

## H2 Mathematics (9758) Chapter 4 Equations and Inequalities Assignment Suggested Solutions

## 1 2020Promo/NYJC/Q4

(i) Using an algebraic method, solve the inequality <sup>6</sup>/<sub>2-4x-x<sup>2</sup></sub> ≤1, leaving your answers in exact form. [4]
(ii) Hence, solve <sup>6</sup>/<sub>2-4x-x<sup>2</sup></sub> ≤1. [3]

(ii) Hence, solve 
$$\frac{6}{2-4\ln x - (\ln x)^2} \le$$

| Q1   | Solution                                                                                                                 |
|------|--------------------------------------------------------------------------------------------------------------------------|
| (i)  | $6 - (2 - 4x - x^2)$                                                                                                     |
|      | $\frac{1}{2-4x-x^2} \le 0$ Bring everything to one side                                                                  |
|      | $x^2 + 4x + 4 < 0$                                                                                                       |
|      | $\frac{1}{2-4x-x^2} \le 0$                                                                                               |
|      | $\frac{(x+2)^2}{2} > 0$                                                                                                  |
|      | $x^{2} + 4x - 2^{-5}$                                                                                                    |
|      | $\frac{(x+2)^2}{2} > 0$                                                                                                  |
|      | $(x+2)^2 - 6^{-5}$                                                                                                       |
|      | $(x+2)^2 > 0$                                                                                                            |
|      | $\frac{1}{(x+2+\sqrt{6})(x+2-\sqrt{6})} \ge 0$ Factorise                                                                 |
|      | $(x+2)^2$                                                                                                                |
|      | $\left[ x - \left(-2 - \sqrt{6}\right) \right] \left[ x - \left(-2 + \sqrt{6}\right) \right]^2 $ Solve using number line |
|      |                                                                                                                          |
|      | + + Note: the inequality to solve is $\geq 0$ ,                                                                          |
|      | $-2 - \sqrt{6}$ $-2$ $-2 + \sqrt{6}$ so $x = -2$ , satisfies the inequality                                              |
|      |                                                                                                                          |
|      | $x < -2 - \sqrt{6}$ or $x = -2$ or $x > -2 + \sqrt{6}$                                                                   |
| (ii) | From (i), replace x with $\ln x$ .                                                                                       |
|      | $\ln x < -2 - \sqrt{6}$ or $\ln x = -2$ or $\ln x > -2 + \sqrt{6}$                                                       |
|      | $\therefore 0 < x < e^{-2-\sqrt{6}}$ or $x = e^{-2}$ or $x > e^{-2+\sqrt{6}}$                                            |
|      |                                                                                                                          |
|      | <u>Alternatively,</u>                                                                                                    |
|      | $\therefore 0 < x < 0.0117$ or $x = 0.135$ or $x > 1.57$                                                                 |

## 2 2020/EJC/I/Q4 (modified)

(i) On the same axes, sketch the graphs of  $y = \frac{a}{|x-1|}$  and y = |x-a|, where *a* is a constant such that 0 < a < 1. It is given that the two graphs intersect exactly twice. [3]

(ii) Hence, solve the inequality 
$$|x-a| \le \frac{a}{|x-1|}$$
. [3]



## 3 2019/HCI/I/Q1

The number of units, D(x) of a particular product that people are willing to purchase per week in city A at a price \$x is given by the function  $D(x) = \frac{40320}{g(x)}$ , where g(x) is a module of the product of t

quadratic polynomial in x. The following table shows the number of units people are willing to purchase at different prices.

| x    | 5   | 8   | 10  |
|------|-----|-----|-----|
| D(x) | 384 | 224 | 168 |

Find the number of units of the product that people are willing to purchase at a price of \$18. [4]

| Q3 | Solution                                                         |
|----|------------------------------------------------------------------|
|    | $D(x) = \frac{40320}{x(x)}$                                      |
|    | g(x)                                                             |
|    | $\Rightarrow$ g(x) = $\frac{40320}{D(x)}$                        |
|    | $ax^{2} + bx + c = \frac{40320}{D(x)}, \ a, b, c \in \mathbb{R}$ |
|    | Given $5^2 a + 5b + c = \frac{40320}{384} = 105 - (1)$           |
|    | $8^{2}a + 8b + c = \frac{40320}{224} = 180 - (2)$                |
|    | $10^2 a + 10b + c = \frac{40320}{168} = 240 - (3)$               |
|    | Using GC, $a = 1, b = 12, c = 20$                                |
|    |                                                                  |
|    | When $x = 18$ ,                                                  |
|    | $D(18) = \frac{40320}{18^2 + 12(18) + 20} = 72 \text{ units}$    |