

Push and Pull

5.1 What is a force?

5.1.1 Intro

It is a push or a pull, which can:
~change the state of rest or motion of a body
~change the shape and size of a body
~bring about turning effects in a body(eg levers)
~exert pressure on a body
Examples:

rotating of nut using spanner
turning doorknob
Lifting a heavy stone with a lever

The S.I unit of force is Newton(N).

Eg. force F=2.7N

The magnitude of a force is measured using a force meter (or newton metre) eg. spring balance, digital force gauge

5.1.2 Weight Vs Mass

	Mass	Weight
Definition	Amount of substance in a body or object (no. and composition of atoms and molecules make up the mass of a body)	A body on earth' s surface experiences a downward <u>gravitational force</u> which is the <u>pulling force of it</u> due to earth. The force is also called the weight of the body
S.I Unit	Kilogram (kg)	Newton (N)
Other common Units	milligram(mg) and gram(g)	
Instruments used to measure	Electronic balance or beam balance	Extension spring balance or compression spring balance

Note: Don't mix mass and weight 👖

Formula of force: W = mg W= weight (N) m= mass (kg) g= gravitational field strength (N/kg)

Note: Weight and Force is the same thing \prod \rightarrow both of them have the SI unit of Newton(N)

Types of Forces

Tension, T (contact)	 Tension, T Tension acts through a stretched rope, string or cable. Example: When a ball is hung from the ceiling by a string, the tension T in the string acts on the ball vertically upwards. Representation: Starting from end of the string, draw towards centre of string.
Normal Contact Force, N (contact)	Normal contact force, <i>N</i> • This force is exerted on a body by a surface in contact with it. It is exerted on the body perpendicular to the surface. • Normal contact force is the force exerted by the surface which <u>prevents objects from</u> <u>being able to move through</u> <u>each other.</u>

5.1.3 How To Draw Free Body Diagram

Normal Contact force: touches the bottom of the box, upwards

Weight: starts exactly in the middle of the box, downwards

Push/Pull: from the outside surface of the box, in the direction of the force

Friction: On top of the surface of the box touching the floor (to allow the cher to see what u draw), against the direction of the force