

CEDAR GIRLS' SECONDARY SCHOOL Preliminary Examination 2023 Secondary Four

CANDIDATE NAME		
CLASS	CLASS INDE	X
CENTRE/ INDEX NO		
ADDITIC Paper 2	ONAL MATHEMATICS	4049/02 11 September 2023
Candidates and	2 hours 15 minutes	

READ THESE INSTRUCTIONS FIRST

Write your centre number, index number and name in the spaces at the top of this page.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

Answer all the questions.

Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question.

The use of an approved scientific calculator is expected, where appropriate.

You are reminded of the need for clear presentation in your answers.

The number of marks is given in brackets [] at the end of each question or part question.

The total number of marks for this paper is 90.

For Exa	miner's Use
	9()
	00

Mathematical Formulae

1. ALGEBRA

Quadratic Equation

For the equation $ax^2 + bx + c = 0$,

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Binomial expansion

$$(a+b)^{n} = a^{n} + \binom{n}{1}a^{n-1}b + \binom{n}{2}a^{n-2}b^{2} + \dots + \binom{n}{r}a^{n-r}b^{r} + \dots + b^{n},$$

where *n* is a positive integer and $\binom{n}{r} = \frac{n!}{r!(n-r)!} = \frac{n(n-1) \dots (n-r+1)}{r!}$

2. TRIGONOMETRY

Identities

$$\sin^2 A + \cos^2 A = 1$$

$$\sec^2 A = 1 + \tan^2 A$$

$$\csc^2 A = 1 + \cot^2 A$$

 $sin(A \pm B) = sin A cos B \pm cos A sin B$

 $cos(A \pm B) = cos A cos B \mp sin A sin B$

$$\tan(A \pm B) = \frac{\tan A \pm \tan B}{1 \mp \tan A \tan B}$$

$$\sin 2A = 2\sin A\cos A$$

$$\cos 2A = \cos^2 A - \sin^2 A = 2\cos^2 A - 1 = 1 - 2\sin^2 A$$

$$\tan 2A = \frac{2\tan A}{1-\tan^2 A}$$

Formulae for $\triangle ABC$

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

$$a^2 = b^2 + c^2 - 2bc \cos A$$

$$\Delta = \frac{1}{2}bc\sin A$$

Answer all the questions.

1		e mass, x grams, of a volatile matter from a space mission remaining t days after ag exposed to Earth's atmosphere is given by $x = 1.3 + 7e^{-0.5t}$. Find the initial mass of the matter.	[1]
	(h)	Explain why the mass of the substance can never be lower than 1.3 grams.	[2]
	(2)	2.1.praint with the mass of the succentive can be to the former than 110 grains.	
	(c)	Find the least number of days it takes for the matter to be reduced to half of its initial mass	[3]

2 (a) Prove that
$$\frac{1}{\sec x - 1} - \frac{1}{\sec x + 1} = 2\cot^2 x$$
. [3]

(b) Hence solve
$$\frac{1}{\sec x - 1} - \frac{1}{\sec x + 1} = 5\cos ecx$$
, for $0^{\circ} \le x \le 360^{\circ}$. [5]

- 3 The polynomial $f(x) = ax^3 + bx^2 + 5x 3$, where a and b are constants, is exactly divisible by 2x-1 and leaves a remainder of 39 when divided by x-2.
 - (a) Find the value of a and of b. [4]

Using these values of a and of b, determine the number of real roots of the equation f(x) = 0.Show all necessary working.

4 (a) If
$$y = (4x-3)\sqrt{2x+1}$$
, show that $\frac{dy}{dx} = \frac{12x+1}{\sqrt{2x+1}}$. [3]

(b) Hence find the value of $\int \frac{12x+3}{\sqrt{2x+1}} dx$ expressing your answer in the form $\sqrt{2x+1}(ax+b)$ where a and b are integers. [4]

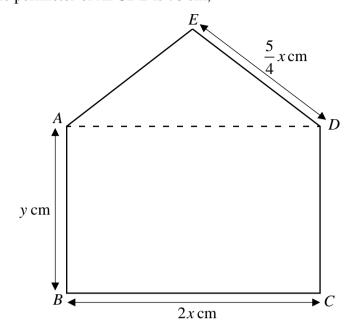
5 (a) The area of a quadrilateral is given as $25(\tan 15^{\circ}) \text{ cm}^2$.

Without using a calculator, express the area in the form $(a+b\sqrt{3}) \text{ cm}^2$. [4]

(b) Given that $\tan 15^{\circ}$ is a root to the equation $x^2 + px + q = 0$, where p and q are integers, find the value of p and q. [3]

The figure below consists of a rectangle *ABCD* and an isosceles triangle *AED*, where AB = y cm, BC = 2x cm and $ED = \frac{5}{4}x$ cm.

Given that the perimeter of *ABCDE* is 70 cm,



(a) show that the area of figure is $A = 70x - \frac{15}{4}x^2$. [5]

(b) Given that x can vary, find the value of x for which the area of the figure is at a maximum. [5]

[4]

7 (a) Solve the equation $3^{2x+1} - 3^{x+2} + 6 = 0$.

(b) Solve
$$\log_2(x+2)-1 = \log_{\sqrt{2}}(x-1)$$
 [4]

- 8 A circle with centre C and radius r has an equation of $x^2 + y^2 4x 6y 12 = 0$.
 - (a) Find the coordinates of C and the value of r.

The line 4y = 3x + 31 is tangent to the circle at the point T.

(b) Find the coordinates of the point T.

Determine, with working, if S(0,8) lies within the circle.

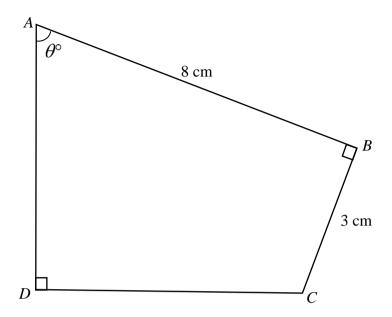
(c)

[3]

[4]

[2]

9 The diagram shows a quadrilateral *ABCD* in which $\angle ABC = \angle ADC = 90^{\circ}$. AB = 8 cm, BC = 3 cm and $\angle BAD = \theta^{\circ}$.

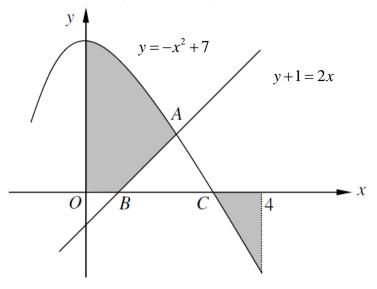


(a) Show that the sum of the lengths of AD and CD is given by $11\sin\theta + 5\cos\theta$ cm. [4]

(b)	Express	$11\sin\theta + 5\cos\theta$	in	the	form	$R\sin(\theta+\alpha)$,	where	R	is	a	positive	
	constant and α is acute.										[3]	

(c) Find the maximum value of the sum of the lengths of AD and CD and the corresponding value of θ . [2]

10 The figure below shows part of the curve $y = -x^2 + 7$ and the line y + 1 = 2x. The curve and the line intersect at the point A. The points B and C lie on the x-axis.



(a) Find the coordinates of A, B and C.

[4]

(b) Calculate the area of the shaded region

[5]

11 (a) Show that $(\cos x - \sin x)^2 = 1 - \sin 2x$

[2]

(b) Hence find the exact value of $\int_{\frac{\pi}{2}}^{\pi} (\cos x - \sin x)^2 dx$.

[4]

(c) Using the result in (a), find $\frac{d}{dx} \ln \left(\frac{\cos x - \sin x}{\cos 2x} \right)^2$ [4]

Blank Page