

# H2 Mathematics (9758) Chapter 2 Transformations of Curves Learning Experience 1 Exploration of Basic Transformations Filled-in Copy

#### Success Criteria:

| Surface Learning |                                                                                                                                                                                                                       | Deep Learning |                                                                                                                                                                        | Transfer Learning |
|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
|                  | Determine the translation units in<br>the positive / negative y-direction<br>by observing the graph using the<br>applet.                                                                                              |               | Identify the replacement<br>of variable involved in<br>translation of a graph<br>(i.e. $y = f(x) + a$ &                                                                |                   |
|                  | Determine the translation units in<br>the positive / negative <i>x</i> -direction<br>by observing the graph using the<br>applet.                                                                                      |               | y = f(x+a))<br>Identify the replacement<br>of variable involved in                                                                                                     |                   |
|                  | Identify whether the transformation involves either the <i>x</i> -value or the <i>y</i> -value.                                                                                                                       |               | stretching of a graph<br>(i.e. $y = af(x) \&$                                                                                                                          |                   |
|                  | Determine the stretch factor<br>parallel to <i>x</i> -axis / <i>y</i> -axis by<br>observing the graph using the<br>applet.<br>Visualise a graph that undergoes a<br>reflection in the <i>x</i> -axis / <i>y</i> -axis |               | $y = f\left(\frac{-}{a}\right)$<br>Write down the equation<br>of the resultant curve<br>after going through a<br>reflection in the <i>x</i> -axis /<br><i>y</i> -axis. |                   |
|                  | using applet.                                                                                                                                                                                                         |               | Identify the replacement<br>of variable involved in<br>reflecting a graph either<br>in the <i>x</i> -axis or <i>y</i> -axis.                                           |                   |

#### **Instructions to students:**

1. For each applet in Section 1 and 2, **move the slider** to vary the value of *A* before writing down your observations.



2. Circle the correct answer where there is an \* sign.

#### §1 Translation

#### **§1.1** Translation in the direction of *y*-axis

Let  $y = (x-1)^2 + 1$ . Using Geogebra, observe the change in the behavior of the graph of  $y = \left[ (x-1)^2 + 1 \right] + A$  when the value of A changes.

#### Activity 1

#### **Observation 1:**

Describe the change in the graph of  $y = (x-1)^2 + 1$  when the value of A increases from 0 to 3.

**Translation of 3 units in the positive** *y***-direction.** 

**Observation 2:** Sketch the graph after this transformation.



#### **Observation 3:**

Let (1, 1) be the minimum turning point on the curve  $y = (x-1)^2 + 1$ . Observe and write down the new coordinates of this point after going through this transformation. (1,4)

Label this point on the transformed graph that you have drawn in Observation 2.





#### **Observation 5:**

What is the replacement of variable involved in transforming the graph of  $y = (x-1)^2 + 1$  to

$$y = \left[ \left( x - 1 \right)^2 + 1 \right] - 2?$$

Replace y by y - (-2) = y +

$$-(-2) = y + 2$$

Filled-in Copy

#### **§1.2** Translation in the direction of *x*-axis

Let  $y = (x-1)^2 + 1$ . Using Geogebra, observe the change in the behavior of the graph of  $y = [(x+A)-1]^2 + 1$  when the value of *A* changes.

#### Activity 1

#### **Observation 1:**

Describe the change in the graph of  $y = [(x+A)-1]^2 + 1$  when the value of A increases from 0 to 2.

**Translation of 2 units in the negative** *x***-direction.** 

**Observation 2:** Sketch the graph after this transformation.



#### **Observation 3:**



Label this point on the transformed graph that you have drawn in Observation 2.



## Activity 2

#### **Observation 1:**

Describe the change in the graph of  $y = [(x+A)-1]^2 + 1$  when the value of A decreases from 0 to -3.

#### **Translation of 3 units in the positive** *x***-direction.**





#### **Observation 3:**

Let (1, 1) be the minimum turning point on the curve  $y = (x-1)^2 + 1$ . Observe and write down the new coordinates of this point after going through this transformation. (4,1)

Label this point on the transformed graph that you have drawn in Observation 2.

#### **Observation 4:**

Which value is changed?

*x*-value

#### **Observation 5:**

What is the replacement of variable involved in transforming the graph of  $y = (x-1)^2 + 1$  to

$$y = [(x-3)-1]^2 + 1(i.e. \ y = (x-4)^2 + 1)?$$
  
Replace x by  $x-3$ 

#### §2 Stretch

#### **§2.1** Stretch parallel to the *y*-axis

Let  $y = (x-1)^2 + 1$ . Using Geogebra, observe the change in the behavior of the graph of  $y = A[(x-1)^2 + 1]$  when the value of *A* changes.

## Activity 1

#### **Observation 1:**

Describe the change in the graph of  $y = A[(x-1)^2 + 1]$  when the value of A increases from 1 to 3.

Stretch of factor 3 parallel to the y-axis.

**Observation 2:** Sketch the graph after this transformation.



#### **Observation 3:**

Let (1,1) be the minimum turning point on the curve  $y = (x-1)^2 + 1$ . Observe and write down the new coordinates of this point after going through this transformation. (1,3)

Label this point on the transformed graph that you have drawn in Observation 2.





#### §2.2 Stretch parallel to the *x*-axis

Let  $y = (x-1)^2 + 1$ . Using Geogebra, observe the change in the behavior of the graph of  $y = \left(\frac{x}{A} - 1\right)^2 + 1$  when the value of A changes.

## Activity 1

#### **Observation 1:**

Describe the change in the graph of  $y = \left(\frac{x}{A} - 1\right)^2 + 1$  when the value of A decreases from 1

to  $\frac{1}{4}$ .

Stretch of factor  $\frac{1}{4}$  parallel to the *x*-axis.

**Observation 2:** Sketch the graph after this transformation.



#### **Observation 3:**

Let (1,1) be the minimum turning point on the curve  $y = (x-1)^2 + 1$ . Observe and write down the new coordinates of this point after going through this transformation.  $\left(\frac{1}{4},1\right)$ Label this point on the transformed graph that you have drawn in Observation 2<sup>L</sup>. **Observation 4:** Which value is changed? x-value **Observation 5:** What is the replacement of variable involved in transforming the graph of  $y = (x-1)^2 + 1$  to  $\frac{x}{\frac{1}{4}} - 1$  + 1 =  $(4x - 1)^2 + 1?$ here x by  $4x = \frac{x}{\frac{1}{2}}$ Replace *x* by



### §3 Reflection

#### **§3.1** Reflection in the *x*-axis

Let  $y = (x-1)^2 + 1$ . Using Geogebra, write down the new equation of the graph  $y = (x-1)^2 + 1$ when it is reflected in the *x*-axis.

#### **Observation 1:**

Write down the equation of the new curve after going through this transformation:

 $y = -\left[\left(x-1\right)^2 + 1\right]$ 

**Observation 2:** Sketch the graph after this transformation.



**Observation 3:** Let (1,1) be the minimum turning point on the curve  $y = (x-1)^2 + 1$ . Observe and write down the new coordinates of this point after going through this transformation. (1,-1) Label this point on the transformed graph that you have drawn in Observation 2. **Observation 4:** Which value is changed? **y-value Observation 5:** What is the replacement of variable involved in transforming the graph of  $y = (x-1)^2 + 1$  to  $y = -[(x-1)^2 + 1]$ ? Replace y by -y

#### **§3.2** Reflection in the *y*-axis

Let  $y = (x-1)^2 + 1$ . Using Geogebra, write down the new equation of the graph  $y = (x-1)^2 + 1$  when it is reflected in the y-axis.

#### **Observation 1:**

Write down the equation of the new curve after going through this transformation:

 $y = \left(-x - 1\right)^2 + 1$ 

**Observation 2:** Sketch the graph after this transformation.



#### **Observation 3:**

Let (1, 1) be the minimum turning point on the curve  $y = \sqrt{x}$ . Observe and write down the new coordinates of this point after going through this transformation. (-1,1)

Label this point on the transformed graph that you have drawn in Observation 2.

x-value

#### **Observation 4:**

Which value is changed?

#### **Observation 5:**

What is the replacement of variable involved in transforming the graph of  $y = (x-1)^2 + 1$  to

$$y = (-x-1)^2 + 1?$$

Replace x by -x

## **End of Activity**