FOR TEACHERS ONLY

PEIRCE SECONDARY SCHOOL 2021 Preliminary Examination for Secondary 4E/4AO/5A ADDITIONAL MATHEMATICS Paper 2 Mark Scheme

Question	Answer	Mar ks	Partial Marks	Guidance
1(i)	$(x-1)^3 + 64$	2	IVIUI KS	
	$=(x-1)^3+(4)^3$			
	$= [(x-1)+4][(x-1)^{2}-(x-1)(4)+(4)^{2}]$		M1	For attempt to apply $a^3 + b^3 = (a+b)(a^2 - ab + b^2)$.
				Allow for numerical errors and algebraic slips
	$ [x+3][x^2-2x+1-4x+4+16] $			
	$(x+3)(x^2-6x+21)$		A1	Ignore extra brackets.
	<u></u> <u>OI</u>	R		
	$\frac{x^2-6x+21}{2}$	2	M1	Correct dividend: $x^3 - 3x^2 + 3x + 63$
	$(x+3)x^3 - 3x^2 + 3x + 63$			Correct divisor: $x = 3$
	$\frac{x^3+3x^2}{2}$			For attempt to apply long division
	$-6x^2+3x$			
	$-6x^2-18x$			
	21x + 63			
	21x + 63			
	0			
	$(x+3)(x^2-6x+21)$		A1	Ignore extra brackets.

1(ii)	$(x-1)^3 + 64 = 16(x+3)$			0 marks for attempt to solve $x^3 - 3x^2 - 13x + 15 = 0$
	$(x+3)(x^2-6x+21) = 16(x+3)$			
	$(x+3)(x^2-6x+21)-16(x+3) = 0$			
	$(x+3)(x^2-6x+21-16) = 0$		M1	For attempt to apply factorisation by taking out common
				factor $x = 3$.
				Allow for algebraic slips and numerical errors but the other factor must be quadratic factor.
	$(x+3)(x^2-6x+5) = 0$			
	(x+3)(x-5)(x-1) = 0		M1	For attempt to apply factorisation.
			A 1	Step must be snown explicitly but allow for errors in factors
	$\therefore x = -3, x = 5 \text{ or } x = 1$		AI	For <u>an 5</u> contect solutions.
2(i)	7^2 2 4 B C	5	M1	Attempt for partial fractions
2(1)	$\frac{7x^{2}-2}{x^{2}(2x-1)} = \frac{A}{x^{2}} + \frac{B}{x} + \frac{C}{2x-1}$	5	NII	
	$7x^2 - 2 = A(2x-1) + Bx(2x-1) + C(x^2)$		M1	For attempt to remove denominator.
				Allow for numeric slips and algebraic slips
	$x = \frac{1}{2},$			
	$-\frac{1}{4} = C\left(\frac{1}{4}\right)$		M1	Correct choice of value for substitution
	C = -1			
	At $x = 0$,			
	-2 = -A		M1	Correct choice of value for substitution
	<u>A</u> – 2			
	At x = 1,			
	5 = 2(1) + B(1) - 1(1)			
	5 = B + 1			
	B = 4			
	2 4 1		Δ1	2 4 -1
	$\frac{2}{r^2} + \frac{4}{r} - \frac{1}{2r-1}$		ЛІ	$\frac{2}{r^2} + \frac{4}{r} + \frac{-1}{2r-1}$
	\dots Λ Λ $\Delta \Lambda - 1$			Accept Λ Λ $\Delta \Lambda^{-1}$ or o.e.

				Ignore redundant brackets by students.
i i		$\int \frac{7x^2 - 2}{x^2(2x - 1)} dx$		
		$= \int \frac{2}{x^2} dx + \int \frac{4}{x} dx - \int \frac{1}{2x - 1} dx$	M1	Replace with their partial fractions. Correct application of addition/subtraction rule.
		$= \frac{2\int x^{-2} dx + 4\int \frac{1}{x} dx - \int \frac{1}{2x - 1} dx}{1 - \int \frac{1}{2x - 1} dx}$		
		$= \frac{2 \cdot \frac{x^{-1}}{-1} + 4 \ln x - \frac{1}{2} \ln (2x - 1) + c}{2}$	M1 M1	Attempt to apply power rule for 1^{st} term Attempt to apply reciprocal rule for 2^{nd} and 3^{rd} term. No penalty if <i>c</i> is missing. Allow for numerical and sign errors
		$= -\frac{2}{x} + 4\ln x - \frac{1}{2}\ln(2x-1) + c$		
		$= \left[-\frac{2}{x} + 4\ln x - \frac{1}{2}\ln(2x-1) \right]_{1}^{2}$		
		= 1.2232 - (-2)		
		= 3.22	A1	Ignore 'units ² ' if given.
		<u>OR</u>	[4]	
		$\int_{1}^{2} \frac{7x^2 - 2}{x^2 (2x - 1)} dx$		
		$= \int_{1}^{2} \frac{2}{x^{2}} dx + \int_{1}^{2} \frac{4}{x} dx - \int_{1}^{2} \frac{1}{2x - 1} dx$	M1	Replace with their partial fractions. Correct application of addition/subtraction rule.
		$= 2 \cdot \left[\frac{x^{-1}}{-1}\right]_{1}^{2} + 4\left[\ln x\right]_{1}^{2} - \frac{1}{2}\left[\ln(2x-1)\right]_{1}^{2}$	M1 M1	Attempt to apply power rule for 1^{st} term Attempt to apply reciprocal rule for 2^{nd} and 3^{rd} term. Allow for numerical and sign errors No penalty if <i>c</i> is present and later omitted.
		$= \frac{2 \cdot \frac{1}{2} + 4 \cdot \ln 2 - \frac{1}{2} \cdot \ln 3}{2}$		
		= 3.22	A1	o.e. single expression such as $\ln \frac{16e\sqrt{3}}{3}$
1 1	1		1	

3(i)	2	1	B 1	Accept 'and' in place of comma.
	x > - 3 $x \neq 1$ OP $x > 0.667$ $x \neq 1$ OP			Reject 'or' in place of comma.
	\underline{OK}			
	$\frac{2}{3} < x < 1$			
	3 , $x > 1$ <u>OR</u> 0.667 < $x < 1$, $x > 1$			
3(ii)	$4\log 2$ $\log \frac{1}{2} - 2\log x$	5		
	$4\log_y 5 - \log_2 \frac{16}{16} = 5\log_3 y$			
	4		M1	Attempt to apply change of base
	$\frac{1}{100} - (-4) = 3\log_3 y$			Allow for numerical errors and algebraic slips
	$\log_3 y$		B1	Correct evaluation to get -4
	Let $u = \log_3 y$,			
	4			
	$\frac{-+4}{u} = 3u$			
	$4 + 4u = 3u^2$			
	$3u^2 - 4u - 4 = 0$		M1	Simplify to any quadratic equation
	(3u+2)(u-2) = 0			This steip might be implied.
	2		M1	Their <i>u</i> values
	$u = -\frac{1}{3}$ or $u = 2$			Allow for numerical errors
	But $u = \log_3 y$,			
	$\frac{2}{1}$			
	$\frac{-3}{3} = \log_3 y$ and $2 = \log_3 y$			
	$y = 3^{-3}$ $y = 9$			
	y = 0.481			
	y = 0.481 or 9		A1	Not awarded if any value is rejected.
	•		•	•

3(iii)	$2\log_8 k = \log_2 \sqrt{z}$	4			
	$2\log_8 k = \log_2 z^{\frac{1}{2}}$		M1	Correct conversion from radical form to index form	
	$2 \bullet \frac{\log_2 k}{\log_2 8} = \log_2 z^{\frac{1}{2}}$		M1	Attempt to apply change of base Allow for numerical errors and algebraic slips	
	$\frac{2}{3}\log_2 k = \log_2 z^{\frac{1}{2}}$				
	$\log_2 k^{\frac{2}{3}} = \log_2 z^{\frac{1}{2}}$		M1	Single logarithm on each side of equation	
	$k^{\frac{2}{3}} = z^{\frac{1}{2}}$				
	$z = k^{\frac{4}{3}} \text{OR} z = \sqrt[3]{k^4}$		A1	Accept $k^{\frac{1}{3}}$ and $k^{\frac{1}{3}}$. Reject $(k^{\frac{1}{3}})^{\frac{1}{3}}$ and $(k^{\frac{1}{3}})^{\frac{4}{3}}$.	
4(a)	$\cos\left(A + \frac{\pi}{3}\right) = 4\sin\left(A + \frac{\pi}{2}\right)$	4			
	$\cos A \cos \frac{\pi}{3} - \sin A \sin \frac{\pi}{3} = 4 \left(\sin A \cos \frac{\pi}{2} + \cos A \sin \frac{\pi}{2} \right)$		M1	Attempt to apply addition rule for cosine and for sine Allow for errors in sign	
	$\frac{1}{2}\cos A - \frac{\sqrt{3}}{2}\sin A = 4(0 + \cos A)$		M1	Attempt to evaluate trigo function of special angles Allow for numerical errors	
	$-\frac{\sqrt{3}}{2}\sin A = 3\frac{1}{2}\cos A$				
	$\frac{\sin A}{\cos A} = -\frac{3\frac{1}{2}}{\sqrt{3}}$	-		M1	Attempt to obtain tan <i>A</i> eventually. Allow for numerical errors
	2				
	$\tan A = -\frac{7}{\sqrt{3}}$		A1	Need not rationalize surd in denominator	
	$\tan A = -\frac{7\sqrt{3}}{3}$				

4(b)(i)	cos105°	3		
	$\cos(60^\circ + 45^\circ)$			
	$= \cos 60^{\circ} \cos 45^{\circ} - \sin 60^{\circ} \sin 45^{\circ}$		M1	Attempt to apply addition rule for cosine Allow for errors in sign
	$=\frac{1}{2} \cdot \frac{\sqrt{2}}{2} - \frac{\sqrt{3}}{2} \cdot \frac{\sqrt{2}}{2}$		M1	Attempt to evaluate trigo function of special angles Allow for numerical errors
	$-\frac{\sqrt{2}-\sqrt{6}}{4}$		A1	
4(b)(ii)	sec105°			
	$\frac{1}{\cos 105^{\circ}}$	3		
	$\frac{4}{\sqrt{2}-\sqrt{6}}$		M1	Substitute result from (b)(i)
	$=\frac{4}{\sqrt{2}-\sqrt{6}} \cdot \frac{\sqrt{2}+\sqrt{6}}{\sqrt{2}+\sqrt{6}}$	_	M1	Multiplying numerator and denominator by $\sqrt{2} + \sqrt{6}$
	$\frac{4\left(\sqrt{2}+\sqrt{6}\right)}{\left(\sqrt{2}\right)^2-\left(\sqrt{6}\right)^2}$			
	$=\frac{4(\sqrt{2}+\sqrt{6})}{-4}$			
	$= -\sqrt{2} - \sqrt{6}$		A1	Accept $-\left(\sqrt{2}+\sqrt{6}\right)$ o.e.

5(i)	$2\cos^2 x + 5\sin x\cos x$	3		
	$= 2\cos^2 x - 1 + 1 + \frac{5}{2}(2\sin x \cos x)$			
	$= \frac{\cos 2x + 1 + \frac{5}{2}\sin 2x}{\sin 2x}$		M1 M1	Uses $\cos 2x = 2\cos^2 x - 1$ Uses $\sin 2x = 2\sin x \cos x$
	$=\frac{5}{2}\sin 2x + \cos 2x + 1$		A1	Must be in required order – sin, cos and 1
	$p = 2\frac{1}{2}, q = 1$			
5(ii)	$\cos x \left(2 \cos x + 5 \sin x\right) = 1$	5		
	$2\cos^2 x + 5\sin x \cos x = 1$			
	$\frac{5}{2}\sin 2x + \cos 2x + 1 = 1$		M1	Simplify to get LHS = part(i)
	$\frac{5}{2}\sin 2x = -\cos 2x$			
	$\tan 2x = -\frac{2}{5}$		M1	Simple trigo equation Allow for numerical errors and algebraic slips
	basic ∠, a = 21.801°		M1	Acute angle based on their trigo equation
	$2x = 180 - \alpha, 360 - \alpha, 180 - \alpha + 360, 360 - \alpha + 360$			
	2 <i>x</i> = 158.199, 338.199, 518.199, 698.199			
	= 79.1°, 169.1°, 259.1°, 349.1°		A1 A1 √	Al $\!$ for angles in second revolution

6(i)	$\frac{dV}{dt} = 96\pi$	4		
	$dt = cm^3/s$			
	h = 3r			
	At $r = 4$, $\frac{\mathrm{d}r}{\mathrm{d}t} = ?$			
	$V = \frac{1}{3}\pi r^2 h$			
	$=\frac{1}{3}\pi r^2(3r)$		M1	Replace h with $3r$ Allow for errors in formula for volume
	$V = \pi r^3$			
	$\frac{\mathrm{d}V}{\mathrm{d}r} = 3\pi r^2$		M1	Correct differentiation based on their <i>V</i> .
	$\frac{\mathrm{d}V}{\mathrm{d}t} = \frac{\mathrm{d}V}{\mathrm{d}r} \bullet \frac{\mathrm{d}r}{\mathrm{d}t}$			
	$96\pi = 3\pi r^2 \bullet \frac{\mathrm{d}r}{\mathrm{d}t}$		M1	Correct substitution for Chain Rule
	$\frac{\mathrm{d}r}{\mathrm{d}t} = \frac{32}{r^2}$			
	After 4 seconds, $V = 96\pi \bullet A$			
	$V = 384\pi$			
	At $V = 384\pi$,			
	$384\pi = \pi r^3$			
	$r = \sqrt[3]{384}$ OR 7.2684			
	At $r = \sqrt[3]{384}$,			

	$\frac{dr}{dt} = \frac{32}{(\sqrt{2})^2}$			
	$dt \left(\sqrt[3]{384}\right)$			
	= 0.60570			
	= 0.606		A1	Ignore wrong or no units
6(ii)	$\frac{\mathrm{d}r}{\mathrm{d}r} = \frac{32}{2}$	2		
	$dt r^2$			
	$= 32r^{-2}$			
	$d^2r = 32 - 2r^{-3}$		M1	$\frac{dr}{dr}$
	$\frac{1}{dt^2} = 52 \cdot -27$			To show rate, dt , is increasing
				$\frac{dr}{dr}$
				Use of power rule on their dt
	$\frac{d^2r}{d^2r} = -\frac{64}{d^2r}$			Allow for numerical errors or algebraic slips
	$\frac{1}{dt^2} - \frac{1}{r^3}$			
	As $r > 0$,			
	$d^2r < 0$			
	$\frac{1}{dt^2} < 0$			
	$\frac{dr}{dr}$			
	\Rightarrow the rate dt is a decreasing function			
	dr		Bl√	d^2r
	\Rightarrow the rate $\frac{dt}{dt}$ will decrease as t increases.			Argues correctly based on sign of their dt^2 .
7(a)	$y = \left(k - 8\right)x^2 - 6x + k$	5		
	For max. pt., $k-8 < 0$		M1	
	<i>k</i> < 8			1 st inequality to use later
	For real distinct roots,			
	$b^2 - 4ac > 0$			
	$(-6)^2 - 4(k-8)(k) > 0$		B1	
	$36 - 4k^2 + 32k > 0$			
	$4k^2 - 32k - 36 < 0$			

	$k^2 - 8k - 9 < 0$		M1	Simplify to quadratic inequality
	(k-9)(k+1) < 0			
	-1 < k < 9		Al√	Allow for solving $(k-9)(k+1) = 0$ to arrive at equality, 2^{nd} inequality to use later
		_		
	-1 < k < 8		AL√	Combine correctly based on their inequalities
7(b)(i)	$y = p^2 + 2 - px + x^2$	3		
	$b^2 - 4ac$			
	$=(-p)^2-4(1)(p^2+2)$		M1	For correct substitution, ignore inequality that follows if any
	$= -3p^2 - 8$			
	Since $p^2 \ge 0$,			
	$-3p^2 \le 0$			
	$-3p^2 - 8 \le -8$			
	$-3p^2 - 8 < 0$			
	Since $b^2 - 4ac < 0$,		M1	Need to show preceding steps beginning from $p^{\lambda} \ge 0$ or explanation (-ve) x (+ve) = (-ve) (-ve) - (+ve) = (-ve)
				$Accept - 3p^2 - 8 < 0$
				Accept $-3p^2 - 8$ is always negative
				Will not award begin with $-3p^2 - 8 < 0$ without
				leading from $p^2 \ge 0$. Will not accept trial and error.
	\therefore the curve has no real roots.		A1	Reject 'no roots', 'no solution'. Must be preceded by above step.
7(b)(ii)	$y = p^2 + 2 - px + x^2$	3		
	<i>y</i> = 5	_		
	$p^2 + 2 - px + x^2 = 5$		M1	Substitute one eqn. into another
	$x^2 - px + p^2 - 3 = 0$			

	For real equal roots,			
	$b^2 - 4ac = 0$			
	$(-p)^{2} - 4(1)(p^{2} - 3) = 0$		M1	For correct substitution Allow for variation other than = 0
	$p^2 - 4p^2 + 12 = 0$			
	$p^2 = 4$			
	$p = \pm 2$		A1	Accept $p = 2$ or $p = -2$
8(i)	$m_{AD} = \frac{k - 0}{7 - 3}$	3	M1	Realises calculation of gradient
	$-\frac{k}{4}$			
	 10	-		
	$m_{DC} = \frac{10 - \kappa}{13 - 7}$			
	$\frac{10-k}{k}$			
	= 6			
	Since $m_{AD} \perp m_{DC}$,			
	$\frac{k}{4} \bullet \frac{10-k}{6} = -1$		M1	Realises $m_1 \bullet m_2 = -1$
	$k^2 - 10k - 24 = 0$			
	(k+2)(k-12)=0			
	k = -2 or $k = 12$			
	(rejected)			
	$\therefore k = 12$		A1	Answer given. Check preceding steps. Will not accept if $k = 12$ substituted to arrive at -1 .
8(ii)	$m_{BC} = \frac{12 - 0}{7 - 3}$	2	M1	Realises calculation of gradient
	= 3	1		
	y - 10 = 3(x - 13)			
	y - 10 = 3x - 39			

	y = 3x - 29)						A1	Accept $3x - y - 29 = 0$ or equivalent
8(iii)	2y - x + 3 = 0	(1)					3		
	y = 3x - 29	-0							
	Sub 2 into 1								
	2(3x-20)-x+3=0							M1	Substitute their part (ii) into given eqn.
	2(54 2)) 5	1 - 5 - 0							Allow for their incorrect part (ii) eqn.
	6x - 58 - x + 3 = 0								
		x = 11						M1	Solve to get their <i>x</i>
	Sub. <i>x</i> = 11 int	0 2:							
	<i>y</i> = 4								
	$\therefore B(11, 4)$							A1	
8(1V)	$\frac{1}{3}$ 11	13 7 3					2	M1	$\frac{1}{2}$
	Area = $2 0 4$	10 12 0							Ensure $\frac{2}{3}$ with 5 columns of coordinates
	1								Allow for their incorrect <i>B</i>
	$\frac{1}{2} 278-158 $								
	= 2 = 60 units ²							A1	
8(v)	x-coordinate = 3 +	+ (13-7) = 9					2		
	y-coordinate	e = 0 - (12	-10) = -2						
	∴ <i>E</i> (9, −2)							B1 B1	Correct <i>x</i> -coordinate
								DI	No penalty for absence of coordinate form
									(9, -2)
	1							DA	
9(1)	_						3	B3	See graph on last page
	$X = x\sqrt{x}$	1	2.83	5.20	8	11.18			square
	$Y = \frac{y}{\sqrt{x}}$	24.0	31.3	40.8	52.0	64.7			
9(ii)	$y = ax^2 + b\sqrt{x}$						3		
	$\frac{y}{y} = ax_{1}\sqrt{x} + b$						1	M1	
	$\frac{1}{\sqrt{x}} - ax\sqrt{x} + b$								
	Y = mX + c								

	From the graph, $c = 20.0$			
	$\therefore b = 20.0$		B1	Accept values from 19.0 to 21.0 inclusive, no requirement
				for 1 d.p. or 3 s.f. where appropriate
	68.0-20.0			
	$m = \frac{12 - 0}{12 - 0}$			
			B 1	Accept values from 3.71 to 4.31 inclusive, must be at least 3
	a = 4.00			s.f. or in fraction
			•	
0(:::)			Τ	1
9(111)	\sqrt{x} _ 1	3		
	$\frac{1}{v} = \frac{1}{50}$			
	у У	-	M1	Attempt to obtain Y
	$\frac{y}{1} = 50$			
	\sqrt{x}			
	Y - 50			
	From graph, $X = 7.5$	-	M1	Their X when $Y = 50$ from graph
	3		-	
	$x^2 = 7.5$			
	<i>x</i> = 3.83		A1	
9(iv)	$y = ax^2 + b\sqrt{x}$	1		
	v b			
	$\frac{1}{x^2} = a + \frac{1}{x\sqrt{x}}$			
		_		
	$\frac{y}{1} = b \bullet \frac{1}{1} + a$			
	$x^2 \qquad x\sqrt{x}$			
	1		B1	1
	$\overline{\mathbf{x}}$			$\overline{13}$
	The horizontal axis is xyx .			Accept VX or equivalent
9(v)	<u> </u>	2	B1	Accept Y-intercept if shown in their graph OR previous
	<i>a</i> represents the intercept for axis of $\overline{x^2}$ OR $\overline{x^2}$ -intercept OR intercept			working
	of the vertical axis			
	<i>b</i> represents the gradient	1	B1	

10(a)(i)	$y = \log_a x$	3		
	At (8, 1.5),			
	$1.5 = \log_a 8$			
	$a^3 = 8$			
	$\left(a^{\frac{3}{2}}\right)^{\frac{2}{3}} = 8^{\frac{2}{3}}$			
	a - 4		B1	
	At $a = 4$ and $(2, b)$,			
	$b = \log_4 2$			
	$b = \frac{1}{2}$ or 0.5		B1	
	At $a = 4$ and $(c, 0)$,			
	$0 = \log_4 c$			
	c-1		B1	

Line of best fit B1