that 0  m  10, determine the exact value of  m, for which the line intersects the 

graph of  y =  4x2 – 24x + 30   at one real and distinct point. [2] 

     

     

     

     

     

5 (i) Factorise completely  2x3 + 7x2 + 4x – 4. [3] 

     

  

(ii) Express  
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xx
  in partial fractions. [5] 
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6 The equation of a curve is  y = ax2 – 3x + 4 – a, where  a  is a constant.  

     

 (i) In the case where  a = – 2, find the set of values of  x  for which the curve lies 

completely below the line  y = – 3. [3] 

     

 (ii) In the case where  a = 3, show that the line  y = 3x – 2  is a tangent to the curve. [2] 

     

 (iii) Determine if there is any other value of  a  for which the line  y = 3x – 2  intersects the 

curve at only one point. [3] 
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(i) Prove that  .tan
)1(sin)tan(sec
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 (ii) Find all the values of    between 0 and  for which   

    

  
.sec1
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8 An auction house claimed that it is worthwhile to invest in their art pieces as the value of one 

of their art pieces has been increasing exponentially since it was produced. 

 

     

 The value, $V, of this art piece is related to  t, the number of years since it was produced at the 

start of the year 1995. 

 

     

 The variables  V  and  t  can be modelled by the equation  V = 10 000 + ae kt, where  a  and  k  

are constants.  The table below gives values of  V  and  t  at the start of some of the years 

2000 to 2015. 

 

     

    Year 2000 2005 2010 2015    

    t  years 5 10 15 20    

    $V 16 000 20 260 27 545 40 000    

     

 (i) Plot a suitable straight line graph to show that the model is valid for the years 2000 to 

2015. [3] 

     

 (ii) Estimate the value of  a  and of  k. [3] 

     

 (iii) A claim was made that in the year 2065, this art piece will increase in value by 

500 times from the time it was produced.  Do you agree?  Justify your answer. [2] 
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9 The point  A  lies on the curve  y = x ln x2,  x  0.  The tangent to the curve at  A  is parallel to   

 the line  y – 3x = 1.  

     

 (i) Find the exact coordinates of  A. [4] 

     

 The normal to the curve  y = x ln x2  at  A  meets the line  y – 3x = 1  at  B.  

     

 
(ii) Show that the  x-coordinate of  B  can be expressed in the form  ),(

10

1
qep   where  

  p  and  q  are integers to be found. [4] 

     

     

     

     

     

10 Solutions to this question by accurate drawing will not be accepted.  

     

 The diagram shows an isosceles triangle  PQR  in which  PQ = QR.  The vertices of the 

triangle are at the points  P(k, 4),  Q(5, 3)  and  R(9, 10). 
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 (i) Find the value of  k. [4] 

     

 A line is drawn from  Q  to cut the  y-axis at  S  such that  PS = SR.  

     

 (ii) Find the equation of  QS  and the coordinates of  S. [4] 

     

 (iii) Find the ratio of the area of triangle  PQR  to the area of quadrilateral  PQRS. [3] 
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11 A farmer uses 160 m of fencing to enclose a plot of his land in a shape that comprises an 

isosceles triangle and a rectangle, with the dimensions shown. 
 

     

 

 

 

 

 

 

 

 

 

 

 

 

 

     

  

(i) Show that the area of the plot is  
4

)633(3320 2xx 
 m2. [4] 

     

 (ii) Given that  x  can vary, find the value of  x  for which the area of the plot is stationary. [4] 

     

 (iii) Explain why this value of  x  gives the farmer the largest possible area for the plot. 

Find this area and give your answer correct to the nearest square metre. [3] 
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