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Topic 1 - Measurement 
Guiding Questions 
 
 How are the standards for measurements established? 
 Why is uncertainty inherent in all measurements? 
 How can uncertainties be estimated? How can they be reduced if necessary? 
 Why does the uncertainty of a measurement matter? 
 How is the skill of making estimates of physical quantities useful and how can this skill be developed? 
 
Contents  
 
 Physical quantities & SI Units 
 Scalars and vectors 
 Errors and uncertainties 
 
Learning Outcomes 
 
Students should be able to: 
(a) recall the following base quantities and their units: mass (kg), length (m), time (s), current (A), 

temperature (K), amount of substance (mol). 
(b)  express derived units as products or quotients of the base units and use the named units listed in 

‘Summary of Key Quantities, Symbols and Units’ as appropriate. 
(c) use SI base units to check the homogeneity of physical equations. 
(d)  show an understanding of and use the conventions for labelling graph axes and table columns as set 

out in the ASE publication Signs, Symbols and Systematics (The ASE Companion to 1619 Science, 
2000). 

(e)  use the following prefixes and their symbols to indicate decimal sub-multiples or multiples of 
both base and derived units: pico (p), nano (n), micro (μ), milli (m), centi (c), deci (d), kilo (k), mega (M), 
giga (G), tera (T). 

(f)  make reasonable estimates of physical quantities included within the syllabus. 
(g)  distinguish between scalar and vector quantities, and give examples of each. 
(h)  add and subtract coplanar vectors. 
(i)  represent a vector as two perpendicular components.
(j)  show an understanding of the distinction between systematic errors (including zero errors) and random 

errors. 
(k)  show an understanding of the distinction between precision and accuracy. 
(l)  assess the uncertainty in a derived quantity by addition of actual, fractional or percentage uncertainties 

or numerical substitution (a rigorous statistical treatment is not required). 

1 Physical Quantities and SI Units 
 

Any scientifically measurable quantities are called physical quantities.  
e.g. temperature, force, current, pressure, mass, energy, etc. 
 
All physical quantities consist of a numerical value and a unit. 
 

 e.g.  mass, m  =   65.0  kg 
 
 
 
 

 The Summary of some Quantities and Units used in the A-Level examination is given in Appendix 1. 

Physical Quantity Numerical value 

unit 
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 In very much the same way that languages have developed in various parts of the world, different units 
of measurements have evolved. Just as languages can be translated from one to another, units of 
measurement can be converted between systems. For standardisation, it is much better to have just one 
system of units. Scientists use the Système International (SI) which is based on the metric system. 

 
LO(a) recall the following base quantities and their units: mass (kg), length (m), time (s), 

current (A), temperature (K), amount of substance (mol). 
 
 
 
 
  
 
 
 
 
 
 Physical quantities are divided into base quantities and derived quantities.  

Base quantities are the seven physical quantities of the SI system by which all other physical quantities 
are defined. 
 

 They are: mass, length, time, temperature, amount of substance, electric current and luminous 
 intensity.  

The SI base units are a choice of seven well-defined units which by convention are regarded as 
dimensionally independent: kilogram (kg), metre (m), second (s), ampere (A), kelvin (K), mole (mol). 
Candela (cd) is not in the syllabus. 

  
LO (b) express derived units as products or quotients of the base units and use the named 

units listed in ‘Summary of Key Quantities, Symbols and Units’1 as appropriate. 
 

Base units are the seven units of the SI system, related to the base quantities, whose magnitude is defined 
without referring to other units. 
 
Derived units are units that are derived from base units and can be expressed in terms of products and quotients 
of base units. 
 
Derived quantities are physical quantities that are derived from base quantities and can be expressed in terms of 
products and quotients of base quantities. 

 
E.g.  The physical quantity speed, v, may be expressed in terms of the quantities distance x and time t by the 
defining equation v = x/t. x and t are base quantities, with SI base units metre m and second s respectively. 
Speed v is then a derived quantity, with the derived unit of speed metre-per-second, m s–1.  
 
 

 

 

 

 

 
 

Physical Quantities 

Base 
quantities 

Derived 
quantities 
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Some derived units are given names for convenience. 

Quantity Derived Units Special name Symbol 
Volume m  m  m = m3   
Velocity m  s = m s–1   
Force kg  (m  s  s) = kg m s–2 newton N 
Work done kg m s–2  m = kg m2 s–2 joule J 
Power  (kg m2 s-2)  s = kg m2 s–3 watt W 

Some quantities are dimensionless / unitless, such as: 
 
1. all numbers, e.g. 2, 1

2
,  , e 

2. trigonometrical functions, e.g. sine, cosine, tangent 
 
3. all logarithmic functions, e.g. logx, ln 

4. powers, e.g.  y

x

10 , the ratio 
y

x  must be unit-less. If x has a unit, then the unit of y must have the same 

unit as that of x. 
 
5. Unit-less physical constants:  e.g. refractive index of glass, relative density of a liquid. 

 
Practice 1: 

Derived quantity Obtained from Derived unit Special name 
Density mass / volume kg m-3 - 

Frequency 
 

Number of cycles per unit time s−1 Hz 

Pressure 
 

force / area kg m−1 s−2 Pa 

Charge 
 

current x time A s C 

Potential difference 
  

work done / charge Kg m2 A−1 s−3  V 

 
LO (c) Use SI base units to check the homogeneity of physical equation. 
 
An equation is homogeneous if the base units of all the terms in the equation are the same.  
 

Every term on both sides of the equal sign of an equation should have the same units, for the equation to be 
called dimensionally consistent or homogeneous. This is just plain common sense, as when Z = X + Y, we 
expect all quantities, Z, X and Y to represent the same item. 

 
Consider the equation: s = ut + ½at2    

Unit of s = m  
Unit of ut = (unit of velocity)  (unit of time) = m s1  s = m  
Unit of ½at2 = m s2  s2 = m   

Since the units of every term on both sides of the equation are the same, the equation is homogeneous. 
 
 
 
Next consider the equation: v = u2 + 2as2    



Dunman High School  Year 5 Physics 2024/2025 
 

4 
 

Unit of v = m s1  
Unit of u2 = (unit of velocity)2 = (m sl) 2 = m2 s2   
Unit of as2 = m s2  m2 = m3 s2  

 
The equation is not homogeneous. 
 
Checking the homogeneity of an equation using base units is a powerful way of establishing if the physical 
equation is reasonable. It narrows the numerous combinations that may exist.  
 
A physically correct equation must always be homogeneous. However, a homogeneous equation need not be 
physically correct. Why? 
 
 There are two basic reasons: 
 
 (1) The value of the dimensionless factor may be incorrect. 
 
  e.g. 23mvE     where E = kinetic energy 
 

  The coefficient 3 is incorrect! The value should be 
2

1  instead. 

 
 (2) Missing or extra terms that may have the same unit. 
 

  e.g. mghmvE  2

2

1   where E = kinetic energy 

 
There is an extra term mgh, which happens to have the same unit as kinetic energy. This is an 
extra term. 
 

Practice 2: 

The period T of a simple pendulum is thought to depend on its length l, its mass m and the acceleration due to 
gravity g according to the equation T = k lx my gz , where k is a dimensionless constant (i.e. a constant with no 
unit). Determine the indices x, y and z. 

 

Base units of T = s 

Base units of k lx my gz = mx kgy (m s2)z = mx+z kgy s2z 

Comparing the indices of 

kg :   y = 0 

s:      2z = 1   z = ½ 

m: x + z = 0  x =z = ½ 

A possible equation is: T = k l½ g½   
l

T k
g

 

 
 
 
 
Note that it is not possible to deduce the value of k through this analysis. 
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LO(d) show an understanding and use the conventions for labelling graph axes and table 
columns. 

 
 Conventions for Labelling Table Columns 

 All readings or measurements should be tabulated in vertical columns; 
For example  
 

V / V  I / mA t / s a / m s−2 m / kg lg (m / kg)  
3.0 0.30 2.0 5.0 2.500 0.3979 
      
      

 
 For the column headings, use the standard notation of “quantity / unit”; it means “quantity divided 

by unit”.  
 
For example  
Writing t = 2.0 s  as  t / s = 2.0,  
 
the expression becomes a pure number. The column with t / s thus consists of just pure numbers 
with no units. 

 
 The unit should be written in the index form, e.g. use m s−2 and not m / s2.  
 For columns that involve logarithms, either lg or ln, the unit of the variable must be stated.  

 
For example, lg(m / kg), ln(T / s).  
 
It should be noted that after taking lg or ln, the resulting values have no units. 

 
 
Conventions for Labelling Graph Axes 
 
 when plotting graphs, both axes must be labelled with the 

physical quantities and their associated units (e.g.  
x l m and t / s).  Therefore, there is no need to write unit to 
every number label on the axes.   

 
 
 
 
 
 We will cover these in greater detail during practical lessons. 
 
 
 
 
 
 
 
 
 
 
 
 
 

x l m 

t /s 

1 
2 
3 

5 6 7 4 
0 
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LO(e) use the following prefixes and their symbols to indicate decimal sub-multiples or 
multiples of both base and derived units: pico (p), nano (n), micro (µ), milli (m), centi (c), 
deci (d), kilo (k), mega (M), giga (G), tera (T). 

 
10n Prefix Symbol Name  Decimal equivalent 
10-12 pico p Trillionth 0.000,000,000,001 
10-9 nano n Billionth 0.000,000,001 
10-6 micro µ Millionth 0.000,001 
10-3 milli m Thousandth 0.001 
10-2 centi c Hundredth 0.01 
10-1 deci d Tenth 0.1 
100 - - One 1 
103 kilo k Thousand 1,000 
106 mega M Million 1,000,000 
109 giga G Billion 1,000,000,000 
1012 tera T Trillion 1,000,000,000,000 

 
 Note:  

 Symbols are case-sensitive. Use “k” for kilo, not “K”. 
 There is no space between prefix and the unit, e.g. write “km” not “k m”. 

 
LO(f) make reasonable estimates of physical quantities within the syllabus. 
   
 All estimates are to be stated to 1 significant figure only, unless stated otherwise. 
 

Mass  Approximately (kg) Scientific notation (kg) 
Ping pong ball 0.003  3 x 10-3 

An apple 0.2  2 x10-1  

Adult Asian man 70 7 x 101 
Car 1000 - 1500  1 x 103 

SBS bus 20,000 2.x 104 
Earth 6 x 1024 6 x 1024 

   
Length  Approximately (m) Scientific notation (m) 

Diameter of hair 0.0002 (0.2 mm) 2 x 10-4 
Finger 0.07 (7.0 cm) 7 x 10-2 

Width of a car 2 2 x 100 
Football field 100 1 x 102 

Radius of Earth 6 x106 6 x106 
   

Speed Approximately (m s-1) Scientific notation (m s-1) 
Fastest runner 10 1 x 101 

Sound in air 300 3 x 102 
Light in vacuum (c) 3 x 108 3 x 108 

α-particle 0.1 c  3 x 107 
β-particle 0.8 c 2 x 108 

   
Temperature Approximately (K) Scientific notation (K) 

Room  300 3 x 102 
Candle flame 1000  1 x 103 

Blue Bunsen flame 3000  3 x 103 
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2 Scalars and vectors 
 
LO (g) distinguish scalar and vector quantities and give examples of each. 

 
 Scalar is a quantity that has magnitude, not direction. It is completely specified by its numerical value and 

unit. 
 

 Scalar quantities can be added or subtracted using rules of algebra. 
 

e.g. 10 kg + 12 kg  = 22 kg 
 
 

 Vector is a quantity having both magnitude and direction. It must be specified with its value, unit and 
direction. 

 
 e.g.: 2.5 m s-1 due East 

 
 
 
 

 
 

In print, a vector is often denoted by a letter in bold type, e.g. force F. The magnitude is indicated as | F |. 
 
 A vector can be represented with an arrow whose length is proportional to the magnitude of the vector, is 

correctly orientated with respect to a reference direction. 
 

 
 
         

 
 

Scale:  2 cm represents 1 m s-1.    Scale 1 cm: 5 N 
 

The velocity is 2.45 m s-1 due East. The force F is 14 N, in a direction 30o to the 
horizontal. 

 
The table below shows a list of scalar and vector quantities: 

 
Scalar quantity  Vector quantity 
distance  displacement 
speed   velocity  
temperature  acceleration 
energy  force 
power  momentum 
mass  weight 
density  moment 
pressure  torque 
volume  electric field 
time  magnetic flux density 

 
 
 
 

magnitude 

direction 

F 
N 

v 
30o 

measured 4.9 cm 2.8 cm 
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LO (h) add and subtract coplanar vectors 
 
Equal vectors 
Vectors are equal if they have the same magnitude and direction. 
 
Negative vector 
The negative of a vector has the same magnitude but opposite direction. 
  
Coplanar vectors are vectors that lie on the same plane (2-dimension).   

 
 
Unlike scalar quantities, vector quantities cannot be added or subtracted using algebra. Instead a vector diagram 
is needed. 

 
 

(1) Vector Addition 
 

a. Triangle method 
 
Stack the vectors such that one vector has its tail placed at the tip of the previous vector. 
 
 
 
 
 
 
The resultant vector is represented by the line with a double arrow directed from the tail of the first vector 
to the tip of the last vector. 
 

b. Parallelogram method.   
 
Put the vectors to be added ‘tail to tail’. Complete the parallelogram.  The resultant vector is the diagonal 
from the tail of the two vectors to the other vertex of the parallelogram. 
 
 
 
 
 
 
 

 
Example 
 
Evaluate the resultant displacement of a ship which travels 30 km due north then 40 km due east. 

 
 
 
 
 
 
 
 
 

 
 
 

north 40 km 

A = B 

A  B  

A = – B 

A  B  

A  + B   A  

B  

A  + B   A  

B  

30 km R 

start point 

end point 

R 30 km 

40 km 

north 

OR 
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Methods to determine the resultant magnitude and direction 
 

1) Draw the vector to scale, measure the resultant magnitude using a ruler, and angle (for direction) using 
protractor. OR 

 
2) (a) Use Pythagoras Theorem, trigonometric function to solve for right angle triangle. 

(b) Use Sine Rule, Cosine Rule for irregular triangle. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
Practice 3: 

 
Two forces act at a point P as shown below. Determine (magnitude and direction of) the resultant of these two 
forces. 

 
 

Solution 
 
 
 
 
 
 
 
Find magnitude by Cosine Rule, 
R2 = 252 + 482 – 2 x 25 x 48 cos140 
R = 69 N 
 
 
 
Find the angle by Sine Rule 

 


sin sin140

48 69
 

 
 = 26.6 

 
Thus the resultant force is 69 N, 26.6 clockwise from the 25 N force. 

 
 

25 N 

48 N 

40 

P 

Worked Solution: 
 

R = 2 240 30 

R = 50 km 

 
 = tan-1(40/30) = 53.1o 
 
The resultant displacement is 50 km, 53.1o East 
of North. 
 

30 km 

40 km 


R  

start point 

end point 

 

north 

25 N 

48 N 

40 
P 

140 

R 

 
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 (2) Vector subtraction 
A  − 


B   =  


A   +   


B .   

 
Example 
     −  
 
 
 
 
i.e.     +   
      
 
 
 
 
 
 
 

 
 
Vector subtraction can come about when we want to determine the change in a certain physical quantity.  
 

A change in a physical quantity Δ

Q = final value 


Q f  –  initial value 


Q i 

 
 
Practice 4: 

 
An object is moving at 5.0 m s-1 due east. Its direction changes to due south with a speed of 7.5 m s-1. 
Determine the change in the velocity. 

 
Change in velocity Δv


 = v


f  – v


i .  A vector diagram is needed for the vector subtraction. 

 
Δv


  = v


f  – v


i 

  = 7.5 m s-1 − 5.0 m s-1  
 
   
 

= 7.5 m s-1 + 5.0 m s-1 
 
 
 

| Δv


|  = 2 25.0 7.5 = 9.0 ms-1 

 = tan-1 
5.0

7.5
 = 33.7  

Thus, the change in velocity is 9.0 m s-1 at 33.7, west of south. 
 
 

 
 
 
 
 


A     20 N 

    30 N 

15 


A     20 N  30 N     -


B  

15 

N 


B  

Check  

using cosine rule that |

A  - 


B | = 12 N,  

using sine rule that it is 139o to the horizontal. 

Resultant = (

A  - 


B )  

20 N 

30 N 

15 

7.5 m s-1 

5.0 m s-1 

Δv


  
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LO(i) represent a vector as two perpendicular components 
 
Since two vectors can be added to give a resultant vector, any vector can be broken up (or resolved) into two 
vectors or components.   It is more convenient to resolve a vector into two mutually-perpendicular components 
through the use of trigonometry and Pythagoras theorem. Mutually-perpendicular vectors are independent of 
each other. 
 
 
Example 
 
 
 
 
 
 
 
 
 
 
  

 
 

Each of the vectors above is resolved into two perpendicular components. A vector can be resolved into infinite 
pairs of perpendicular components.  The choice of directions depends on the problem at hand.   

 
 
Practice 5: 

 
An object rests on the plane of an inclined slope as shown. The weight W 
acts vertically down. Draw components of the weight 
 
(a) parallel to the slope 
(b) perpendicular (normal) to the slope. 
 
Label the magnitude of the two components in terms of W and . 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

W 

20 N 

30o 

20 cos 30o 

20 sin 30o 

W sin θ 

30o 

Resolved into: 

W cos θ 
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Practice 6 (step-by-step guide to finding the resultant force) 
 

The 5 forces shown act on an object. Find the resultant force due to them. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 Resolve the vectors into two mutually perpendicular components: 
 

Vector/N x-component /N    (+ ) y-component /N   (+) 
100  

 
 

27  
 

 

90  
 

 

80  
 

 

52  
 

 

Resultant  
 

 

 
1. Draw vector diagram to show the resultant vector 

 
 

 
 
 
 
 
 
 
 
 
 

2. Compute the magnitude of the resultant vector 
 
 

R = 2 267 53 =85 N 
 
 

80 N 

90 N 
          27 N 

100 N 

52 N 

20o 

34o 

60o 
10o 

      +y 

+x 

+53 N 

+67 N 
R

 
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3. Indicate the direction with an angle with reference to a certain direction on the diagram and calculate 
the angle. 

 
 = tan-1 (67/53) 
 = 52 

 
4. Write a complete statement to specify the magnitude and direction of the resultant vector. 

 
The resultant force is 85 N, 52 anticlockwise from +ve x axis. 

 
 

 
 
 
 
 
3 Errors and Uncertainties 
 
Uncertainty is the range of values on both sides of a measurement in which the actual value of the measurement 
is expected to lie.  
 
Uncertainties in measured quantities arise from: 

o limitations of the observer; 
o limitations of the measuring instrument used, 
o limitations of the method used (the experimental design). 

 
 
3.1 Experimental Errors 
 
Error is the difference between the measured value and the ‘true value’. 
 
For example, if the accepted value of acceleration due to gravity g at a certain location is 9.8 m s-2.  If an 
experimental determination yields a result of 9.9 m s-2, the error is +0.1 m s-2. 
 
 
3.2 Types of Experimental Errors 
 
LO(j) show an understanding of the distinction between systematic errors (including zero 

errors) and random errors. 
 
In assessing errors, whether human or instrumental, there are two types of errors:  
(1) systematic errors  and   (2) random errors 
 

Systematic errors are present when the measured values produced errors of the same magnitude and sign. 

 
They cannot be eliminated by averaging. However, they can be eliminated by careful design of an experiment, 
and good experimental techniques. They have the same magnitude and sign. 
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Examples of Systematic Errors:  
 

Error Sources Descriptions Corrections 

 Due to 
apparatus 

 zero errors on the scales of 
instruments 

 poor calibration of instruments 

 correct all measured readings by negating 
the error accordingly. 

 calibrate the instrument properly before 
experiment 

 Due to poor 
experiment-
al technique 

 consistent parallax error which affect 
all the readings in the same way, for 
instance, taking readings off a scale  
from a fixed angle. 

 adopt the correct way to take reading: 
ensure that the line of sight is 
perpendicular to the measuring scale.  

 Due to 
external 
factors 

 background radiation causes the 
count rate of your radioactive sample 
to be consistently higher than the 
true reading. 

 Take the external factor(s) into account 
and adjust all readings appropriately. For 
instance, measure the count rate of 
background radiation and subtract it from 
the readings. 

 
 
(2) Random errors are present when the measured values produced errors of different magnitudes and signs.  
These readings are scattered about the mean value with no fixed pattern. 
 
Examples of Random Errors: 
 

Error Sources Descriptions Methods to reduce error 

 Due to inability of 
observer to repeat his 
action precisely. 

 inconsistent reaction time when 
using stop watch to measure the 
period of an oscillation. 

 To reduce the random errors, 
take the time of 20 oscillations 
then find the mean period. 

 Due to environmental 
conditions like pressure, 
temperature. 

 fluctuations in the measurement (of 
length, time, current, etc.)  

 Random errors can be reduced 
by taking average of repeated 
readings. 

 Due to the limited 
sensitivity of 
instruments. 

 Precision of  
 metre rule:   1 mm 
vernier calliper:   0.1 mm 
micrometer screw gauge: 0.01 mm 

 

 To measure the thickness of a 
coin with only a metre rule, the 
random errors can be reduced 
by determining the mean 
thickness of a stack of 10 
identical coins. (Use a 
micrometer screw gauge if it is 
available). 

 
 
Distinguish between systematic and random errors using Illustrations. 
 
 
 
 
 
 
 
 
 

The figure shows a spread of readings caused by 
random errors; these are approximately centred about 
a mean value which coincides with the true value. If a 
systematic error is present, the mean value will be 
shifted. 
 

Systematic error 

True value 

Random errors 
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The effects of random errors and of systematic errors appear in graphs as illustrated below. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3.3 Precision and Accuracy 
 
LO(k)  show an understanding of the distinction between precision and accuracy. 

 

 

 

 

 

 
 
 
The precision of a measurement is how close the experimental values are to each other. 
 
Precision is also a term used to describe the level of uncertainty in an instrument’s scale. Good precision means 
the readings are mostly very close to each other, and is associated with small random errors.  
 
Accuracy is the closeness of a reading on an instrument to the true value of the quantity being measured.  
 
Good accuracy means the reading or the mean of a set of readings is very close to the true value, and is 
associated with small systematic errors. 
 
 
Illustration: 
 
The first few decimal places of the true value for the mathematical constant  are 3.142, and the accepted value 
for the speed of light in a vacuum is 2.99792458 x 108 m s1.  
 
Thus, 3.14 is an accurate value for  to three digits precision, and 3.0 x 108 m s1 is an accurate value for the 
speed of light in a vacuum to two digits precision. 

Good precision, 
Poor accuracy 
(small random error, but 
large systematic error!) 

Good accuracy, 
Poor precision 
(large random error, 
small systematic error) 

Good precision and accuracy 
(small random error, small 
systematic error) 

y 

x 

y 

x 

y 

x 
No error Random error Systematic error 

‘true’ line 
‘best fit’ line ‘best fit’ line ‘true’ line 

‘true’ line 
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Practice 7 
 
Student A carried out a series of experiments to obtain the value of the Earth’s gravitational acceleration g. He 
was very careless and did not take into account the mass of the mass holder. This resulted in all recorded values 
of the mass being smaller than the actual mass. He obtained the following values of g: 
 

Reading/ m s-2 10.33 10.32 10.31 10.30 10.29 
 
Given that the actual value of g = 9.81 m s-2, comment on the accuracy and precision for this experiment. 
 
Answer:   mean = (10.33 + 10.32 + 10.31 + 10.30 + 10.29)/ 5 = 10.31 m s-2 
 
The readings are not accurate because the mean value deviates from the true value. 
 
Range of Student A’s readings = Largest reading - smallest reading 10.33 – 10.29 = 0.04 m s-2 

 
Since Student A’s readings have a small spread, this implies small random errors. His readings are precise. 
 
 
 
 
 
 
 
 
 
 
Practice 8 
 
Student B measured the gravitational constant g a number of times and got the following results 
 

Reading/ m s-2 12.20 9.81 7.42 9.99 9.63 
 
How do these results compare to those of Student A in worked example 1? 
 
Student B’s mean reading = (12.20 + 9.81 + 7.42 + 9.99 + 9.63)/ 5 = 9.81 m s-2   
 
Since the Student B’s mean reading is equal to the true value, 9.81 m s-2, Student B’s readings are more 
accurate. 
 
Range of Student B’s readings = Largest reading - smallest reading = 12.20 - 7.42 = 4.78 m s-2 
 
Since Student B’s readings have a larger spread, this implies larger random errors. His readings are less precise 
than A’s. 
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3.4 Absolute and Relative (Fractional and Percentage) Uncertainties 
 
3.4.1 Absolute Uncertainty in a scale reading 
 
 A scale reading is the single determination of a value at one point on a measuring scale. 
 
 Generally a scale reading can be estimated to half of the smallest division on a measuring scale (Not always 

true: this depends on the instruments used. More details will be taught during the Practical Sessions). 
 
 
 
 
 
 
  
 
 
 
 The (actual or absolute) uncertainty in the reading of an instrument is thus taken as half the smallest 

division. In the above illustration, the absolute uncertainty is 0.05 cm. 
 
 To indicate the magnitude of uncertainty, R1=10.40 cm in the above illustration is written as  

R1 = (10.40  0.05) cm.  This means that R1 can take values in the range between 10.35 cm to 10.45 cm.   
 The absolute uncertainty 0.05 cm is also known as the maximum uncertainty in the reading. 
 
 The absolute uncertainty should always be rounded off to 1 significant figure only. 
 
 In general, all readings can be recorded in the form R  R in which R is the absolute uncertainty. R should 

be rounded to the same number of decimal places as the uncertainty R.  
 

For example (10.0 ± 0.1) cm should not be written as (10 ± 0.1) cm 
 
Relative Uncertainties 
 
The uncertainty of a measured value can also be presented as a percent or a simple fraction.  

(a) The fractional uncertainty of R = 
R

R


 

(b) The percentage uncertainty of R = 


100%
R

R
 

For example, the measurement (208 ± 1) mm,  

Absolute uncertainty = 1 mm (1 s.f.) 

Fractional uncertainty = 
1

208
 = 0.0048    (2 s.f.) 

Percentage uncertainty = 0.0048 x 100% = 0.48%      (2 s.f.) 

Note that the absolute uncertainty has units and always to 1 s.f., whereas fractional and percentage 
uncertainties are ratios and are dimensionless and always to 1 or 2 s.f. 

While the absolute uncertainty is an indication of the scale sensitivity of the measuring instrument used, the 
percentage uncertainty is useful to compare whether the error is negligible or significant.  

10 11 12 13 

R2 = 11.55 cm R3 = 12.65 cm R1 = 10.40 cm 
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Practice 9 

 
A metre rule has a precision to 1 mm, vernier callipers to 0.1 mm and a micrometer screw gauge to 0.01 mm. If 
these instruments were to be used to measure the diameter of a wire which is 2.5 mm, what would be the 
respective percentage uncertainties?  
 
For ruler, % uncertainty = (1/2.5) x 100% = 40 % 
 
For vernier callipers, % uncertainty = (0.1/2.5) x 100% = 4.0 % 
 
For micrometer % uncertainty = (0.01/2.5) x 100% = 0.40 % 
 
 
Practice 10 
A student makes measurements from which he calculates the speed of sound as 327.66 m s1. He estimates 
that his result contains a percentage error of  3%. Give his result reduced to the appropriate number of 
significant figures. 

v

v


x 100% = 3%    

v

v


 = 0.03 

v  = 0.03 x 327.66 = 10 m s1  (to 1 s.f.) 

v  v = (330  10) m s1  (v expressed to same d.p as v ) 
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3.4.2 Propagation of Uncertainties 
 
LO (l)  assess the uncertainty in a derived quantity by addition of actual, fractional or percentage 

uncertainties, or numerical substitution (a rigorous statistical treatment is not required). 
 
The result of an experiment is seldom obtained by a single measurement; very often it is obtained by measuring 
a few related quantities. The overall estimate of uncertainty is called the consequential uncertainty.  
 
There are established statistical rules for calculation of consequential uncertainty from individual pieces of 
information. The A-level course only requires a simplified version of the statistical treatment.  
 
The guiding principle in all cases is to consider the maximum uncertainty i.e. the worst case scenario. 
 
 
Basic Rules of Consequential Uncertainties at a Glance 
 
Suppose A and B are measured independent quantities, A and B are the corresponding (actual) uncertainties.  
 
Given that n and m are numerical constants, e.g. ½, 3, . 
 
Addition 
If R1 = A + B, then R1 = A + B 
 
Subtraction 
If R2 = A  B, then R2 = A + B 
 

Product 
If R4 = A x B 
 

4

4

R A B

R A B

  
    

Quotient 

If R5 =
A

B
 

 

5

5

R A B

R A B

  
   

 
 

 
Some common situations: 
 
1. If Z = mA + nB, then  Z = |m|A +|n|B       Note: m, n are numerical constants 
     

2. If Z = kAm Bn, where k is a numerical constant, then 
B

B
n

A

A
m

Z

Z 






  

 3. Other functions: e.g. Z = sin A, Z = ln A 
 

Use the general approach: Z = ½ (Zmax – Zmin) 

Adding absolute uncertainties 

Adding fractional uncertainties 
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Propagation Rules of Consequential Uncertainties – Explained. 
 
Additional and subtraction: 
 
Suppose we need to add the measurements A: (20 ± 2) cm and B: (10 ± 1) cm 
 
The best estimate for the sum of these two measurements is          20 cm + 10 cm = 30 cm 
The smallest possible sum in adding these two measurements is  18 cm + 9 cm = 27 cm. 
The largest possible sum in adding these two measurements is      22 cm + 11 cm = 33 cm. 
 
Therefore, the range of possible sum ranges                                   from 27 cm to 33 cm.  
 
The sum can be expressed as                                                         (30 ± 3) cm. 
 
Instead of going through the tedious steps like the above, apply the short-cut rule! Verify the rule for subtraction! 
 
 
Multiplication and division: 
 
Suppose you need to multiply A: (20 ± 2) cm by B: (10 ± 1) cm. 
 
The best estimate of the product is    20 cm x 10 cm =        2.0 x 102 cm2  
The smallest possible value would be    18 cm x 9 cm   =        1.6 x 102 cm2,  
The largest reasonable value would be    22 cm x 11 cm =        2.4 x 102 cm2.  
The product must be                                                         (2.0 ± 0.4) x 102 cm2. 
 
Check this rule for division for yourself. 

 
 
 
Practice 11: 
 
A rectangle has a length l = (34.3  0.6) cm and breadth b = (21.8  0.5) cm. 
Calculate the perimeter P and area A of the rectangle and express their values with their absolute uncertainties. 
 

P = 2l + 2b = 2 (34.3+ 21.8) = 112.2 cm 

P = 2l + 2b = 2  (0.6 + 0.5) = 2.2 cm  2 cm (to 1 s.f.) 

 

P = (112  2) cm 
 
 
A = lb  = 34.3  21.8 = 747.74 cm2 = 7.4774  102 cm2  (can leave in many s.f. first) 

0.6 0.5 0.040434.3 21.8
A l b
A l b
  

      

 

A = 0.0404  747.74 = 30.2 cm2  30 cm2 (to 1 s.f.) = 0.3  102 cm2 ( to 1 s.f.) 

 

A = (750  30) cm2 
Or A = (7.5  0.3)  102 cm2 

 
Note: The absolute uncertainty should always be expressed to one s.f. and the value should be expressed up to 
the same decimal place of the uncertainty. 
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Practice 12: 

The formula for the period of a simple pendulum is T = 2
l

g
 . Such a pendulum is used to determine g.  The 

fractional error in the measurement of the period T is x and in the measurement of the length l is y. Assume 
there is no other sources error, what is the fractional error in the calculated value of g?  
 
 

Solution:     g = 
l 2

2

4

T
             2

g l T

g l T

  
  = y + 2x 

 
 
 
 

 
For complicated functions of Z, we can use the first principle method of numerical substitution to find the  max 
and min values. 

 
Absolute uncertainty = ½ (maximum possible value of Z – minimum possible value of Z) 

  Z  = ½ (Zmax – Zmin)  
  

Or simply, 
 

Absolute uncertainty = maximum possible value of Z – Z 
   Z  = Zmax – Z 
 
 
The difference in methods may result in slightly different uncertainty results. All answers are acceptable as long 
as the method is logical. 
 
Practice 13: 
 
Consider S = x cos  for x = (2.0 ± 0.2) cm,  = (53 ± 2) °. Find S with its uncertainty. 

S = (2.0 cm) cos 53° = 1.204 cm  

To get the largest possible value of S  
we would make x larger, (x + x) = 2.2 cm, and  smaller, ( - ) = 51°.  

Smax = (S + S) = (2.2 cm) cos 51° = 1.385 cm.  

S = Smax – S  = 1.385 − 1.204 = 0.2 cm  (to 1 s.f.) 

Then S = (1.2 ± 0.2) cm. 
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Definition List 
 

 
 
 
 
 
 

Physical Quantity A term that is used to include numerically measurable features of many different items. 
It has a numerical magnitude and a unit.  

Base quantities  The seven physical quantities of the SI system by which all other physical quantities 
are defined. 
 

Base Units The seven units of the SI system, related to the base quantities, whose magnitude is 
defined without referring to other units. 
 

Derived quantities They are physical quantities that are derived from base quantities and can be 
expressed in terms of products and quotients of base quantities. 
 

Dimensionless quantity 
 

A quantity without an associated physical dimension, it is a pure number. 

Homogeneous Equation Equation where base units of all the terms are the same.  
Experimental errors Uncertainties in measured quantities that arise from different sources due to: 

(a) limitations of observer, (b) measuring instrument used, (c) method used. 
 

Random errors  Random errors are present when the measured values produced errors of different 
magnitudes and signs.  These readings are scattered about the mean value with no 
fixed pattern. 
 

Systematic errors  Systematic errors are present when the measured values produced errors of the same 
magnitude and sign. 

 
Precision The precision of a measurement is how close the experimental values are to each 

other.  
 

Accuracy The closeness of a reading on an instrument to the true value of the quantity being 
measured. 

Uncertainty The range of values on both sides of a measurement in which the actual value of the 
measurement is expected to lie. 

Absolute uncertainty Absolute uncertainty is the actual numerical uncertainty. Eg, measurement of length (L 
± ΔL), ΔL is the absolute uncertainty.  

Fractional uncertainty Fractional uncertainty is the ratio of absolute uncertainty to the measured value of a 
quantity. 

Vector   Vector is a quantity having both magnitude and direction. 

Scalar  Scalar is a quantity that has magnitude, not direction.  
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APPENDIX A 
 
National Measurement System 
 
National Metrology Centre (NMC) is the custodian of the national physical measurement standards in Singapore 
and is responsible for establishing and maintaining the nation’s highest level of physical measurement 
standards. This can be traced to the International System of Units (SI) established under the Metre Convention, 
a worldwide diplomatic treaty on metrology. 
 
The way the standards are defined can be changed and Singapore will want to keep track of this development to 
ensure we meet the national standards. An example is the change in the way 1 kg is being defined.  
 
Singapore has one of the hundred or so pieces that nations have purchased from BIPM2 to date. And this 
precious piece is housed inside the NMC. Singapore's prototype kilogram is actually a replica of the world's 
official 1 kg, also known as Le Grand K (the grand kilogram).  
 
Singapore bought the piece in 2003, and it was hand-carried here from Paris. Scientists at NMC handle it more 
carefully than they would a baby. They use only tongs to pick it up. They wear gloves because the slightest trace 
of oil from their fingers would add weight to this 1 kg. Scales at the NMC lab go down to the microgram, or a 
millionth of a gram, so every trace matters. 
 
Singapore's prototype kilogram outweighs Le Grand K by about 340 micrograms. So it's almost impossible to 
cast metals down to one microgram. Apparently, even Le Grand K is no longer a "perfect" kilogram. Over the 
course of a century, it has actually shed a few micrograms. 
 
This development worries scientists who require precise definitions of the kilogram for other measurements such 
as voltage. The kilogram is the only base unit defined by an artefact. To eliminate the uncertainty raised by the 
current definitions, scientists have been studying how to redefine 1 kg using a natural constant called Planck 
constant. 
 
Such precision might seem to be relevant only to scientists, but it has its place in everyday tasks too. For 
instance, Singapore's definitive 1 kg and stainless steel replicas are used to calibrate weighing scales in the 
pharmaceutical and petrochemical industries. 
 
Precision is important for business, trade and life in general. After all, we would want to know that our medicines 
and chemicals are safe, and we should get no less than what we pay for. 
 
Redefining the SI units 
 
In November 2018, at the General Conference on Weights and Measures, the global metrology community 
agreed a revision to the SI. The decision means that, for the first time, all seven of the base units will be defined 
in terms of constants of nature – such as the speed of light, the Planck constant and the Avogadro constant. 
Using seven defining constants as the basis for the SI will mean that the definitions of all the base units will stay 
stable into the future. The revision will bring in new definitions of the ampere, kilogram, kelvin (and, 
consequently, degree Celsius) and mole. 
 
From May 2019, all the base units of the SI will be defined in terms of constants of nature – the most stable 
quantities we have ever encountered. 
 
The kilogram is defined by taking the fixed numerical value of the Planck constant h to be 6.626 070 15 × 10−34 
when expressed in the unit J s, which is equal to kg m2 s−1, where the metre and the second are defined in terms 
of c and ∆ν.  [c: speed of light in vacuum; ∆ν: caesium frequency.] 
 

 
2 Bureau International des Poids et Mesures (BIPM), the Paris-based agency that acts as the international 
custodian for weights and measures. 
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APPENDIX B 
 

SUMMARY OF KEY QUANTITIES, SYMBOLS AND UNITS 
 
The following list illustrates the symbols and units that will be used in question papers. 

Quantity 
Usual 
symbols Usual unit Quantity 

Usual 
symbols Usual unit 

Base Quantities      

mass m kg electric current I A 

length l m thermodynamic temperature T K 

time t s amount of substance n mol 
 
Other Quantities      

distance d m elementary charge e C 

displacement s, x m electric potential V V 

area A m2 electric potential difference V V 

volume V, v m3 electromotive force E V 

density ρ kg m−3 resistance R Ω 

speed u, v, w, c m s−1 resistivity ρ Ω m 

velocity u, v, w, c m s−1 electric field strength E N C−1, V m−1 

acceleration a m s−2 permittivity of free space 0  F m−1 

acceleration of free fall g m s−2 magnetic flux   Wb 

force F N magnetic flux density B T 

weight W N permeability of free space 0  H m−1 

momentum p N s force constant k N m−1 

work w, W J Celsius temperature θ °C 

energy E,U,W J specific heat capacity c J K-1 kg-1 

potential energy Ep J molar gas constant R J K−1 mol−1 

kinetic energy Ek J Boltzmann constant k J K−1 

heating Q J Avogadro constant NA mol−1 

change of internal energy ∆U J number N, n, m  

power P W 
number density (number per 
unit volume) n m−3 

pressure p Pa Planck constant h J s 

torque T N m work function energy   J 

gravitational constant G N kg−2 m2 activity of radioactive source A Bq 

gravitational field strength g N kg−1 decay constant λ s−1 

gravitational potential   J kg−1 half-life t1/2 s 

angle θ °, rad relative atomic mass Ar  

angular displacement θ °, rad relative molecular mass Mr  

angular speed ω rad s−1 atomic mass ma kg, u 

angular velocity ω rad s−1 electron mass me kg, u 

period T s neutron mass mn kg, u 

frequency f Hz proton mass mp kg, u 

angular frequency ω rad s−1 molar mass M kg 

wavelength λ m proton number Z  

speed of electromagnetic waves c m s−1 nucleon number A  

electric charge Q C neutron number N  
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Tutorial Questions 
 
Part 1 Physical Quantities and SI Units 
 
1(a) Express the following derived quantities in terms of base units. Give the alternative units, if applicable. 
 

Derived quantities Defining Equation Derived units  Alternative  
unit(s) 

Area    
Moment    
Pressure    
Work done    
Power    
Resistance    

 
 
1(b) The energy of a photon of light of frequency f is given by hf, where h is the Planck constant. What are 

the base units of h?                [kg m2 s-1] 
 

2 The drag coefficient DC  of a car moving with speed v through air of density   is given by 

2

2

1
Av

F
CD


  where F is the drag force exerted on the car and A is the maximum cross-sectional area 

of the car perpendicular to the direction of travel. Show that DC  is dimensionless (i.e. unitless in this 

case). 
 
3 By considering the base units of the quantities, determine whether the following expressions for v the 

velocity of ocean waves is possible.   is the density of seawater, g the acceleration of free fall, h the 

depth of the ocean and λ  the wavelength of the wave. 

 (A)   gv    (B)   
h

g
v    (C)   ghv   (D)   


g

v   

 
4    The density   and the pressure P of a gas are related by the expression 


P

c   

  where c and   are constants. 

 
(i) Determine the base unit of pressure P.                                                      [kg m-1 s-2] 
(ii) Given that the constant   has no unit, determine the unit of c.                 [m s-1] 

(iii) Using your answer to (ii), suggest what quantity may be represented by the symbol c. 
 
 
5 Bernoulli’s equation, which applies to fluid flow, states that 

   p + hg + 2

2

1
v = k 

where p is the pressure of the fluid, h is the height of the fluid,  is the density of the fluid, g is the 
acceleration due to gravity, v is the velocity of the fluid flow and k is a constant. 
(i) Show that the terms on the left hand side of the equation have the same SI base units. 
(ii) What are the SI base units for k?                                                         [kg m-1 s-2] 
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Part 2 Scalars and Vectors 
 
6  Draw the two perpendicular components x and y associated with the given vector in the  directions 

 shown. Calculate the magnitude of the two components.  
 Note: The diagrams are not draw to scale. 

 
 
 
     (a) component x: ……………………. 
 
 component y: …………………….. 
 
 
       
 
 
 
 
 
     (b) component x: ……………………. 
 
 component y: …………………….. 
 
 
 
 
 
 
7 Three coplanar forces act on a point as shown.  
 
 (i) Determine the resultant vector (magnitude and 
      direction with reference to x – x direction. 
  [Ans: 47.3 N, 76o acw from –ve x-axis] 
 
 (ii) State the smallest force that must be applied 
       such that the resultant is along x – x only. 
  [Ans: 45.8 N, 90o acw from +ve x-axis.] 
 
 
 
8 The 5 forces shown act on an object. Find the resultant force due to them. 
 
 
 
 
 
 
 
 
 
 
 
 
         [Ans: 27.3 N, 21.4o E of N] 
 
 

y 

37 m s-1 

x 

28 

3045 

15 

35 

78 

x x 

10 N 

7.89 N 
27.56 N 

10 N 

12 N 

20o 

34o 

60o 
10o 

North 

East 

530 N 

y 

x 

39 
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9a A tennis player was able to return a serve straight back. The ball travelled at 35 m s-1 just before it was 
caught in the racket, and 30 m s-1 after it was hit. Show the velocity vectors and hence determine the 
change in velocity.      [Ans: 65 m s-1 away from the racket] 

 
 
9b A ball bounced off a wall with as follows: 
 What is the change of velocity? 
 [Ans: 15 m s-1, vertically downwards] 
 
 
 
9c Find the change in velocity of a ball if it changes its velocity from 5 m s-1 horizontal to the ground to 3 m s-1 

at 30o upwards after hit by the racket. 
[Ans: 7.7 m s-1, 11 o ccw from horizontal] 

 
 
 
 
 
 
Part 3 Errors & Uncertainties 
 
10 A micrometer, reading to ±0.01 mm, gives the following results when used to measure the 
 diameter d of a uniform wire:         (J2000/I/2) 
 

1.02 mm, 1.02 mm,1.01 mm, 1.02 mm, 1.02 mm 
 
When the wire is removed and the jaws are closed, a reading of  0.02 mm is obtained. 
Which of the following gives the value of d with a precision appropriate to the micrometer?   

  
 

 
11 When comparing systematic and random errors, the following pairs of properties of errors in an 
 experimental measurement may be contrasted: 
 

P1: error can possibly be eliminated 
P2: error cannot possibly be eliminated 
Q1: error is of constant sign and magnitude 
Q2: error is of varying sign and magnitude 
R1: error will be reduced by averaging repeated measurements 
R2: error will not be reduced by averaging repeated measurements 

 
Which properties apply to random errors? 

 
 A P1, Q1, R2 B P1, Q2, R1 C P2, Q2, R1 D P2, Q1, R1 
 
  
12 Which of the following experimental techniques reduces the systematic error of the quantity being 

investigated? 
 

A Timing a large number of oscillations to find a period 
B Measuring the diameter of a wire repeatedly and calculating the average 
C Adjusting an ammeter to remove its zero error before measuring a current 
D Plotting a series of voltage and current readings for an ohmic device on a graph and 

using its gradient to find resistance 
 

 A 1.0 mm B 1.00 mm C 1.038 mm D 1.04 mm 

30o 

3 m s-1 

5 m s-1 

60o 60o 

15 m s-1 15 m s-1 
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13 An object of mass 1.000kg is placed on four different balances. For each balance the reading is taken 
five times. The table shows the values obtained together with the means. Which balance has the 
smallest systematic error but is not very precise?    (N2002/I/2) 

 

balance 
Reading/ kg 

mean/kg 1 2 3 4 5 
A 1.000 1.000 1.002 1.001 1.002 1.001 
B 1.011 0.999 1.001 0.989 0.995 0.999 
C 1.012 1.013 1.012 1.014 1.014 1.013 
D 0.993 0.987 1.002 1.000 0.983 0.993 

 
 
 
14 A quantity x is measured many times and the number N of measurements giving a value x is plotted 
 against x. The true value of the quantity is xo.  
 Which graph best represents precise measurements with poor accuracy? 
 
 
 
 
 
 
 
 
 
 
 
 
15 A student uses a micrometer screw gauge to measure the diameter of a wire. He fails to notice  

that with the gauge fully closed, the reading is not zero.     (J2002/2/2) 
 

(a)  State and explain whether the omission introduces a random error or a systematic error into the 
readings of the diameter.        

(b) Explain why the readings are precise but not accurate.  
 
 
16 The quantities p and q are measured with estimated errors p and q. The fractional uncertainty in p/q is 

at most 
 A p + q B p  q C p q

p q

 


 

D p q

p q

 


 
 
17 The power loss P in a resistor is calculated using the formula P= V2/R. 

The uncertainty in the potential difference V is 3% and the uncertainty in the resistance R is 2%. What is 
the percentage uncertainty in P?  (modified from J2002/I/5) 

 
 
 
 
 
 
 
 
 
 

A B C D 

N N N N 

xo x xo x xo x xo x 
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0 1 2 3 4 5 6 

X Y 

cm 

18 A student attempts to measure the diameter a steel ball by using a metre rule to measure four similar balls 
in a row.           

 
The student estimates the positions on the 
scale to be as follows. 

 
X (1.0 ± 0.1) cm 
Y (4.0 ± 0.1) cm 

 
What is the diameter of a steel ball   
together with its associated uncertainty? 
(modified J99/P1/2) 

      
      [Ans: (0.75 ± 0.05) cm] 
 
 
19 A student takes the following readings of the diameter of a wire: 1.52 mm, 1.48 mm, 1.49 mm, 1.51 mm, 

1.49 mm. Which of the following would be the best way to express the diameter of the wire in the student’s 
report? 

 A 1.5 mm B (1.498  0.012) mm C 1.498 mm D (1.50  0.01) mm 
 
20  In a simple pendulum experiment to determine g the equation used is  

2
l

T
g

  where T is the period found to be (2.16 ± 0.01)s when the length l of the pendulum is 

(1.150 ± 0.005) m. Find the value of g and its uncertainty. [Ans: (9.7 ± 0.1) m s2] 
 
21 When an object moves relative to a fluid, the fluid exerts a retarding force on the object. This drag force 

F is due to the viscosity of the fluid. Under non-turbulent conditions, the drag force on a sphere moving 
in a tube of fluid is given by 

    F = 6rv 
 

where r is the radius of the sphere,  is the viscosity of the fluid and v is the velocity of the sphere.  
A sphere of diameter (2.0 ± 0.1) cm falls under non-turbulent conditions through a fluid of viscosity (0.13 
± 0.02) kg m-1 s-1. Using a ruler and a stopwatch, a student from 5C23 measured the velocity through the 
fluid to be 2.7 m s-1 and estimates that the percentage uncertainty in this measurement to be 5%. 
 
(i) Determine the drag force acting on the sphere, with its uncertainty.  Ans: (0.07 ± 0.02)N 
(ii) State a source of error in the measurement of velocity. Suggest an improvement to overcome 

this error. 
 
 
22 The volume of liquid V flowing through a pipe of radius r in time t is given by    

         
 

where p1 and p2 are the pressures at each end of the pipe, L is its length 
        and η (eta) is the viscosity of the liquid.    

  
Use the following readings to determine η together with its uncertainty.  

 
r   = (0.43 ± 0.01) mm  
p1 = (1.150 ± 0.005) x 105 Pa 
p2 = (1.000 ± 0.005) x 105 Pa 
L  = (5.5 ± 0.1) cm 
V  = (10.0 ± 0.1) cm3 
t   = (4.0 ± 0.1) s      [Ans: (1.5 ± 0.3) x 103 N s m2] 

4
1 2( )

8

r p pV

t L






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23 An experimenter wishing to determine the volume in a length of cylindrical glass tubing obtains the 

following readings: 
 length l: (40 ± 1) mm, external diameter D: (12.0 ± 0.2) mm, internal diameter d: (10.0 ± 0.2) mm 

 
 (a) What is the greatest possible percentage error in each reading? (l:2.5%  D:1.7%  d:2%) 
 (b) Compute the greatest possible percentage error in the value of V. (23%) 
 (c) Calculate the volume V of the glass, together with its uncertainty.  (1.4  0.3) x 103 mm3

 
 

24 Consider the suffixes: giga (G), micro (), nano (n), pico (p) and tera (T). Which of the following shows the 
suffixes being arranged in an ascending order, that is, from the smallest to the largest? 

 
 A p, n, , T, G      B  p, , n, G, T 
 
 C   , n, p, T, G      D   p, n, , G, T 
 
 
 
25 Two resistors, of resistances R1 and R2, are connected in parallel. A student measures values of R1 
 and R2, with their associated uncertainties. These are 
 
    R1 = (250 ± 30) kΩ 
     
    R2 = (1000 ± 50) kΩ 
 
 He calculates the value of the effective resistance, Reff = 200 kΩ. [note: 1 / Reff = 1 / R1 + 1 / R2] 
 
 What is the uncertainty in this value? 
  
 A ±21 kΩ   B ±34 kΩ    
 C ±47 kΩ   D ±80 kΩ 
 

 
 
 
 
 
 
 


