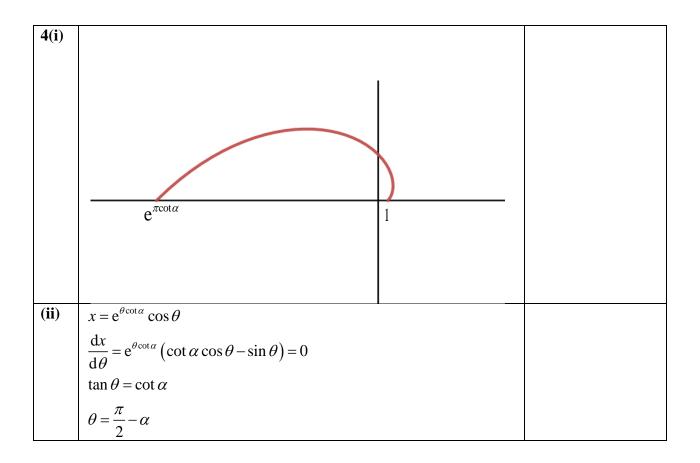
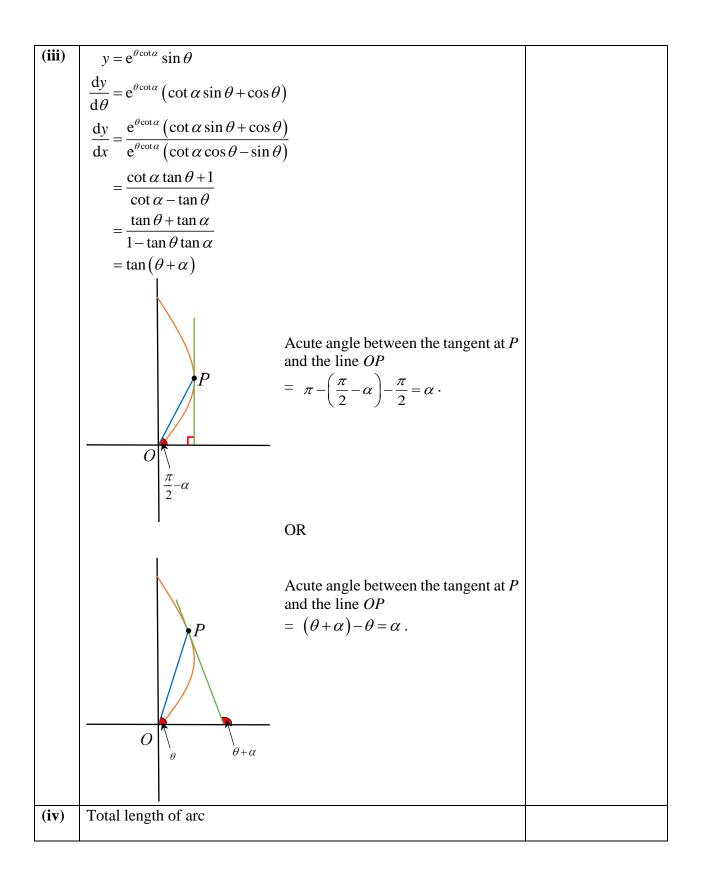
1(i) Using de Moivre's theorem,
$$(\cos\theta + i\sin\theta)^n = \cos^n\theta + i\sin n\theta$$

 $\cos^{6}\theta = \operatorname{Re}\left((\cos\theta + i\sin\theta)^{6}\right)$
 $= \cos^{6}\theta - 15\cos^{4}\theta\sin^{2}\theta + 15\cos^{2}\theta\sin^{4}\theta - \sin^{6}\theta$
 $\sin^{6}\theta = \operatorname{Im}\left((\cos\theta + i\sin\theta)^{6}\right)$
 $= 6\cos^{5}\theta\sin\theta - 20\cos^{3}\theta\sin^{3}\theta + 6\cos\theta\sin^{3}\theta$
 $\tan^{6}\theta = \frac{6\cos^{5}\theta\sin\theta - 20\cos^{3}\theta\sin^{2}\theta + 6\cos\theta\sin^{3}\theta}{1-6\cos^{6}\theta\sin^{2}\theta + 15\cos^{5}\theta\sin^{4}\theta - \sin^{6}\theta}$
Dividing both numerator and denominator by $\cos^{6}\theta$.
 $\tan^{6}\theta = \frac{6\tan\theta - 20\tan^{3}\theta + 6\tan^{3}\theta}{1-15\tan^{2}\theta + 15\tan^{6}\theta - \tan^{6}\theta}$ (Shown)
(ii) Substituting $\theta = \frac{\pi}{5}$,
 $\tan\left(\frac{6\pi}{5}\right) = \frac{6\tan\left(\frac{\pi}{5}\right) - 20\tan^{3}\left(\frac{\pi}{5}\right) + 6\tan^{5}\left(\frac{\pi}{5}\right)}{1-15\tan^{2}\left(\frac{\pi}{5}\right) + 15\tan^{4}\left(\frac{\pi}{5}\right) - \tan^{6}\left(\frac{\pi}{5}\right)}$
As $\tan\left(\frac{6\pi}{5}\right) = \tan\left(\frac{\pi}{5}\right)$,
 $\tan\left(\frac{\pi}{5}\right) = \frac{6\tan\left(\frac{\pi}{5}\right) - 20\tan^{3}\left(\frac{\pi}{5}\right) + 6\tan^{5}\left(\frac{\pi}{5}\right)}{1-15\tan^{2}\left(\frac{\pi}{5}\right) + 15\tan^{4}\left(\frac{\pi}{5}\right) - \tan^{6}\left(\frac{\pi}{5}\right)}$
Since $\tan\left(\frac{\pi}{5}\right) \neq 0$,
 $I = \frac{6-20\tan^{2}\left(\frac{\pi}{5}\right) + 6\tan^{4}\left(\frac{\pi}{5}\right)}{1-15\tan^{2}\left(\frac{\pi}{5}\right) + 15\tan^{4}\left(\frac{\pi}{5}\right)} - \tan^{6}\left(\frac{\pi}{5}\right)}$
Letting $v = \tan^{2}\left(\frac{\pi}{5}\right)$ and rearranging, we have


$v^3 - 9v^2 - 5v + 5 = 0$	
Let $f(v) = v^3 - 9v^2 - 5v + 5$	
$f(-1) = (-1)^{3} - 9(-1)^{2} - 5(-1) + 5 = 0$	
$\therefore (\nu + 1)$ is a factor	
$(v+1)(v^2-10v+5) = 0$	
$v = -1 \left(\text{rej. since } \tan^2 \left(\frac{\pi}{5} \right) > 0 \right)$	
or	
$v = \frac{10 \pm \sqrt{80}}{2}$	
$=\frac{10\pm\sqrt{16\times5}}{2}$	
$=5\pm2\sqrt{5}$	
Since $\tan^2\left(\frac{\pi}{5}\right) < \tan^2\left(\frac{\pi}{4}\right) = 1$,	
$\tan^2\left(\frac{\pi}{5}\right) = 5 - 2\sqrt{5}.$ (Shown)	


2(a) [2]	$\mathbf{A} \begin{pmatrix} r \cos \alpha \\ r \sin \alpha \end{pmatrix} = \begin{pmatrix} r(\cos \theta \cos \alpha - \sin \theta \sin \alpha) \\ r(\cos \alpha \sin \theta + \cos \theta \sin \alpha) \end{pmatrix} = \begin{pmatrix} r \cos (\theta + \alpha) \\ r \sin (\theta + \alpha) \end{pmatrix}$	
	Hence T_1 gives an anti-clockwise rotation of angle θ about the origin.	
(b)	It is a reflection in the <i>x</i> -axis.	
[1]		
(c)	M is obtained when we let $\theta = \frac{\pi}{6}$ in matrix A . Rotating a point about	
[2]	O for 2π radians brings it back to the original position. Since	
	$2\pi = 12 \times \frac{\pi}{6}$, the smallest positive integer $k = 12$.	
(d)	$\begin{pmatrix} \frac{1}{\sqrt{3}} & -\frac{1}{2} \\ -\frac{1}{\sqrt{3}} & -\frac{1}{2} \end{pmatrix}^{-1}$	
[3]	$\mathbf{C} = \mathbf{MBM}^{-1} = \begin{pmatrix} \frac{1}{2}\sqrt{3} & -\frac{1}{2} \\ \frac{1}{2} & \frac{1}{2}\sqrt{3} \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} \frac{1}{2}\sqrt{3} & -\frac{1}{2} \\ \frac{1}{2} & \frac{1}{2}\sqrt{3} \end{pmatrix}^{T},$	

hence **C** has eigenvalues 1 and -1.
Hence we have
$$\mathbf{C}\mathbf{x}_1 = \mathbf{1}\mathbf{x}_1$$
 and $\mathbf{C}\mathbf{x}_2 = -\mathbf{1}\mathbf{x}_2$ for eigenvectors \mathbf{x}_1 and \mathbf{x}_2 ,
where $\mathbf{x}_1 = \begin{pmatrix} \frac{1}{2}\sqrt{3} \\ \frac{1}{2} \end{pmatrix}$ and $\mathbf{x}_2 = \begin{pmatrix} -\frac{1}{2} \\ \frac{1}{2}\sqrt{3} \end{pmatrix}$.
So the two invariant lines are $y = \frac{1}{\sqrt{3}}x$ and $y = -\sqrt{3}x$, which pass through the origin.

3(i) [5]	Differentiate $\frac{db}{dt} = \beta g - \alpha b$ with respect to <i>t</i> ,
	$\frac{d^{2}b}{dt^{2}} = \beta \frac{dg}{dt} - \alpha \frac{db}{dt}$ $= \beta (1 - \beta g) - \alpha \frac{db}{dt}$ $= \beta \left[1 - \left(\frac{db}{dt} + \alpha b \right) \right] - \alpha \frac{db}{dt}$ $= \beta - \beta \frac{db}{dt} - \alpha \beta b - \alpha \frac{db}{dt}$
	Hence $\frac{d^2b}{dt^2} + (\alpha + \beta)\frac{db}{dt} + \alpha\beta b = \beta$
	Solving auxiliary equation,
	$\lambda^{2} + (\alpha + \beta)\lambda + \alpha\beta = 0$ (\lambda + \alpha)(\lambda + \beta) = 0 \lambda = -\alpha \text{ or } \lambda = -\beta
	Hence complementary function is $b = Ae^{-\alpha t} + Be^{-\beta t}$
	Let the particular solution be $b = c$, then $\alpha\beta c = \beta \Longrightarrow c = \frac{1}{\alpha}$
L	

	Solution is $b = Ae^{-\alpha t} + Be^{-\beta t} + \frac{1}{\alpha}$	
(ii) [2]	Given that $\alpha = 0.2$ and $\beta = 0.7$, and $b = 7.6$, $\frac{db}{dt} = -1.12$ when $t = 0$.	
	$\begin{cases} 7.6 = A + B + \frac{1}{0.2} \Rightarrow A + B = 2.6 \\ -1.12 = -0.2A - 0.7B \Rightarrow 0.7 = 0.5A \Rightarrow A = 1.4, B = 1.2 \end{cases}$ Hence $b = 1.4e^{-0.2t} + 1.2e^{-0.7t} + 5$	
(iii) [2]	Using GC, when $1.4 e^{-0.2t} + 1.2 e^{-0.7t} + 5 = 5.69$,	
	t = 4.07 hours (3s.f.)	

$$= \int_{0}^{\pi} \sqrt{r^{2} + \left(\frac{dr}{d\theta}\right)^{2}} d\theta$$

$$= \int_{0}^{\pi} \sqrt{e^{2\theta \cos \alpha} + e^{2\theta \cos \alpha} \cot^{2} \alpha} d\theta$$

$$= \int_{0}^{\pi} e^{\theta \cos \alpha} \sqrt{1 + \cot^{2} \alpha} d\theta$$

$$= \sqrt{\frac{\tan^{2} \alpha + 1}{\tan^{2} \alpha} \left[\frac{e^{\theta \cos \alpha}}{\cot \alpha} \right]_{0}^{\pi}}$$

$$= \sqrt{\frac{\tan^{2} \alpha + 1}{\tan^{2} \alpha \cot^{2} \alpha}} \left[e^{\theta \cos \alpha} \right]_{0}^{\pi}$$

$$= \sec \alpha \left[e^{\pi \cos \alpha} - 1 \right]$$
OR
Total length of arc
$$= \int_{0}^{\pi} \sqrt{\left(\frac{dx}{d\theta}\right)^{2} + \left(\frac{dy}{d\theta}\right)^{2}} d\theta$$

$$= \int_{0}^{\pi} \sqrt{e^{2\theta \cos \alpha} (\cot \alpha \cos \theta - \sin \theta)^{2} + e^{2\theta \cos \alpha} (\cot \alpha \sin \theta + \cos \theta)^{2}} d\theta$$

$$= \int_{0}^{\pi} e^{\theta \cos \alpha} \sqrt{\cot^{2} \alpha} (\cos^{2} \theta + \sin^{2} \theta) + \cos^{2} \theta + \sin^{2} \theta d\theta$$

$$= \int_{0}^{\pi} e^{\theta \cos \alpha} \sqrt{\cot^{2} \alpha + 1} d\theta$$

$$= \sqrt{\frac{\tan^{2} \alpha + 1}{\tan^{2} \alpha}} \left[\frac{e^{\theta \cos \alpha}}{\cos^{2} \alpha} \right]_{0}^{\pi}$$

$$= \sec \alpha \left[e^{\pi \cos \alpha} - 1 \right]$$

5(a) Improved Euler with step size
$$h = \frac{\alpha}{2}$$
, $g(x, y) = (x \cos^2 x) - 2xy$
 $x_1 = 0, y_1 = 0, u_2 = y_1 + hg(x_1, y_1) = 0 + \frac{\alpha}{2}(0) = 0$
 $y_2 = y_1 + \frac{h}{2} [g(x_1, y_1) + g(x_2, u_2)]$
 $= 0 + \frac{\alpha}{4} \left(0 + \left(\frac{\alpha}{2}\cos^2\left(\frac{\alpha}{2}\right)\right) - 2\left(\frac{\alpha}{2}\right)(0)\right)$
 $y_2 = \frac{\alpha^2}{8}\cos^2\left(\frac{\alpha}{2}\right)$
 $u_3 = y_2 + hg(x_2, y_2)$
 $= \frac{\alpha^2}{8}\cos^2\left(\frac{\alpha}{2}\right) + \frac{\alpha^2}{2} \left(\left(\frac{\alpha}{2}\cos^2\left(\frac{\alpha}{2}\right)\right) - 2\left(\frac{\alpha}{2}\right)\left(\frac{\alpha^2}{8}\cos^2\left(\frac{\alpha}{2}\right)\right)\right)$
 $= \frac{\alpha^2}{8}\cos^2\left(\frac{\alpha}{2}\right) + \frac{\alpha^2}{4}\cos^2\left(\frac{\alpha}{2}\right) - \frac{\alpha^4}{16}\cos^2\left(\frac{\alpha}{2}\right)$
 $= \left[\frac{\alpha^2}{16}\cos^2\left(\frac{\alpha}{2}\right)\right](6 - \alpha^2)$
 $y_1 = y_2 + \frac{h}{2} [g(x_2, y_2) + g(x_3, u_3)]$
 $= \frac{\alpha^2}{8}\cos^2\left(\frac{\alpha}{2}\right) - 2\left(\frac{\alpha}{2}\right) \left[\frac{\alpha^2}{8}\cos^2\left(\frac{\alpha}{2}\right)\right]$
 $+ \frac{\alpha}{4} \left[\left(\frac{\alpha}{2}\cos^2\left(\frac{\alpha}{2}\right)\right) - 2\left(\frac{\alpha}{2}\right)\left[\frac{\alpha^2}{8}\cos^2\left(\frac{\alpha}{2}\right)\right]$
 $= \frac{\alpha^2}{32} [(8\cos^2\alpha) + (\alpha^4 - 7\alpha^2 + 8)\cos^2\left(\frac{\alpha}{2}\right)]$
(b)
 (1)
 $I_n = \int_0^a x^n e^{x^2} dx$
 $= \int_0^a x^{n-1} xe^{x^2} dx$
 $= \frac{1}{2} a^{n-1} e^{x^2} - \frac{1}{2}(n-1) \int_0^a x^{n-2} e^{x^2} dx$
 $\therefore I_n = \frac{1}{2} a^{n-1} e^{x^2} - \frac{1}{2}(n-1) I_{n-2}$ (shown)

(ii)
$$\frac{dy}{dx} = x \left(1 - \frac{x^2}{2} \right)^2 - 2xy$$

$$\frac{dy}{dx} + 2xy = x - x^3 + \frac{x^5}{4}$$
Integrating Factor: $e^{\int 2^{r_d t} x} = e^{x^2}$
 $ye^{x^2} = \int e^{x^2} \left(x - x^3 + \frac{x^3}{4} \right) dx$
 $y(\alpha)e^{\alpha^2} - y(0)e^{\alpha} = \int_{0}^{\alpha} \left(xe^{x^2} - x^3e^{x^2} + \frac{1}{4}x^5e^{x^2} \right) dx$
Since $y(0) = 0$,
 $e^{\alpha^2} y(\alpha) = I_1 - I_3 + \frac{1}{4}I_5$
 $= I_1 - I_3 + \frac{1}{4}(\frac{1}{2}\alpha^4e^{\alpha^2} - 2I_5)$
 $= I_1 - \frac{3}{2}I_3 + \frac{1}{8}\alpha^4e^{\alpha^2}$
 $= \frac{5}{2}I_1 - \frac{3}{4}\alpha^2e^{\alpha^2} + \frac{1}{8}\alpha^4e^{\alpha^2}$
Since $I_1 = \int_{0}^{\alpha} xe^{x^2} dx = \frac{1}{2}e^{\alpha^2} - \frac{1}{2}$,
 $e^{\alpha^2} y(\alpha) = \frac{5}{2}(\frac{1}{2}e^{\alpha^2} - \frac{1}{2}) - \frac{3}{4}\alpha^2e^{\alpha^2} + \frac{1}{8}\alpha^4e^{\alpha^2}$
Since $I_1 = \frac{5}{4}e^{\alpha^2} - \frac{3}{4}\alpha^2e^{\alpha^2} + \frac{1}{8}\alpha^4e^{\alpha^2}$
 $= \frac{5}{4}e^{\alpha^2} - \frac{5}{4} - \frac{3}{4}\alpha^2e^{\alpha^2} + \frac{1}{8}\alpha^4e^{\alpha^2}$
Substituting $\alpha = 0.1$,
for part (a),
f(0.1) = $\frac{5}{32}[(8\cos^2 0.1) + (0.1^4 - 7(0.1)^2 + 8)\cos^2(\frac{0.1}{2})]$
 $= 0.00495$,
For part (b)(ii), f(0.1) = \frac{5}{4} - \frac{5}{4}e^{-\alpha x^2} - \frac{3}{4}(0.1)^2 + \frac{1}{8}(0.1)^4 = 0.00495
Both approximations are comparable. However, to obtain the estimate given by the small angle approximation, it requires the solving of the differential equation, whereas the improved Euler method does not.

(
6	Given $\left(\hat{p}_A - 1.9600\sqrt{\frac{\hat{p}_A\hat{q}_A}{n}}, \hat{p}_A + 1.9600\sqrt{\frac{\hat{p}_A\hat{q}_A}{n}}\right) = (0.229, 0.371),$
	$\hat{p}_A = \frac{0.229 + 0.371}{2} = 0.3$
	$1.9600\sqrt{\frac{0.3 \times 0.7}{n}} = \frac{0.371 - 0.229}{2} = 0.071$
	$n = 160.03 \approx 160$
	Based on the 2 samples, $\hat{p} = \frac{(160 \times 0.3) + 36}{160 + 100} = \frac{84}{260} = \frac{21}{65}$
	A symmetric α % confidence interval for p
	$=\left(\hat{p}-z\sqrt{\frac{\hat{p}\hat{q}}{n}},\hat{p}+z\sqrt{\frac{\hat{p}\hat{q}}{n}}\right)$
	$2z\sqrt{\frac{\frac{21}{65} \times \frac{44}{65}}{260}} \le 0.1$
	$z \le 1.7240$
	$\alpha \le 100 \times P(-1.7240 < Z < 1.7240)$
	$\alpha \le 91.529$
	Largest possible value of $\alpha = 91.5$ (1 d.p.)

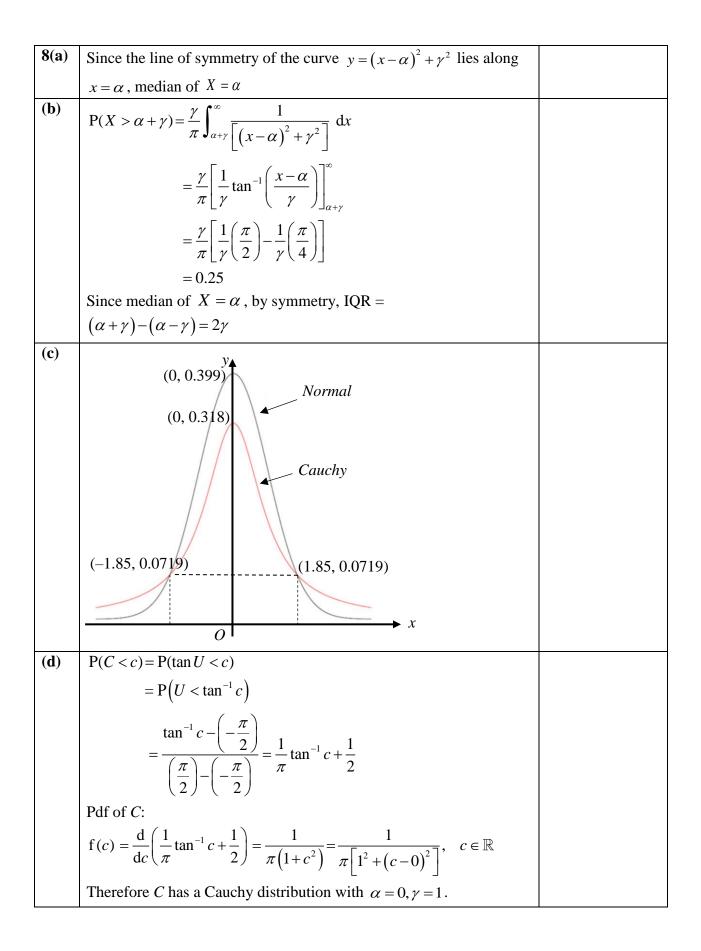
Section B: Probability and Statistics [50 marks]

7	H_0 : The two							
	independent							
	H_1 : The two not independent	ills, are						
	Perform a χ	² test on indep						
	Observed Frequencies (O _{ij}) Level of Reading Activity							
	HighMediumLowTotal							
		Good	25	12	7	44		
	Literacy	Average	35	57	27	119		
	Skills	Poor	9	13	20	42		
		Total	69	82	54	205		
	L					· · · · · · · · · · · · · · · · · · ·		

Under H ₀ , I	Expected Freq	uencies (E _{ij}))		
		L	evel of Read	ing Activity	1
		High	Medium	Low	Total
	Good	14.81	17.6	11.59	44
Literacy	Average	40.05	47.6	31.35	119
Skills	Poor	14.14	16.8	11.06	42
	Total	69	82	54	205

Contributions to $\chi^2_{cal}\left(\sum_{i=1}^m\sum_{j=1}^n \frac{\left(O_{ij}-E_{ij}\right)^2}{E_{ij}}\right)$:

	Ĺ	$i=1$ $j=1$ \boldsymbol{L}_{ij})	
		Leve	l of Reading Ac	tivity
		High	Medium	Low
T :tana ara	Good	7.01167	1.78182	1.81794
Literacy Skills	Average	0.63763	1.85630	0.60264
SKIIIS	Poor	1.86640	0.85952	7.21862


The Degrees of Freedom, $v = (3-1) \times (3-1) = 4$

Using the GC, $\chi^2_{cal} = 23.653$ and *p*-value = 9.37×10^{-5}

Since *p*-value = $9.37 \times 10^{-5} < 0.0001$, we reject H₀ at 0.01% level of significance and conclude that there is sufficient evidence to claim that the two factors, level of reading activity and literacy skills, are not independent.

As the *p* value is very small, the test indicates that there is very strong evidence of an association between the 2 factors, with the strongest evidence for association in the Good/High cell and Poor/Low cell, where the observed frequencies are much greater than the expected frequencies under H_0 .

For the Good/High cell, as there are more students with good literacy skills and a high level of reading activity than expected, it is not a cause for concern. For the Poor/Low cell, the higher observed value is an issue the academic department should be concerned about as it suggests that the students' poor literacy skills are causing the level of reading activity to be low (and vice versa).

9(i)	For $r = 0, 1, 2,$	
	$P(X + Y = r) = \sum_{k=0}^{r} P(X = k) P(Y = r - k)$	
	$=\sum_{k=0}^{r}\left[\frac{\mathrm{e}^{-\lambda}\lambda^{k}}{k!}\right]\left[\frac{\mathrm{e}^{-\mu}\mu^{r-k}}{(r-k)!}\right]$	
	$=\frac{\mathrm{e}^{-\lambda-\mu}}{r!}\sum_{k=0}^{r}\frac{r!}{k!(r-k)!}\lambda^{k}\mu^{r-k}$	
	$=\frac{\mathrm{e}^{-(\lambda+\mu)}}{r!}\sum_{k=0}^{r}\binom{r}{k}\lambda^{k}\mu^{r-k}$	
	$=\frac{\mathrm{e}^{-(\lambda+\mu)}}{r!}(\lambda+\mu)^r$	
	$X + Y \sim \operatorname{Po}(\lambda + \mu)$ (Shown).	
(ii)	The conditions are:	
	(i) The EMS calls are made independently.	
	(ii) The EMS calls are made singly.	
	(iii) The average rate of EMS calls made remains a constant.	
(iii)	Let <i>X</i> be the number of EMS calls made in an hour.	
	Then $X \sim Po\left(\frac{585}{24}\right)$, i.e., $X \sim Po(24.375)$.	
	$P(X > 30) = 1 - P(X \le 30) = 0.110 (3 \text{ sf}).$	
(iv)	Let <i>E</i> be the number of EMS calls made in a week.	
	Let F be the number of Fire calls made in a week.	
	Then $E \sim Po(4095)$, $F \sim Po(35)$ and $E + F \sim Po(4130)$.	
	$P(F = 50 E + F = 5000) = \frac{P(E = 4950)P(F = 50)}{P(E + F = 5000)}$	
	= 0.0294 (3 sf).	
	Assume that <i>E</i> and <i>F</i> are independent.	
(v)	The average time interval between EMS calls $=\frac{1}{585}$ days.	
	Thus, the average time interval is	
	$=\frac{1}{585} \times 24 \times 60 \times 60 = 148$ seconds (3 sf).	

10/:	The desision rules for the test do not denoud on non-metans of the
10(i	The decision rules for the test do not depend on parameters of the
,	population. OR
	The data is not quantitative.
	The decision rules for the test do not depend on requirements concerning the distribution of the population. OR
	The distribution of the parent population from which the samples
	are drawn is unknown.
	OR
	It is not known whether the distribution of parent population from
	which the samples are drawn is normally distributed.
(ii)	John should use a sign test and not a Wilcoxon test to carry out his investigation because based on his assumption, it can be determined from the data whether the sugar content of each of the 10 drinks is greater or less than 5 grams per 100 ml but not the magnitude of the difference.
(iii)	Let <i>m</i> be the median sugar content (in grams per 100 ml) of the packaged drinks.
	To test $H_0: m = 5$ vs $H_1: m < 5$.
	Perform a 1-tail test at 5% level of significance.
	Replace the data with either a plus sign (+) or minus sign (-) depending on whether the sugar content represented by the Nutri-Grade mark is greater or less than 5, we have
	Drink 1 2 3 4 5 6 7 8 9 10
	Let S_+ be the number of + signs out of 10.
	From the table, $s_+ = 3$, $s = 7$.
	Under H_0 , $S_+ \sim B(10, 0.5)$
	p -value = $P(S_+ \le s_+) = P(S_+ \le 3) = 0.172$ (3 sf).
	Since p-value = 0.172 > 0.05, John should not reject H_0 and
	conclude that there is insufficient evidence, at the 5% level of
	significance, that the median sugar content of packaged drinks sold
	in his neighbourhood supermarket is less than 5 grams per 100 ml.
(iv)	Let <i>X</i> be the sugar content of the packaged drinks and $D = X - 5$.
	Let m_D be the population median of D.

	1-ta	il test	at 59	% lev	el of s	ignifi	cance	е.			
Drink	1	2	3	4	5	6	7	8	9	10	
Sugar Content	4.6	2.3	0.7	5.9	10.3	3.7	4.9	4.8	10.2	3.9	
d	-0.4	-2.7	-4.3	0.9	5.3	-1.3	-0.1	-0.2	5.2	-1.1	
Rank of $ d $	3	7	8	4	10	6	1	2	9	5	
From the reject H_0 nsufficiencighbour compared sugar.	and on the and on the and on the and a second secon	concl idenc I suj	ude the toperma	hat at conci arket	the 5 lude t have	% lev hat th a	rel of ne pa lower	signi ckage sug	ficanc cd drii gar co	e, the nks ir	ere is n his t as
Although Wilcoxon test as cor account t merely th is that it n the sugar	test npare he m eir sig nust r	is us ed to t agnit gns. I nake	ually the sign tude Howe an ad	regation gn test of the ver, of ldition	rded a t beca e suga one dis nal ass	as a n ause th ar co sadva sumpt	nore ne Wi ntent ntage tion tl	accur lcoxo diffe of th hat th	ate an on test crence e Wild e distr	d reli takes s and coxor ibutio	iable into not n test