

CONVENT OF THE HOLY INFANT JESUS SECONDARY Preliminary Examination in preparation for the General Certificate of Education Ordinary Level 2024

CANDIDATE NAME	
CLASS	REGISTER NUMBER
SCIENCE (CHEMISTRY, BIOLOGY)	5088/01
Paper 1 Multiple Choice	28 August 2024
	1 hour
Additional Materials: Multiple Choice Answer Sheet	

READ THESE INSTRUCTIONS FIRST

Write in soft pencil.

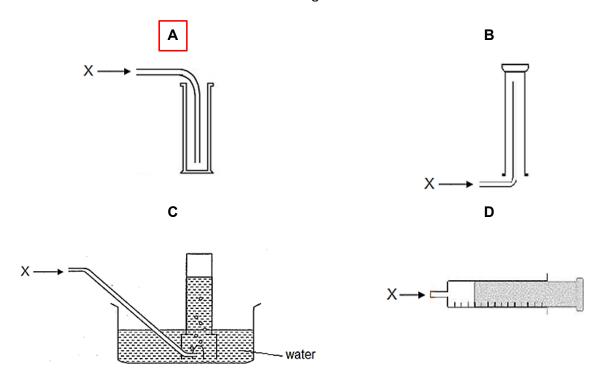
Write your name, class and register number on the Answer Sheet in the spaces provided unless this has been done for you.

Do not use staples, paper clips, glue, correction fluid or correction tape.

There are **forty** questions on this paper. Answer **all** questions. For each question there are four possible answers **A**, **B**, **C** and **D**.

Choose the one you consider correct and record your choice **in soft pencil** on the separate Answer Sheet.

Read the instructions on the Answer Sheet very carefully.

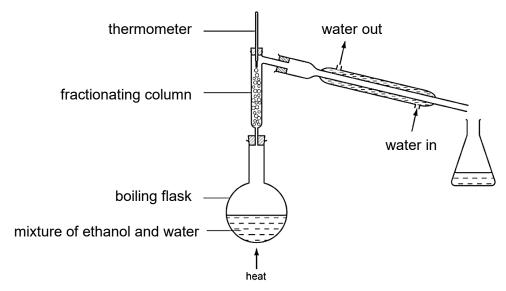

Each correct answer will score one mark. A mark will not be deducted for a wrong answer. Any rough working should be done in this booklet.

A copy of the Data Sheet is printed on page 23. A copy of the Periodic Table is printed on page 24.

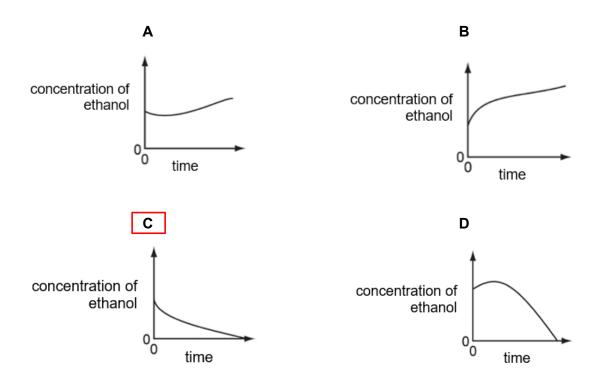
The use of an approved scientific calculator is expected, where appropriate.

- 1 A gas has the following properties.
 - less dense than air
 - insoluble in water

Which method cannot be used to collect the gas?


(solid)
 A sample of iodine crystals is at room temperature and pressure.

Which statement about the particles in the sample is correct?


- A The particles are arranged in a giant lattice. (refers to structure of ionic substances)
- **B** The particles do not have kinetic energy.
- **C** The particles move randomly through the solid.
- **D** The particles vibrate about a fixed point.

The apparatus shown is used to distil a dilute solution of ethanol in water. The boiling point of ethanol is 78 °C and the boiling point of water is 100 °C.

ethanol is distilled off first

Which graph shows the change in concentration of the ethanol in the boiling flask as the distillation proceeds?

4 The ion X^{2+} has three complete shells of electrons.

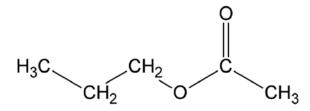
this is after losing 2 electrons, so X atom has 4 shells initially

What is X?

Α	calcium
	oa.o.a

- **B** magnesium
- C potassium
- **D** strontium

(ionic compound)


- 5 A crystal of sodium chloride is held together by
 - A covalent bonds.

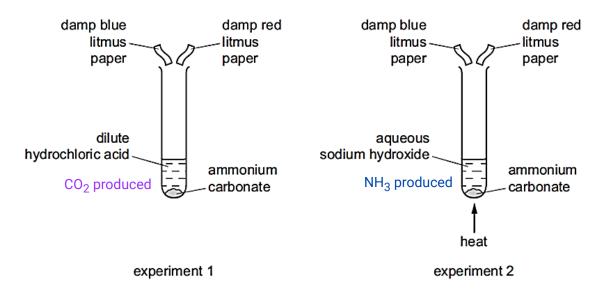
refers to structure of metals

- **B** positive ions in a 'sea of electrons'.
- **C** the attraction of oppositely charged ions.
- **D** shared pairs of electrons.
- 6 Some students wrote three statements about the bonding in a molecule of carbon dioxide, CO₂.
 - 1 A carbon atom has 4 outer electrons so all outer electrons are involved in bonding.
 - 2 A carbon atom has 6 outer electrons so 2 outer electrons are not involved in bonding.
 - 3 A carbon atom shares electrons with two oxygen atoms.

Which statement(s) about bonding in carbon dioxide is/are correct?

- A 1 only
- B 2 only
- **C** 1 and 3
- **D** 2 and 3
- 7 The diagram shows an organic molecule propyl ethanoate.

How many pairs of electrons are used in bonding in the molecule?


- **A** 1
- **B** 7
- **C** 14
- **D** 17

8 Two experiments were carried out.

In experiment 1, ammonium carbonate was reacted with dilute hydrochloric acid.

In experiment 2, ammonium carbonate was heated with aqueous sodium hydroxide.

In each experiment, the gas evolved was tested with damp blue litmus paper and damp red litmus paper.

Which row correctly shows the colour of both pieces of litmus paper at the end of each experiment?

	experiment 1	experiment 2					
Α	blue	blue					
В	blue	red					
С	red	blue					
D	red	red					

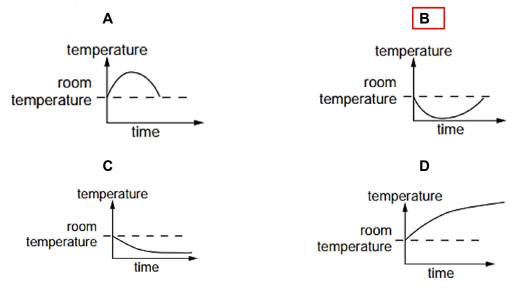
9 A solution of ethanoic acid, CH₃COOH, has a concentration of 2 mol/dm³. M_r of CH₃COOH = 60

Which statement about this solution is correct?

- A 20g of ethanoic acid is dissolved in 10 cm³ of water.
- **B** 30g of ethanoic acid is dissolved in 250 cm³ of water.
- **C** 60g of ethanoic acid is dissolved in 1 dm³ of water.
- **D** 120g of ethanoic acid is dissolved in 2 dm³ of water.

10 Solutions of a halogen and a sodium halide are mixed.

Which mixture darkens in colour because a reaction occurs?


- A bromine and sodium chloride
- **B** bromine and sodium fluoride
- **C** chlorine and sodium fluoride
- D chlorine and sodium iodide

Chlorine is **more reactive** than iodine, thus is **able to displace** iodine (brown solution / black ppt) from sodium iodide.

Dissolving ammonium nitrate in water is an endothermic reaction. heat taken in from surroundings, temperature of surroundings drop

Which graph shows how the temperature changes over time as ammonium nitrate is added to water and the solution is left to stand?

(process taking in heat has stopped, temperature goes back to room temperature)

12 Aqueous potassium iodide and acidified potassium manganate(VII) were added separately to separate samples of hydrogen peroxide.

The observations are summarised in the table.

reagent added to hydrogen peroxide	observations
aqueous potassium iodide	aqueous potassium iodide turns from colourless to brown Kl oxidised
acidified potassium manganate (VII)	acidified potassium manganate (VII) turns from purple to colourless

KMnO₄ reduced

Which set of properties is correct for the above observations?

	aqueous potassium iodide	acidified potassium manganate (VII)
Α	oxidising agent	reducing agent
В	oxidising agent	oxidising agent
С	reducing agent	oxidising agent
D	reducing agent	reducing agent

H₂O₂ is **both** a reducing agent and an oxidising agent.

- Which change in conditions increases the energy of particles in a reaction?
 - A increase in concentration
 - **B** increase in pressure
 - **C** increase in temperature
 - **D** presence of catalyst
- 14 Which statements about the trends across a period of the Periodic Table are correct?

Trend: From left to right (across a Period) the elements

Aluminium is more metallic than sodium.

becomes less metallic (or more non-metallic) in character.

2 Calcium is more metallic than arsenic.

- 3 Boron is more metallic than lithium.
- 4 Magnesium is more metallic than silicon.

A 1 and 2 **B** 1 and 3 **C** 2 and 4 **D** 3 and 4

15 Metal X is extracted from its oxide by heating the oxide with carbon. (Metal X is not a reactive metal) Zinc reacts slowly with steam and metal X reacts very slowly with steam. (X is less reactive than zinc) What is the order of reactivity of the above metals to sodium and copper?

	least reactive	most reactive									
Α	sodium	metal X	zinc	copper							
В	sodium	zinc	metal X	copper							
С	copper	zinc	metal X	sodium							
D	copper	metal X	zinc	sodium							

- 16 Which statements about homologous series are correct?
 - All members have similar chemical properties.
 - All members have similar physical properties. INCORRECT. "slight gradual change in phy prop"
 - 3 All members have the same molecular mass. INCORRECT. mass increases by 14 (a CH₂ unit) for each

successive member

- All members have the same functional group.
- Α 1 and 3 В 1 and 4 C 2 and 3 D 2 and 4
- When ethanol is left standing in the air for some time, it becomes acidic. 17 C_2H_5OH (organic acid) CH₃COOH

Which equation represents this change?

- Α CH₃CH₂OH + CO → CH₃CH₂CO₂H
- В $CH_3CH_2OH + O_2 \rightarrow CH_3CO_2H + H_2O$
- C $CH_3CH_2OH + 3O_2 \rightarrow 2CO_2 + 3H_2O$
- $2CH_3CH_2OH + O_2 \rightarrow 2CH_3CO_2H + \underline{2H_2}$ D

no metal used as reactant, cannot be H2 produced

The complete combustion of 20 cm³ of a gaseous alkane, Z, requires 130 cm³ of oxygen. Both volumes are measured at room temperature and pressure.

What could be the identity of Z?

A butane
$$2C_4H_{10}(g) + 13O_2(g) -> 8CO_2(g) + 10H_2O(f)$$

- **B** ethane
- **C** methane
- **D** propane

C₂H₅COOH

- 19 What statement about propanoic acid is correct?
 - **A** It has a molecular formula, C₃H₇COOH.
 - **B** It is formed when propanol reacts with acidified potassium manganate(VII).
 - C It reacts with copper to produce hydrogen gas. Copper metal is not reactive, does not react with acids.
 - D It turns red litmus paper blue. With acids, should be blue litmus turning red.
- In a reaction, 1000 molecules of CH₂=CH₂ react to form a single molecule X under certain conditions. monomers, contain C=C double bond polymer

Which row describe the conditions and the terms for CH₂=CH₂ and X?

	conditions	X			
A	high temperature and pressure	monomer	polymer		
В	high temperature and pressure	polymer	monomer		
С	low temperature and pressure	monomer	polymer		
D	low temperature and pressure	polymer	monomer		

DATA SHEET

Colours of Some Common Metal Hydroxides

aluminium hydroxide	white
calcium hydroxide	white
copper(II) hydroxide	light blue
iron(II) hydroxide	green
iron(III) hydroxide	red-brown
zinc hydroxide	white

The Periodic Table of Elements

Group																	
1	2											13	14	15	16	17	18
Key							1 H hydrogen 1										2 He helium 4
3	4		proton	(atomic) n	umber	'		1				5	6	7	8	9	10
Li	Be	atomic symbol								В	С	N	0	F	Ne		
lithium	beryllium			name								boron	carbon	nitrogen	oxygen	fluorine	neon
7	9 12	-	relati	ve atomic r	nass							11	12 14	14 15	16 16	19 17	20 18
Na												Al	Si	P	S	Cl	Ar
sodium	Mg magnesium											At aluminium	silicon	phosphorus	sulfur	chlorine	argon
23	24	3	4	5	6	7	8	9	10	11	12	27	28	31	32	35.5	40
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
potassium	calcium	scandium	titanium	vanadium	chromium	manganese	iron	cobalt	nickel	copper	zinc	gallium	germanium	arsenic	selenium	bromine	krypton
39	40	45	48	51	52	55	56	59	59	64	65	70	73	75	79	80	84
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Мо	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
rubidium 85	strontium 88	yttrium 89	zirconium 91	niobium 93	molybdenum 96	technetium	ruthenium 101	rhodium 103	palladium 106	silver 108	cadmium 112	indium	tin 119	antimony 122	tellurium 128	iodine	xenon
55	56	57–71	72	73	74	- 75	76	77	78	79	80	115 81	82	83	84	127 85	131 86
Cs	Ba	lanthanoids		73 Ta	W	Re	76 Os	Ir	Pt	Au		T <i>l</i>	o∠ Pb	Bi	Po	At	Rn
caesium	barium	lantinaniolus	ПI hafnium	tantalum	vv tungsten	rhenium	osmium	iridium	platinum	gold	Hg mercury	thallium	lead	bismuth	polonium	astatine	radon
133	137		178	181	184	186	190	192	195	197	201	204	207	209			
87	88	89–103	104	105	106	107	108	109	110	111	112	_	114		116		
Fr	Ra	actinoids	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn		F <i>l</i>		Lv		
francium	radium		rutherfordium	dubnium	seaborgium	bohrium	hassium		darmstadtium	_	copernicium		flerovium		livermorium		
_	_		_	_	_	_	_	_	_	_	_		_		_		
	ı	1	ı	1	1	1		ı	1	ı	1	ı	1	1	1	1	ı
		57	58	59	60	61	62	63	64	65	66	67	68	69	70	71	
1		La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu	
iantha	lanthanoids			praseodymium	neodymium	promethium	samarium	europium	gadolinium	terbium	dysprosium	holmium	erbium	thulium	ytterbium	lutetium	
			140	141	144	_	150	152	157	159	163	165	167	169	173	175	
		89	90	91	92	93	94	95	96	97	98	99	100	101	102	103	
actin	noids	Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr	
aotiii	actinolas		thorium	protactinium	uranium	neptunium	plutonium	americium	curium	berkelium	californium	einsteinium	fermium	mendelevium	nobelium	lawrencium	
		_	232	231	238	-	_	_	_	_	_	_	-	_	-	_	

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).

The Avogadro constant, $L = 6.02 \times 10^{23} \text{ mol}^{-1}$.