
Hwa Chong Institution H2 Computing

1

3 Control Statements

Learning Outcome

3.1 Selection: if and if-else Statements
Selection statements allow a computer to make choices based on a condition.

3.1.1 The Boolean Type, Comparisons, and Boolean Expressions

Boolean data type consists of two values: true and false (typically through standard True/False)

For example, 4 != 4 evaluates to False.

3.1.2 One-Way Selection Statement (if statement)

3.1.3 Two-Way Selection Statements (if-else statements)

Programming Elements and Constructs

Apply the fundamental programming constructs to control the flow of program execution:

Sequence, Selection, Iteration

if x < 0:

 x = - x

Hwa Chong Institution H2 Computing

2

Syntax:

If-else statement can be used to check inputs for errors:

3.1.4 Multi-Way if Statements

Testing conditions that entail more than two alternative courses of action.

Syntax:

Example: the grading scheme below can be described in code by a multi-way if statement.

Hwa Chong Institution H2 Computing

3

Another way to describe the grading scheme in pseudocode is to make use of CASE statements.

BEGIN
INPUT number
CASE OF number
 > 89: letter ← 'A'
 > 79: letter ← 'B'
 > 69: letter ← 'C'
 OTHERWISE: letter ← 'F'
ENDCASE

END

Note that the case clauses are tested in sequence. When a case that applies is found, its statement

is executed and the CASE statement is complete. Any remaining cases are not tested.

3.1.5 Logical Operators and Compound Boolean Expressions

When there are multiple conditions to check, we can use logical operators and compound Boolean

expressions to simplify the code.

Logical Operators: and, or, not

Examples:

Hwa Chong Institution H2 Computing

4

Compare the two approaches below to check inputs for errors:

 The logical operators are evaluated after comparisons but before the assignment operator

 not has higher precedence than and and or

TYPE OF OPERATOR OPERATOR SYMBOL

Exponentiation **

Arithmetic negation -

Multiplication, division, quotient, remainder *, /, //, %

Addition, subtraction +, -

Comparison ==, !=, <, >, <=, >=

Logical negation not

Logical conjunction and disjunction and, or

Assignment =

3.1.6 Nested if Statements

An auto insurance agency assigns rates based on sex and age. Males below age 25 pay the highest

premium, $1000. Males 25 or older pay $400. Females below age 21 pay $800, whereas those

21 or older pay $500.

if gender == "m":

 if age < 25:

 rate = 1000

 else:

 rate = 400

else:

 if age< 21:

 rate = 800

 else:

 rate = 500

Hwa Chong Institution H2 Computing

5

Some nested if statements can be described as an else-if statements.

Nested if statements elif statements

score = int(input("Enter score: "))

print ("Grade of student is:", end = " ")

if score>=90:

 print ("A")

else:

 if score >=80:

 print ("B")

 else:

 if (score >= 70):

 print ("C")

 else:

 print ("F")

score = int(input("Enter score: "))

print ("Grade of student is:", end = " ")

if score>=90:

 print ("A")

elif score >=80:

 print ("B")

elif score >= 70:

 print ("C")

else:

 print("F")

Tutorial 3A

1. Determine the value of each of the following Python expressions:

a. not ((4.5 < 12.9) and (6 * 2 >= 13))

b. not ((4.5 < 12.9) or (6 * 2 >= 13))

c. (0 == 1) or (2 < 3) and (7 < 6)

d. (2 < 3) or (0 == 1) and (7 < 6)

e. (50 < 100) and ('100' < '1034')

2. What’s the difference?

(a)
score = int(input ("Enter score: "))

eligible = input("Enter eligibility: ")

if score > 90:

 if eligible == "Y":

 print ("Hire")

else:

 print ("Reject")

(b)
score = int(input ("Enter score: "))

eligible = input("Enter eligibility: ")

if score > 90:

 if eligible == "Y":

 print ("Hire")

 else:

 print ("Reject")

Hwa Chong Institution H2 Computing

6

3. Write code to determine someone’s risk of heart disease using the following rules based

 on age and body mass index (BMI).

4. Suppose that a student is assigned a band 1, 2 or 3 as follows:

 - Band 1 for a score of at least 85

 - Band 2 for a score of under 85 but at least 70

 - Band 3 for a score under 70

Neither of the program segments below is well-written -- one is correct but

inefficient; the other is incorrect. Explain what is wrong with each.

if score >= 70:

 band = 2

elif score >=85:

 band = 1

else:

 band = 3

 if score >= 85:
 band = 1

 if score >= 70 and score < 85:

 band = 2

 If score < 70:

 band = 3

5. Assume that the variables x and y refers to strings. Write a code segment that prints these

strings in alphabetical order. You should assume that they are not equal.

6. [Referring to the practice question in Tutorial 1A] John is requesting a program that

 computes his income tax. The rule for calculation is

 Taxpayers must enter their gross income.

 Taxpayers are allowed $10,000 standard deduction.

 For each dependent, taxpayer is allowed additional $2000 deduction.

 Income tax is charged at a flat rate of 20% based on taxable income after all deductions.

 Write a program following your design in Tutorial 1A.

7. In a two-person game of Rock-Scissors-Paper, each player selects either ‘R’, ‘S’ or ‘P’.

 The winner is determined as follows:

 Rock breaks Scissors.

 Paper covers Rock.

 Scissors cuts Paper.

The game is a tie if both players select the same choice.

Write a program to allow players make their input and output the winner.

Hwa Chong Institution H2 Computing

7

3.2 Definite Iteration: The for Loop

– Repetition statements (or loops) repeat an action

– Each repetition of action is known as pass or iteration

3.2.1 Range Function

Range function generates a list of integers to help to iterate the loop. It expects up to three

arguments.

– range (<upper bound + 1>)

With one argument only, the list starts from 0 and includes all numbers smaller than the argument.

– range (<lower bound>, <upper bound + 1>)

With two arguments, the list starts from the first argument and includes all numbers smaller than

the second argument.

– range (<lower bound>, <upper bound + 1>, <step>)

With three arguments, it allows you specify a step value.

When the third parameter is a negative number, it becomes a list that counts down.

3.2.2 Executing a Statement a Given Number of Times

Python’s for loop is control statement that most easily supports definite iteration.

The form of this type of loop is:

loop header

statements in body must be indented and aligned in the same column

 loop body

Hwa Chong Institution H2 Computing

8

Example: Loop to compute an exponentiation for a non-negative exponent.

If the exponent were 0, the loop body would not execute and value of product would remain as 1

Example: Loop to print the same scripts several times.

3.2.3 Control Variable

Incrementing the control variable by step of 1

FOR i ← 1 to 4
 OUTPUT i, " squared is ", i * i
ENDFOR

The output will be:

 1 squared is 1 <-- printed when i = 1

 2 squared is 4 <-- printed when i = 2

 3 squared is 9 <-- printed when i = 3

 4 squared is 16 <-- printed when i = 4

Decrementing the control variable by step of 1

FOR i ← 4 TO 1 STEP −1
 OUTPUT i, " squared is ", i * i
ENDFOR

The output will be:

 4 squared is 16 <-- printed when i = 4

 3 squared is 9 <-- printed when i = 3

 2 squared is 4 <-- printed when i = 2

 1 squared is 1 <-- printed when i = 1

Hwa Chong Institution H2 Computing

9

Do Not Alter the Control Variable

A statement in the for loop body should never assign a value to the control variable.

FOR i ← 1 to 10

OUTPUT i
i ← i + 2 // don't do this

ENDFOR

3.2.4 Indentation

Clear indentation and indication of loop body is important. When you want the loop body to be a

block of statements, the block must be contained within the ENDFOR markers, for readability.

BEGIN
FOR i ← 6 to 8
 square ← i * i
 OUTPUT "this time i equals ", i
 OUTPUT "its square is ", square
ENDFOR
OUTPUT "so long"

 END

The output will be:

this time i equals 6

 its square is 36

 this time i equals 7

 its square is 49

 this time i equals 8

 its square is 64

 so long

Remark
1. Note the indentation, and ENDFOR to enclose the compound statements which makes up the

loop body. This also helps to separate the loop from the statement OUTPUT “so long”.

2. The indentation of the loop body to make it stand out to the human eye. Note that the statement

OUTPUT “so long” is not indented but is aligned with the FOR statement, since it comes

after the loop.

3.2.5 Traversing the Contents of a Data Sequence

Strings are also sequences of characters and values in a sequence can be visited with a for loop:

Hwa Chong Institution H2 Computing

10

3.2.6 Processing Input Groups of Data

General Form in Top Down Design

Before: initialize any variables that need initializing

 print any headings

During: FOR i ← ___ to ___
 output-input combination(s) to get the information on one person or item

 process that person's or item's information

 ENDFOR

After: print any final tallies or results

Example The following program uses a for loop to process the scores of four students, which

are input by the user. It then counts and displays total number of students scored at least 90.

For example, if the user were to input scores as follows,

 enter score of student 1: 92

 enter score of student 2: 85

 enter score of student 3: 95

 enter score of student 4: 84

 enter score of student 5: 80
The output will be:

 2 student (s) scored at least 90

Here is the program, in pseudocode and Python code.

program counting
find the number of students scored at least 90

BEGIN
 count ← 0

 FOR student ← 1 TO 5
 # read in students’ score from user
 OUTPUT “enter score of student “, student, “: “
 INPUT score

 IF score >= 90
 count ← count + 1
 ENDIF
 ENDFOR

 OUTPUT count, “ student(s) scored at least 90”
END

Hwa Chong Institution H2 Computing

11

Initializing

A variable that is given a starting value before a loop is said to be initialized. For example, in the

previous program, the statement
 count = 0

initialized count to 0. In the subsequent for loop, whenever there is a score at least 90, count is

increased by 1.

[CAUTION!] If you did not initialize count to 0, its starting value would be unreliable. It might

be a value left over from the previous run program. Even in pseudocode, it should be clear that

readers need not make their own assumptions of the initial value.

Example The next program will use the variable sum to compute the sum of four numbers

input by the user. For example, it the user were to input numbers as follows,

 enter number: 17

 enter number: 13

 enter number: 20

 enter number: 8

The output will be:

 The sum is 58

Here is the program, in pseudocode and Python code.

program summing, finds the sum of 4 input integers

BEGIN
 sum ← 0

 FOR i ← 1 to 4
 OUTPUT “enter number “
 INPUT number

 sum ← sum + number
 ENDFOR

OUTPUT “The sum is “, sum

END

count = 0

for student in range(1, 5+1):

 print ("enter score of student", student, ":",end = " ")

 score = int(input())

 if score >= 90:

 count = count + 1

print (count, "student(s) scored at least 90")

Hwa Chong Institution H2 Computing

12

Example Suppose we wish to find the largest, or maximum, number from a list of five positive

integers that are entered by the user. An algorithm can be developed using the following ideas.

Use a variable called maxSoFar. Initialize maxSoFar with the first number, then give each of the

remaining numbers a chance to displace the current value of maxSoFar. The final value of

maxSoFar will be the maximum.

 Before: initialize maxSoFar with first number

 During: for i = 2 to 5
 read a number

 test whether it is larger than maxSoFar,

 if so change the value of maxSoFar

 After: print the value of maxSoFar

Here is the detailed pseudocode and Python code.

program maxOf5
finds the maximum of 5 input positive integers

BEGIN
 OUTPUT “enter first number: “
 INPUT maxSoFar

 FOR i ← 2 TO 5
 OUTPUT “enter next number: “
 INPUT numb

 IF numb > maxSoFar

 maxSoFar ← numb
ENDIF

ENDFOR

OUTPUT “the maximum is: “, maxSoFar
END

sum = 0

for i in range(1, 4+1):

number = int(input("enter number:"))

sum = sum + number

print ("The sum is", sum)

Hwa Chong Institution H2 Computing

13

3.2.7 Variable Limits

You can increase the flexibility of a program by using variable(s) as the upper or lower limit in

the for header. A common application allows the user to specify how many groups of data will be

entered.

Example In the following program, in pseudocode, the user is asked to input the number of

employees (n) to be processed. Note the use of the variable n as the upper limit in the for header.

 FOR employee ← 1 to n

Using n gives the program added flexibility -- the user does not have to change any lines in the program

to run it for different numbers of employees.

program payroll
finds each employee's wage and total payroll

BEGIN
 # initialize the total payroll
 sum ← 0
 OUTPUT “enter number of employees: “
 INPUT n

 FOR employee ← 1 to n
 # get one employee's data
 OUTPUT “enter hours and rate of employee “, employee
 INPUT hours, rate

 # process that data and print the wage for one employee
 wage ← hours * rate
 sum ← sum + wage
 OUTPUT “Wage of employee”, employee, “is $”, wage
 ENDFOR

 # print final result
 OUTPUT “total payroll $”, sum
END

maxSoFar = int(input("enter first number: "))

for i in range(2,5+1):

numb = int(input("enter next number: "))

if numb > maxSoFar:

 maxSoFar = numb

print ("the maximum is:", maxSoFar)

Hwa Chong Institution H2 Computing

14

3.2.8 Nested for Loops

In nested for loops, the entire outer loop body is executed for each of the values of the outer loop

control variable. Thus, for each value of the outer loop control variable, the inner for loop will run

through all of its values.

FOR n ← 2 to 3
FOR i ← 6 to 7
 OUTPUT n, “ “, i
 OUTPUT “hello”
ENDFOR

ENDFOR

The output will be

 2 6
 hello printed when n = 2

 2 7

 hello

 3 6

 hello
 3 7 printed when n = 3

 hello

3.2.9 Case Study: Row-by-Row Processing

An important application of nested loops is in using an outer loop to process a number of rows, where

the processing for each row also requires a loop. Write a program segment to generate a right triangle

with numRows rows of asterisks, such that the first row has one asterisk, the second row has two

asterisks, the third row has three asterisks, and so on, and where the rightmost asterisks from each

row are vertically aligned. For example, when numRows=4, the segment should generate the output

sum = 0

n = int(input("enter number of employees:"))

for employee in range(1, n+1):

 print("\nEnter hours and rate for employee ",employee)

 hours = float(input("Hours: "))

 rate = float(input("Rate: "))

 wage = hours * rate

 sum = sum + wage

 print ("Wage of employee", employee, "is $%0.2f" % wage)

print ("total payroll $%.2f", %sum)

Hwa Chong Institution H2 Computing

15

 *
 **

Design: assign a value to numRows

 FOR n ← 1 to numRows

 indent the appropriate number of spaces (loop needed)

 print n asterisks (loop needed)

 drop the cursor to the next line

 ENDFOR

Note that the number of spaces you indent keeps decreasing by 1, as n increases by 1. Thus, you

might realize that in the nth row, you must indent (numRows - row) spaces, which can be done with

a for loop that prints (numRows - row) blanks.

BEGIN
INPUT numRows
FOR n ← 1 to numRows
 FOR space ← numRows – n TO 1 STEP −1
 OUTPUT “ ”
 ENDFOR

 FOR star ← 1 TO n
 OUTPUT “*”
 ENDFOR

 OUTPUT newline
ENDFOR

END

If we don’t use nested for loop, it can be coded as follows:

numRows = int(input("Number of rows: "))

for row in range(1, numRows+1):

for space in range(numRows-row, 0, -1):

 print (" ", end='')

for star in range(1, row+1):

 print ("*", end='')

print ()

numRows = int(input("Number of rows: "))

for row in range(1, numRows+1):

 print (" "*(numRows-row), end='')

 print ("*"*row)

Hwa Chong Institution H2 Computing

16

Tutorial 3B

1. Write the outputs of the following loops:

(a) for count in range(5):
 print (count+1, end=" ")

(b) for count in range(1, 4):
 print (count, end=" ")

(c) for count in range(1, 6, 2):
 print (count, end=" ")

(d) for count in range(6, 1, -1):
 print (count, end=" ")

2. Write a loop that prints your name 50 times. Each output should begin on a new line.

3. Write a loop that that prints the first 128 ASCII values followed by the corresponding

characters.

4. Assume that the variable testString refers to a string. Write a loop that prints each

character in this string, followed by its ASCII value.

5. Write a loop that counts the number of space characters in a string. Recall that the space

character is represented as " ".

6. The German mathematician Gottfried Leihniz developed the following method to

approximate the value of  :

 /4 = 1 – 1/3 + 1/5 – 1/7 +

Write a program that allows the user to specify the number of iterations used in this

approximation and that displays the resulting value.

7. Write a program that receives as input the noon temperature for each of the days in a week.

It will find the average noon temperature for just those days on which the noon temperature

was above freezing (0 degree Celsius).

Hwa Chong Institution H2 Computing

17

8. Suppose a gardener has 100 feet of fencing and wishes to enclose a rectangular garden

alongside her house. Drawing a diagram, we find that the area of the garden equals (x)((100

- 2x)/2)

 x

x

 (100 - 2x)/2

 Write a program that will produce the following table of values and the maximum area.

 Length Area

 10 400

 11 429

 . .

 . .

 44 264

 45 225

 Maximum area is 625

9. Write a program to print a multiplication table based on the number entered. A sample

run (with input 5) is shown below:

Number of Columns: 5

 1 2 3 4 5

1 1

2 2 4

3 3 6 9

4 4 8 12 16

5 5 10 15 20 25

Hwa Chong Institution H2 Computing

18

3.3 Conditional Iteration: The while Loop

– Conditional iteration requires that condition be tested within loop to determine if it should

 continue, it is called continuation condition.

– The statements within loop can execute zero or more times.

3.3.1 The Structure and Behavior of a while Loop

Also called the entry-control loop, the while loop starts by testing the while condition. If the

condition is true, the entire loop body is executed. Then control is returned to the top to retest the

while condition. This process is repeated as long as the while condition is true.

[CAUTION!] Improper use may lead to infinite loop

[Pseudocode]

WHILE (test condition)
 # body of loop;
ENDWHILE

Example
n ← 7
WHILE (n >= 0)
 OUTPUT n
 n ← n - 5
 OUTPUT 'Hi ', n
ENDWHILE

The output will be

 7 printed during 1st execution of loop body

 Hi 2

 2 printed during 2nd execution of loop body

 Hi −3

Hwa Chong Institution H2 Computing

19

Post-control loop REPEAT UNTIL also behave like a while loop.

n  7
REPEAT

OUTPUT n
n  n - 5

 OUTPUT 'Hi ', n
UNTIL n < 0

The statements in the loop are executed at least once. The condition is tested after the statements

are executed and if it evaluates to TRUE the loop terminates, otherwise the statements are executed

again.

3.3.2 Loop Logic, Errors, and Testing

Errors to rule out during testing while loop:

– Incorrectly initialized loop control variable

– Failure to update this variable correctly within loop

– Failure to test it correctly in continuation condition

To halt loop that appears to hang during testing, type Ctrl+c in terminal window or IDLE shell.

3.3.3 Fixed Step-Controlled While Loops

Problem Codes using for loop Codes using while loop

Sum of all integers

from 1 to 100000

Countdown from 10

to 1

All odd integers

from 1 to 10

 for i in range(1,10,2):
 print(i)

i = 1

while i <= 9:

 print (i)

 i = i + 2

Count controlled, or fixed step controlled while loops are similar to for loops in that there is a

control variable that increases or decreases by a fixed step. However, when it is a fixed number of

iterations, for loop is always preferred.

Hwa Chong Institution H2 Computing

20

3.3.4 Data Sentinel-Controlled While Loops

In a data sentinel-controlled loops, the user can terminate data entry when he or she chooses by

entering an appropriate signal known as sentinel. There are two types of sentinel-controlled loops,

which we call types A, and B.

Type A: Using a y or n Question

Suppose that on this run the user wishes to find the sum

 15 + 47 + 53 + 64

In the following program, in pseudocode, the user notifies the computer that there is no further

data by entering an n in response to the prompt type y to continue, n to stop.

program FindSum;
finds the sum of any number of input integers

BEGIN
 sum ← 0
 ans ← ‘y’
 WHILE ans = 'y'
 OUTPUT “enter number “
 INPUT numb
 sum ← sum + numb
 OUTPUT “ type y to continue, n to stop: “
 INPUT ans
 ENDWHILE
 OUTPUT “The sum is “, sum
END

Here is what would appear on the screen.

 enter number 15

 type y to continue, n to stop: y

 enter number 47

 type y to continue, n to stop: y

 enter number 43

 type y to continue, n to stop: y

 enter number 64

 type y to continue, n to stop: n

 The sum is 169

sum = 0

ans = "y"

while (ans == "y") or (ans == "Y") :

 numb = int(input("enter number"))

 sum = sum + numb

 ans = input("type y to continue, n to stop:")

print ("The sum is", sum)

Hwa Chong Institution H2 Computing

21

Type B: Using a Phony Value

The other type of sentinel is phony value −1. The user signals an end to data entry by typing the

phony value −1.

BEGIN
sum ← 0

 OUTPUT “enter number or −1 to stop:”
 INPUT numb

 WHILE numb <> −1
 sum ← sum + numb
 OUTPUT “enter number or −1 to stop:“
 INPUT numb
 ENDWHILE
 OUTPUT “The sum is “, sum
END

Note the two occurrences of the same output-input combination, once before the loop and once

at the bottom of the loop body.

If we use the same data entry of Type A, here is what would appear on the screen.

enter number or -1 to stop: 15

 enter number or -1 to stop: 47

 enter number or -1 to stop: 43

 enter number or -1 to stop: 64

 enter number or -1 to stop: −1

 The sum is 169

Recall in Section 3.2.7, if we can get the total number of data entry in advance, it will become a

fixed number of iteration and for loop is better.

3.3.5 Task-Controlled While Loop

In some situations when the condition for the completion of the task is not a counter or a data

sentinel, it is useful to think of a loop in terms of its task as follows:

 WHILE task not completed
 # loop body;
 ENDWHILE

Example The sum of the squares 12 + 22 + 32 + eventually goes over 1000.

Write a program, in pseudocode, to find the integer whose square first puts the sum over 1000.

The output should be of the form

 Sum first goes over 1000 when you add ____ squared

 Sum is ________

Hwa Chong Institution H2 Computing

22

program over1000;
finds first square to put sum over 1000

BEGIN
 sum ← 0
 n ← 0
 WHILE sum <= 1000
 n ← n + 1
 sum ← sum + n * n
 ENDWHILE
 OUTPUT “Sum first goes over 1000 when you add “, n, “ squared”
 OUTPUT “Sum is “, sum
END

3.3.6 Multiple Task-Controlled While Loops

In cases when there are two possible reasons for terminating a loop, it will be necessary to use a

compound condition in the exit test. We have learnt to use compound Boolean expressions in

Section 3.1.5.

Usually, in such situations, it will also be necessary to include an if-else test after the loop to

determine which condition caused the exit.

Example (Bounded Number of Tries)

Write a program, in pseudocode, in which the user is given a maximum of three tries to give the

capital of Indonesia. If the user fails to give the correct answer by the third try, he or she is then

informed what the correct answer is. Format the program so that it could produce the following

two sample runs:

 Give capital of Indonesia Bravo

 Give capital of Indonesia Manila

 Give capital of Indonesia Tokyo

 You did not get it in 3 tries

 The correct answer is Jakarta

 Give capital of Indonesia Bravo

 Give capital of Indonesia Jakarta

 Nice work. You got it on try 2

program stateCapital

BEGIN

STATE ← “Indonesia”
CAPITAL ← “Jakarta”

 tries ← 1

OUTPUT "Give captial of", STATE, ": "
 INPUT guess

Hwa Chong Institution H2 Computing

23

 WHILE (guess <> CAPITAL) AND (tries < 3)
 OUTPUT "Give captial of", STATE, ": "
 INPUT guess
 tries ← tries + 1
 ENDWHILE

 IF guess = CAPITAL
 OUTPUT "Nice work. You got it on try ", tries
 ELSE
 OUTPUT "You did not get it in 3 tries"
 OUTPUT "The correct answer is ", CAPITAL
 ENDIF
END

3.3.7 Error Trapping and Robustness

There are techniques the programmer can use to gain protection against the entry of incorrect data.

One technique is to include clear prompts so that the user knows the precise form of the inputs. A

second technique is to include program code to detect and trap mistakes. A program that contains

such safeguards is said to be robust.

The programme below determines whether an input capital letter is in the 1st half (A-M) or the

2nd half (N-Z) of the alphabet.

BEGIN
OUTPUT “enter capital letter “
INPUT letter
IF (letter >= 'A') AND (letter <= 'M')
 OUTPUT letter, “ in 1st half of alphabet”
ELSE
 OUTPUT letter, “ in 2nd half of alphabet”
ENDIF

END

Here is a run of the fragment in which the user failed to heed the prompt to enter a capital letter.

 enter capital letter d

 d in 2nd half of alphabet

The conditions, letter >= 'A' and letter <= 'M', are evaluated using ASCII values of letter. In this

case, ASCII values of d is higher than that of ‘A’ and ‘M’.

Hwa Chong Institution H2 Computing

24

In the following robust program fragment, note the use of a while loop to force the user to enter a

capital letter. Execution does not get beyond the loop until the user enters an uppercase letter.

BEGIN
OUTPUT “enter capital letter “
INPUT letter

WHILE (letter < 'A') OR (letter > 'Z')
 OUTPUT “*** Not a Capital Letter ***”
 OUTPUT “enter capital letter “
 INPUT letter
ENDWHILE

IF (letter >= 'A') AND (letter <= 'M')
 OUTPUT letter, “ in 1st half of alphabet”
ELSE
 OUTPUT letter, “ in 2nd half of alphabet”
ENDIF

END

Here is a typical run of the above.

 enter capital letter d

 *** Not a Capital Letter ***

 enter capital letter D

 D in 1st half of alphabet

3.3.8 Nested While Loops

Consider the following program, in pseudocode, which will compute separate point totals for

males and females. The user will keep inputting data pairs such as 24 m and 47 f, where the first

item of the data pair is the point total and the second is the sex of the player who achieved it.

program summingPoints

BEGIN
 maleSum ← 0

femSum ← 0
 ans ← ‘y’

 WHILE (ans = 'y') OR (ans = ‘Y’)
 OUTPUT "enter number of points"
 INPUT points
 OUTPUT “enter sex (m or f):"
 INPUT sex

Hwa Chong Institution H2 Computing

25

 WHILE (sex <> 'm') AND (sex <> 'f') # Error Trapping
 OUTPUT "enter sex (m or f):"
 INPUT sex
 ENDWHILE

 IF (sex = 'm')
 maleSum ← maleSum + points
 ELSE
 femSum ← femSum + points
 ENDIF

 OUTPUT "Type y to continue, n to stop: "
 INPUT ans
 ENDWHILE

 print "Total points for the male team: ", maleSum
 print "Total points for the female team: ", femSum
END

Tutorial 3C

1. As input for program receipt, a cashier enters in the data for each of the customer's

purchases. Each data group consists of an item name, the price of the item, and the quantity

of that item being purchased. The data sentinel xyz is used instead of an item name. Here

is the screen display for a typical run that would also produce a printed sales receipt.

enter item name or xyz to stop: hammer

 enter price per item: 19.50

 enter quantity: 1

1 hammer $ 19.50

enter item name or xyz to stop: umbrella

 enter price per item: 14.50

 enter quantity: 2

2 umbrella $ 29.00

enter item name or xyz to stop: lamp

 enter price per item: 3.50

 enter quantity: 6

6 lamp $ 21.00

enter item name or xyz to stop: xyz

 Total bill $ 69.50

Hwa Chong Institution H2 Computing

26

2. The greatest common divisor of two positive integers, A and B, is the largest number that

 can be evenly divided into both of them. Euclid’s algorithm can be used to find the

 greatest common divisor (GCD) of two positive integers. You can use this algorithm in

 the following manner:

(a) Compute the remainder of dividing the larger number by the smaller number.

(b) Replace the larger number with the smaller number and the smaller number with

the remainder.

(c) Repeat this process until the smaller number is zero.

The larger number at this point is the GCD of A and B. Write a program that lets the user

enter two integers and then prints each step in the process of using the Euclidean

algorithm to find their GCD.

Assignment 3

1. The factorial of an integer N is the product of all of the integers between 1 and N, inclusive.

Write a program that computes the factorial of a given integer N.

2. Write a program that accepts the lengths of three sides of a triangle as inputs.

The program output should indicate whether or not the triangle is an equilateral triangle.

3. Write a program that reads a word and print the number of letters in the word, the

 number of vowels in the word, and the percentage of vowels.

Enter a word: sequoia

Letters: 7

Vowels: 5

Percentage of vowels: 71.43

4. Write a program that inputs a positive integer n and then prints a rectangle of asterisks n

 lines high and 2n columns wide. For example, if the input is 5 then the output should be

* * * * * * * * * *

* *

* *

* *

* * * * * * * * * *

5. The sum of the divisors of the number 15 is 24 (1 + 3 + 5 + 15). Write a program that

 will print the sum of the divisors for each of the integers from 100 to 110. The final line

 of the printout should state which integer has the largest sum. Format the output as

 follows:

Hwa Chong Institution H2 Computing

27

100: 1 2 4 5 10 20 25 50 100

sum of divisors 217

.

.

.

110: 1 2 5 10 11 22 55 110

sum of divisors ____________

________ has maximum sum of divisors.

6. In the game of Lucky Sevens, the player rolls a pair of dice. If the dots add up to 7, the

 player wins $4; otherwise, the player loses $1. Suppose that a casino tells player that

 there are lots of ways to win: (1, 6), (2, 5), etc. Write a program that takes as input the

 amount of money that the player wants to put into the pot, and play the game until the pot

 is empty. At that point, the program should print the number of rolls it took to break the

 player, as well as maximum amount of money in the pot.

Hint: you may use random.randint to generate random number from among numbers

between two arguments, included.

7. Guess My Number Game (Design the program for both versions)

Version A: the computer picks a random number between 1 and 100 that the player has to

guess. For each guess, the computer must tell the player if the number is too small or too

large for the actual number. When the player gets the number, the program will display

the number of tries that the player used. A sample output is shown below.

Version B: The player and the computer trade places. That is, the player picks a random

number between 1 and 100 that the computer has to guess. Before you start, think about

how the computer will guess.

