Tutorial 2A: Kinematics Self-Review Questions (Suggested Solution)

	$\frac{S_{BC}}{\sin \theta} = \frac{S_{AC}}{\sin 125^{\circ}}$
	$\theta = 33.0^{\circ}$
	(b)Average velocity = $\frac{169}{\frac{35}{60} + \frac{15}{60} + 2}$ = 59.6 km h ⁻¹ , 33.0° east of north <u>Points to note:</u> Students are expected to be able to recall the cosine and sine rule as these formulas are not given in any Physics test/exam. Answers should only be written in terms of North, South, East, West if such terminology were used in the question in the first place.
S3	(a)Time taken = Distance travelled / speed = $\frac{\pi R}{R} = \frac{\pi (4.0)}{1.0} = 3.14$ s
	V = 4.0
	(b) average velocity = $\frac{1}{10000000000000000000000000000000000$
	(c) change in velocity, $\Delta v = v_f - v_i = 8.0 \text{ m s}^{-1}$, upwards
	At A, \vec{v}_i At B, \vec{v}_f For $\Delta \vec{v}$
S4	total change in displacement $1.5-4.0$
	(a)average velocity between t = 0.0s and 3.0s, = $\frac{1}{\text{total time}} = \frac{-0.85}{3.0-0.0} = -0.85$
	(b) At t = 3.0s, instantaneous velocity = $\frac{dx}{dt}$ = gradient of tangent line at t = 3.0s
	$=\frac{3.5-0.0}{0.0-5.2}=-0.67 \text{ m s}^{-1}$
	<u>Exam skills:</u>
	The 2 points chosen as coordinates for the gradient of the tangent line must be at least $\frac{1}{2}$ the span of the graph.
	Points to note:
	A common misconception is students has the wrong concept of velocity = $\frac{x}{t}$ and think that
	instantaneous velocity $=\frac{x}{t} = \frac{x}{3} = 0.5 \text{ m s}^{-1}$.
S5	Gradient of <i>d</i> - <i>t</i> graph is <i>v</i> - <i>t</i> graph. Note that at $t = 0$, the <i>v</i> is zero and hence the gradient of the <i>d</i> - <i>t</i> graph at $t = 0$ must be flat. When the object reaches terminal velocity (<i>v</i> - <i>t</i> graph flattens out horizontally), the gradient of the <i>d</i> - <i>t</i> graph becomes constant (non-zero). Ans: C
S6	Displacement = area under velocity-time graph = (area from 0 s to 5 s) – (area from 5 s to 7 s)
	$= \frac{1}{2} \times 5 \times 2 - \frac{1}{2} \times 2 \times 2$
	= 3 m Ans: B
	Possible extensions:
	Can you visualise the motion of the particle and sketch a graph to show its motion?

S7	For acceleration to have the greatest numerical value, the change in velocity has to be the greatest ⇒ Slope of the graph has to change the most In fact, for all the other options the acceleration is zero. Ans: B
S8	(1) Slope of s-t graph gives the v-t graph
	(2) v-t graph is a continuous graph => no kinks in s-t graph Ans: C
S9	(a) Consider the package at the point of released, u=5.0 m s (\uparrow) $s = ut + \frac{1}{2}at^2$ $-21.0 = 5.0t + \frac{1}{2}(-9.81)t^2$ t = -1.62 s (NA) or $t = 2.64$ s (b) (\uparrow) $v = u + at$ v = 5.0 + (-9.81)(2.64) v = -20.9 m s ⁻¹ (negative means downward direction) <u>Points to note:</u> The sign convention that you chose is important in kinematics. Do indicate the sign convention that you are taking so that your working is clear to the examiner. Note that even if you take a different direction for part (b), that is, the sign convention chosen is downwards as positive, (1) $v = v + at$
	$v = -5.0 + (9.81)(2.64) = 20.9 \text{ m s}^{-1}$ (downwards)

Tutorial 2B: Kinematics Self-Review Questions (Suggested Solution)

S5	$(\rightarrow) s_x = u_x t + \frac{1}{2} a_x t^2$
	$s_x = 24 \times 4.0 = 96 \mathrm{m}$
	$\left(\downarrow\right)s_{y} = u_{y}t + \frac{1}{2}a_{y}t^{2}$
	$s_y = 0 + \frac{1}{2} \times 9.81 \times 4.0^2 = 78m$
	Ans: A
S6	$(\rightarrow) s_x = u_x t + \frac{1}{2} a_x t^2$
	$1.00 = u_x t(1)$
	$(\downarrow) s_{y} = u_{y}t + \frac{1}{2}a_{y}t^{2}$
	$0.52 = 0 + \frac{1}{2} \times 9.81t^2$
	$t = 0.326 \mathrm{s} $ (2)
	Subs. (2) into (1),
	$u_x = \frac{1.00}{0.326} = 3.07 \text{ m s}^{-1}$
S7	$(\rightarrow) s_x = u_x t$
	$150 = (40\cos\theta)t(1)$
	Let t be the time taken for the particle to reach 150 m horizontal range.
	$(\uparrow) s_{y} = u_{y}t + \frac{1}{2}a_{y}t^{2}$
	$0 = u \sin \theta - g(t/2)$ $2(40) \sin \theta$
	$t = \frac{2(40)\sin^2 \theta}{g}(2)$
	Subst. (2) into (1),
	$150 = (40\cos\theta) \times \left(\frac{2 \times 40 \times \sin\theta}{g}\right)$
	$150 = \frac{40^2 \sin 2\theta}{9.81}$
	$\theta = 33.4^{\circ}$ $= 6 = 56.6^{\circ}$

S8	Let the initial speed be <i>u</i> .
	$(\rightarrow) s_x = u_x t$
	$100 = (u \cos \theta)(2.0)$
	$u\cos\theta = 50$ (1)
	$\left(\uparrow\right) s_{y} = u_{y}t + \frac{1}{2}a_{y}t^{2}$
	$0 = (u \sin \theta)(2.0) + (0.5)(-9.81)(2.0)^2$
	$u \sin \theta = 9.81$ (2)
	Taking (2) / (1),
	$\tan \theta = 9.81/50$
	$\theta = 11^{\circ}$