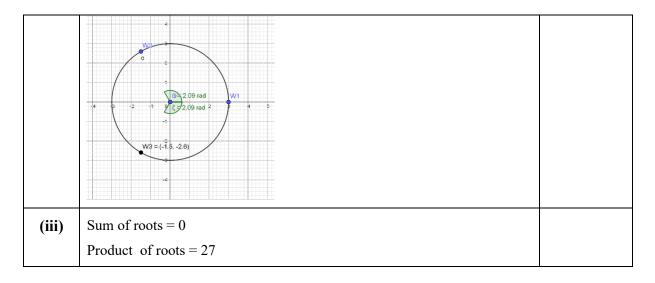


Section A: Pure Mathematics

No.	Suggested Solution	Remarks for Student
(i)	$\frac{\mathrm{d}y}{\mathrm{d}x} = \left(\frac{1}{3}y - 15\right)^{\frac{1}{3}}$	
	$3\int \frac{1}{3} \left(\frac{1}{3}y - 15\right)^{-\frac{1}{3}} dy = \int dx$	
	$\frac{9}{2}\left(\frac{1}{3}y - 15\right)^{\frac{2}{3}} = x + C$	
	Curve passes through $(0, 69) \Rightarrow C = \frac{9}{2} \left(8^{\frac{2}{3}} \right) = 18$	
	$\frac{9}{2}\left(\frac{1}{3}y - 15\right)^{\frac{2}{3}} = x + 18$	
	$\left(\frac{1}{3}y - 15\right)^{\frac{2}{3}} = \frac{2}{9}x + 4$	
	$\frac{1}{3}y - 15 = \left(\frac{2}{9}x + 4\right)^{\frac{3}{2}}$	
	$f(x) = y = 3\left(\frac{2}{9}x + 4\right)^{\frac{3}{2}} + 45$	
(ii)	$\frac{\mathrm{d}y}{\mathrm{d}x} = \left(\frac{1}{3}y - 15\right)^{\frac{1}{3}} = 4$	
	<i>y</i> = 237	
	$x = \frac{9}{2} \left(\frac{1}{3} (237) - 15 \right)^{\frac{2}{3}} - 18 = 54$	
	Coordinates are (54, 237)	

No.	Suggested Solution	Remarks for Student
(a)	$4x^4 - 20x^3 + sx^2 - 56x + t = 0$	
	Since the coefficients are real, $2 + 3i$ is also a root.	
	$(x-(2-3i))(x-(2+3i)) = x^2-4x+13$	
	$4x^{4} - 20x^{3} + sx^{2} - 56x + t = (x^{2} - 4x + 13)(4x^{2} + ax + b)$	
	comparing coefficients:	
	$-20 = a - 16 \Longrightarrow a = -4$	
	$-56 = 13a - 4b \Longrightarrow b = 1$	
	t = 13b = 13	
	s = b - 4a + 52 = 69	
	$4x^2 - 4x + 1 = 0 \Longrightarrow (2x - 1)^2 = 0$	
	Thus, the other roots are $2 + 3i$ and $\frac{1}{2}$.	
(b)	$w^3 = 27$	
(i)	$w^{3}-27 = (w-3)(w^{2}+cw+d)$	
	Comparing constant terms, $-27 = -3d \Rightarrow d = 9$	
	Comparing coefficients of w, $0 = -3c + d \Rightarrow c = 3$	
	$w^2 + 3w + 9 = 0$	
	$w = \frac{-3 \pm \sqrt{9 - 36}}{2} = -\frac{3}{2} - i\frac{3\sqrt{3}}{2} \text{ or } -\frac{3}{2} + i\frac{3\sqrt{3}}{2}$	
(ii)	$w_1 = 3 = 3e^{i0}$	
	$w_2 = -\frac{3}{2} + i\frac{3\sqrt{3}}{2} = 3e^{i\frac{2\pi}{3}}$	
	$w_3 = -\frac{3}{2} - i\frac{3\sqrt{3}}{2} = 3e^{-i\frac{2\pi}{3}}$	



Question 3

No.	Suggested Solution	Remarks for Student
(i)	$\overrightarrow{AD} = \overrightarrow{BC}$	
	$\overrightarrow{OD} - \begin{pmatrix} 5\\-4\\1 \end{pmatrix} = \begin{pmatrix} -5\\4\\2 \end{pmatrix} - \begin{pmatrix} 5\\4\\0 \end{pmatrix}$	
	$\overrightarrow{OD} = \begin{pmatrix} -10\\0\\2 \end{pmatrix} + \begin{pmatrix} 5\\-4\\1 \end{pmatrix} = \begin{pmatrix} -5\\-4\\3 \end{pmatrix}$	
	<i>D</i> is (-5, -4, 3)	
(ii)	$\overrightarrow{BC} = \begin{pmatrix} -10\\0\\2 \end{pmatrix}$	
	$\overrightarrow{BE} = \begin{pmatrix} 0\\0\\10 \end{pmatrix} - \begin{pmatrix} 5\\4\\0 \end{pmatrix} = \begin{pmatrix} -5\\-4\\10 \end{pmatrix}$	
	$\overrightarrow{BC} \times \overrightarrow{BE} = \begin{pmatrix} -10\\0\\2 \end{pmatrix} \times \begin{pmatrix} -5\\-4\\10 \end{pmatrix} = \begin{pmatrix} 8\\90\\40 \end{pmatrix}$	
	$BCE: \underline{r}. \begin{pmatrix} 8\\90\\40 \end{pmatrix} = \begin{pmatrix} 0\\0\\10 \end{pmatrix}, \begin{pmatrix} 8\\90\\40 \end{pmatrix} = 400$	
	$8x + 90y + 40z = 400 \Longrightarrow 4x + 45y + 20z = 200$	

(iii)
$$\overline{BC} = \begin{pmatrix} -10\\ 0\\ 2 \end{pmatrix}$$
$$\overline{BA} = \begin{pmatrix} 5\\ -4\\ 1 \end{pmatrix} - \begin{pmatrix} 5\\ 4\\ 0 \end{pmatrix} = \begin{pmatrix} 0\\ -8\\ 1 \end{pmatrix}$$
$$\overline{BC} \times \overline{BA} = \begin{pmatrix} -10\\ 0\\ 2 \end{pmatrix} \times \begin{pmatrix} 0\\ -8\\ 1 \end{pmatrix} = \begin{pmatrix} 16\\ 10\\ 80 \end{pmatrix} = 2\begin{pmatrix} 8\\ 5\\ 40 \end{pmatrix}$$
$$\frac{8}{50} = 2\begin{pmatrix} 8\\ 6\\ 45\\ 2 \end{pmatrix}$$
$$\frac{8}{50} = 2\begin{pmatrix} 8\\ 6\\ 4\\ 5\\ 2 \end{pmatrix}$$
$$\frac{8}{50} = 2\begin{pmatrix} 8\\ 6\\ 6\\ 4\\ 5\\ 2 \end{pmatrix}$$
$$\frac{8}{50} = 2\begin{pmatrix} 8\\ 6\\ 6\\ 6\\ 6\\ 7\\ 2 \end{pmatrix}$$

No.	Suggested Solution	Remarks for Student
(i)	$\ln(\cos 2x) = \ln\left(1 - \frac{(2x)^2}{2!} + \frac{(2x)^4}{4!} - \frac{(2x)^6}{6!} + \dots\right)$	
	$= \ln \left(1 + \left(-2x^2 + \frac{2x^4}{3} - \frac{4x^6}{45} + \dots \right) \right)$	
	$= \left(-2x^{2} + \frac{2x^{4}}{3} - \frac{4x^{6}}{45} + \dots\right) - \frac{1}{2}\left(-2x^{2} + \frac{2x^{4}}{3} - \frac{4x^{6}}{45} + \dots\right)^{2}$	
	$+\frac{1}{3}\left(-2x^{2}+\frac{2x^{4}}{3}-\frac{4x^{6}}{45}+\right)^{3}$	
	$\approx -2x^{2} + \frac{2x^{4}}{3} - \frac{4x^{6}}{45} - \frac{1}{2}\left(4x^{4} - \frac{8x^{6}}{3}\right) - \frac{8x^{6}}{3}$	
	$= -2x^2 - \frac{4x^4}{3} - \frac{64x^6}{45}$	
	Not valid for $x = \frac{\pi}{4}$ since $\ln\left(\cos 2\left(\frac{\pi}{4}\right)\right) = \ln 0$ which is undefined	
(ii)	$\int \frac{\ln(\cos 2x)}{x^2} dx \approx \int \frac{-2x^2 - \frac{4x^4}{3} - \frac{64x^6}{45}}{x^2} dx$	
	$= \int \left(-2 - \frac{4x^2}{3} - \frac{64x^4}{45} \right) dx$	
	$= -2x - \frac{4x^3}{9} - \frac{64x^5}{225} + C$	
	$= -2x - \frac{1}{9} - \frac{1}{225} + C$ $\int_{0}^{0.5} \frac{\ln(\cos 2x)}{x^{2}} dx \approx \left[-2x - \frac{4x^{3}}{9} - \frac{64x^{5}}{225} \right]_{0}^{0.5} = -1.0644 (4 \text{ d.p.})$	
(iii)	$\int_{0}^{0.5} \frac{\ln(\cos 2x)}{x^2} dx \approx -1.0670 \ (4 \ d.p.)$	To remind us that answers from GC is an approximation.

Section B: Statistics

No.	Suggested Solution	Remarks for Student
(i)	As the manager does not know how the MTTF is distributed, he needs to have a random sample of size large enough so that he could apply central limit theorem on the sample mean on MTTF. In general, 30 is considered large.	
	The fans have to chosen randomly, example he could label the N number (assume very large population) of fans manufactured in the day from 1 to N and generate n (sample size of at least 30) distinct numbers from $\{1, 2, \dots, N\}$ using random function of a calculator. The fans labeled according to the numbers generated will be the sample.	
(ii)	Null hypothesis, $H_0: \mu = 65000$	
	Alternative hypothesis, $H_1: \mu < 65000$	
	where μ is the population MTTF.	
(iii)	Perform an one-tailed test at 5% significance level. Under H ₀ , $\overline{X} \sim N\left(65000, \frac{s^2}{43}\right)$ approximately by Central Limit	
	Theorem since $n = 43$ is large	
	No reason to reject H_0 (that is do not reject H_0), <i>p</i> -value > 0.05	
	$P\left(\bar{X} < 64230\right) > 0.05$ $P\left(Z < \frac{64230 - 65000}{s^{/}\sqrt{43}}\right) > 0.05$	
	$P\left(Z < \frac{-770\sqrt{43}}{s}\right) > 0.05$	
	<i>s</i> > 3069.7127	
	$s^2 > 9423136.061$	
	that is, $s^2 \ge 9420000$ (3 s.f.)	

No.	Suggested Solution			
(i)	Note that for any path allowing the bug to take 5 left forks and 3 right forks.			
	The required probability is ${}^{8}C_{5}p^{5}q^{3} = 56p^{3}$	p^5q^3 .		
(ii)	This is a binomial distribution in disguise	ò.		
	Let $X =$ no. of left forks out of 8. (the rest will be right forks)			
	$X \sim B(8, p)$			
	We want ${}^{8}C_{5}p^{5}q^{3} = P(X = 5)$ to be the largest, so			
	$P(X = 0) \le P(X = 1) \dots \le P(X = 4) < P(X = 5) > P(X = 6) \ge P(X = 7) \ge P(X = 8)$			
		P(X=5) > P(X=6)		
	${}^{8}C_{4}p^{4}q^{4} < {}^{8}C_{5}p^{5}q^{3}$	${}^{8}C_{5}p^{5}q^{3} > {}^{8}C_{6}p^{6}q^{2}$		
	70 <i>q</i> < 56 <i>p</i>	56q > 28p		
	70(1-p) < 56p	56(1-p) > 28p		
	$p > \frac{5}{9}$	$p < \frac{2}{3}$		
	Thus, $\frac{5}{9}$			
		E CALL		
(iii)	$0.9^8 = 0.430 (3 \text{ s.f.})$			

No.	Suggested Solution	Remarks fo Student
	P(A) = a, P(B) = b, P(C) = c	
(i)	P(A) = a, P(B) = b, P(C) = c	
	$\mathbf{P}(A' \cap B') = 1 - \mathbf{P}(A \cup B)$	
	$= 1 - P(A) - P(B) + P(A \cap B)$	
	=1-a-b+ab	
	since A and B are independent, so $P(A \cap B) = P(A)P(B)$	
	=1-a-b(1-a)	
	=(1-a)(1-b)	
	= P(A')P(B')	
	Thus, A' and B' are independent.	
(ii)	$P(A' \cap C') = 1 - P(A \cup C)$	
	$=1-P(A)-P(C)+P(A\cap C)$	
	=1-a-c	
	since A and C are mutually exclusive, so $P(A \cap C) = 0$	
	Below is a possible venn diagram where	
	$A \cup C = \Omega$ with $A' = C$ and $C' = A$	
	$A' \cap C' = C \cap A = \phi$	
	Note that if A' and C' are mutually exclusive, $P(A' \cap C') = 0$ 1-a-c=0	
	$\mathbf{P}(A' \cap C') = 0$	
	1 - a - c = 0	
	1-a-c=0 $P(A)+P(C)=1$ Note also	
	Note also	
	$C \cap A = \phi$	
	$\Rightarrow C \subseteq A' \tag{1}$	
	$A' \cap C' = \phi$	
	$\Rightarrow A' \subseteq (C')' = C \qquad (2)$	
	(1), (2) $A' = C$	
	$P(A) = \frac{2}{5}, P(B \cap C) = \frac{1}{5}, P(A' \cap B' \cap C') = \frac{1}{10}$	
	$P(A' \cap C') = \frac{3}{5} - c$	
	5	9 P a g

(iii)
$$P(A' \cap B' \cap C') = \frac{1}{10}$$

$$\Rightarrow 1 - P(A \cup B \cup C) = \frac{1}{10}$$

$$\Rightarrow P(A \cup B \cup C) = \frac{9}{10} \cdots (1)$$

$$P(A \cap B) = ab (:: A, B \text{ arc independent})$$

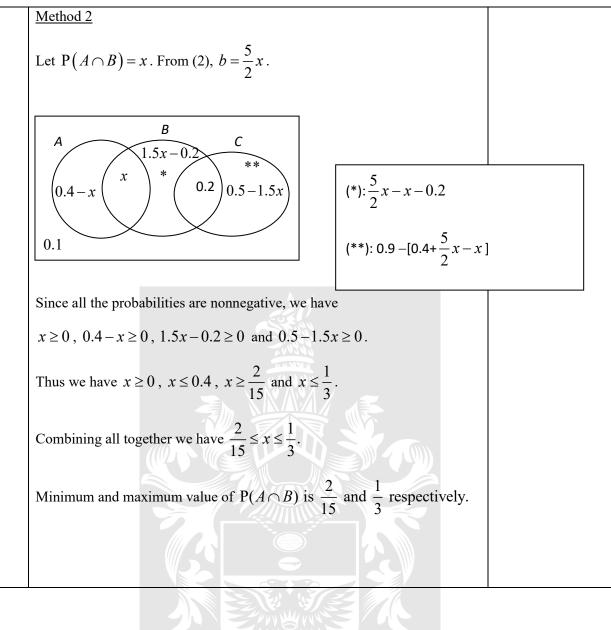
$$= \frac{2}{5}b \cdots (2)$$

Method 1
Maximum value of $P(A \cap B)$ occurs when b is maximum and c is
minimum, ie when $C \subseteq B$.

$$P(A \cup B \cup C) = P(A) + P(B) - P(A \cap B) = \frac{2}{5} + b - \frac{2}{5}b = \frac{9}{10}$$

$$\Rightarrow b = \frac{1}{2}(\frac{5}{3}) = \frac{5}{6}$$

So maximum value of $P(A \cap B) = \frac{2}{5}(\frac{5}{6}) = \frac{1}{3}$
Minimum value of $P(A \cap B) = \frac{2}{5}(\frac{5}{6}) = \frac{1}{3}$
Minimum value of $P(A \cap B) + P(B \cap C) \Rightarrow b = \frac{2}{5}b + \frac{1}{5} \Rightarrow b = \frac{1}{3}$
Minimum value of $P(A \cap B) + P(B \cap C) \Rightarrow b = \frac{2}{5}b + \frac{1}{5} \Rightarrow b = \frac{1}{3}$
Minimum value of $P(A \cap B) = \frac{2}{3}(\frac{1}{3}) = \frac{2}{15}$



No.		Su	ggested Solution	Remarks for Student
	3,3,4,4,4,5,5,,5 <i>n</i> terms			
(i)	S = sum of numbers o	n the 2	2 balls taken	
		S	$\mathbf{P}(S=s)$	
		6	$\frac{{}^{2}C_{2}}{{}^{n+5}C_{2}}$	
			$=\frac{2}{(n+5)(n+4)}$	
		7	$\frac{{}^{2}C_{1}{}^{3}C_{1}}{{}^{n+5}C_{2}}$	
			$=\frac{12}{(n+5)(n+4)}$	
		8	$\frac{{}^{3}C_{2} + {}^{2}C_{1} {}^{n}C_{1}}{{}^{n+5}C_{2}}$	
			$=\frac{6+4n}{(n+5)(n+4)}$	
		9	$\frac{{}^{3}C_{1}{}^{n}C_{1}}{{}^{n+5}C_{2}}$	
			$=\frac{n}{(n+5)(n+4)}$	
		10	$\frac{{}^{n}C_{2}}{{}^{n+5}C_{2}}$ MELLOR 5.4	
			$=\frac{n(n-1)}{(n+5)(n+4)}$	
(ii)	P(S=10) = 0			
			as there is only one ball w sum of 10 with two 3s and	

(iii)
$$E(S) = \sum sP(S = s)$$

$$= \frac{12 + 84 + 48 + 32n + 54n + 10n(n-1)}{(n+5)(n+4)}$$

$$= \frac{10n^2 + 76n + 144}{(n+5)(n+4)}$$

$$= \frac{(10n+36)(n+4)}{(n+5)(n+4)}$$

$$= \frac{10n+36}{n+5}$$

(iv)
$$E(S^2) = \sum s^2P(S = s)$$

$$= \frac{72 + 588 + 384 + 256n + 486n + 100n(n-1)}{(n+5)(n+4)}$$

$$= \frac{100n^2 + 642n + 1044}{(n+5)(n+4)}$$

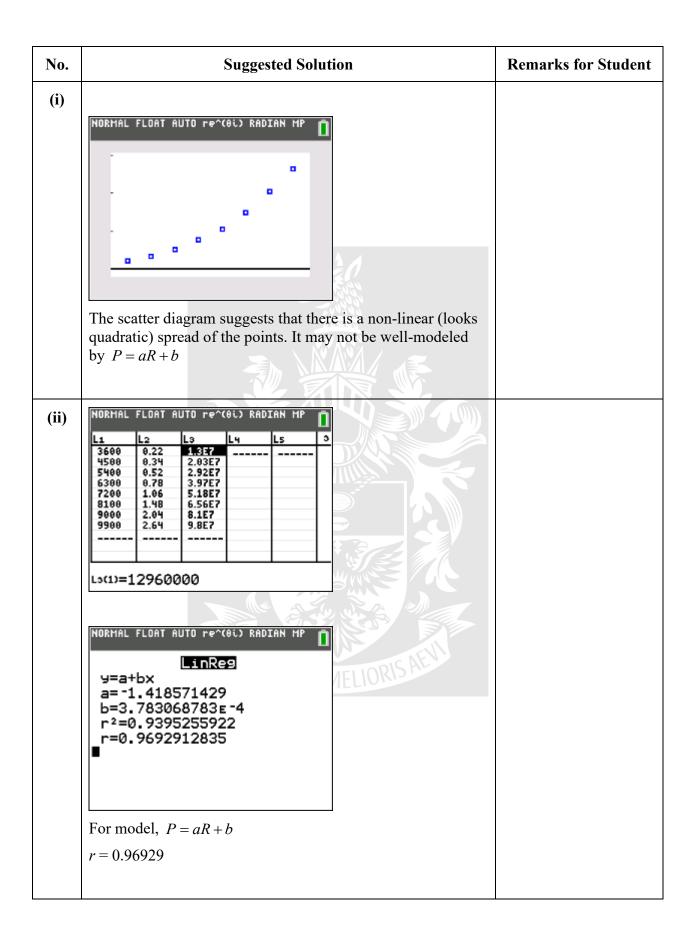
$$= \frac{100n^2 + 642n + 1044}{(n+5)(n+4)} - \left(\frac{10n+36}{n+5}\right)^2$$

$$= \frac{(100n^2 + 642n + 1044)(n+5) - (100n^2 + 720n + 1296)(n+4)}{(n+5)^2(n+4)}$$

$$= \frac{100n^3 + 642n^2 + 1044n + 500n^2 + 3210n + 5220}{(n+5)^2(n+4)}$$

$$= \frac{(-(100n^3 + 720n^2 + 1296n + 400n^2 + 2880n + 5184)}{(n+5)^2(n+4)}$$

$$= \frac{22n^2 + 78n + 36}{(n+5)^2(n+4)}$$



	NORMAL FLOAT AUTO re^(01) RADIAN MP □ UINRe9 y=a+bx a=-0.2826076107 b=2.845744476E-8 r ² =0.9861260773 r=0.9930388096	
	For model, $P = aR^2 + b$ r = 0.99304	
	Since the product moment correlation coefficient, <i>r</i> , for model $P = aR^2 + b$ is nearer to 1 compared to model $P = aR + b$, we confirmed the relationship by drawing the scatter diagram. Thus, $P = 0.00000028457R^2 - 0.28261$	
(iii)	$\sqrt{41557055} = 6446.476$ Reliable as	
	 0.9 is within the given range. We have justified in (ii) the model is good, using the value of <i>r</i> and the scatter diagram. 	
(iv)	0.027294. Not reliable as 3300 is not within the given range.	
(v)	$P = 0.00000028457R^{2} - 0.28261$ where <i>R</i> is in rev/min Given <i>R</i> in rev/s, then we need to multiply <i>R</i> by 60	
	$P = 0.00000028457(60R)^{2} - 0.28261$ = 0.00010245R ² - 0.28261	

No.	Suggested Solution	Remarks for Student
	Let X denote mass of a light bulb in grams.	
	$X \sim N(50, 1.5^2)$	
(i)	NORMAL FLOAT AUTO re^(0i) RADIAN MP	Use pdf instead of cdf when sketching the graph
(ii)	$P(X < 50.4) = 0.60514 \approx 0.605$	
	Let <i>E</i> denote mass of an empty box in grams. $E \sim N(75, 2^2)$	Assume (logically) in grams same as bulb
(iii)	Let $W = E_1 + E_2 + E_3 + E_4$ $W \sim N(300, 4^2)$ $P(W > 297) = 0.77337 \approx 0.773$	
(iv)	$X + E \sim N(125, 2.5^{2})$ $P(124.9 < X + E < 125.7) = 0.12621 \approx 0.126$	
	Let <i>Y</i> denote mass of the padding of a bulb in grams. $Y = 0.3X \sim N(15, 0.45^2)$	Assume (logically) in grams same as bulb
(v)	$X + Y + E \sim N(140, 6.4525)$ P(X + Y + E > k) = 0.9 k = 136.745 \approx 137	

(vi)	Let mass of a box in grams, $B = X + Y + E \sim N(140, 6.4525)$	
	$T = B_1 + B_2 + B_3 + B_4 \sim N(560, 25.81)$	
	$P(T > 565) = 0.16251 \approx 0.163$	

