Solutions to Tutorial 1: Inequalities and Equations

Basic Mastery Questions

1. (a)
$$x^2 \le 3 \Rightarrow x^2 - 3 \le 0 \Rightarrow \left(x - \sqrt{3}\right)\left(x + \sqrt{3}\right) \le 0 \Rightarrow -\sqrt{3} \le x \le \sqrt{3}$$

(b)
$$x^4 \le 9 \Rightarrow x^4 - 9 \le 0 \Rightarrow (x^2 - 3)(x^2 + 3) \le 0$$
 $\Rightarrow x^2 - 3 \le 0 \text{ (since } x^2 + 3 > 0)$
 $\Rightarrow -\sqrt{3} \le x \le \sqrt{3} \text{ (from 1(a))}$

(c)
$$|x| \le 3 \Rightarrow -3 \le x \le 3$$

(d)
$$|x+1| > 2$$
 $\Rightarrow x+1 < -2 \text{ or } x+1 > 2$
 $\Rightarrow x < -3 \text{ or } x > 1$

(e)
$$(x+1)^2 + 3 > 0$$

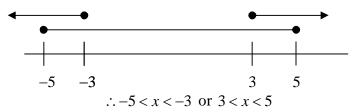
Since $(x+1)^2 \ge 0$ for all real x, so $(x+1)^2 + 3 > 0$ for all real x $\therefore x \in \mathbb{R}$

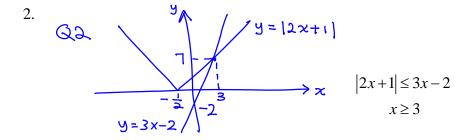
(f)
$$x^2 + 2x + 4 < 0 \Rightarrow (x+1)^2 + 3 < 0$$

Since $(x+1)^2 \ge 0$ for all real x, so there is no real solution for x for $(x+1)^2 + 3 < 0$

(g)
$$-5 < |x+1| < 2 \Rightarrow 0 \le |x+1| < 2 \Rightarrow -2 < x+1 < 2 \Rightarrow -3 < x < 1$$

(h)
$$|e^{2x}| > 2$$
 $\Rightarrow e^{2x} > 2$ (since $e^{2x} > 0$ for all real x)


$$\Rightarrow \ln(e^{2x}) > \ln 2 \Rightarrow 2x > \ln 2 \Rightarrow x > \frac{1}{2} \ln 2 \Rightarrow x > \ln \sqrt{2}$$


(i)
$$|0.5^x| < 0.5 \Rightarrow 0 \le 0.5^x < 0.5$$
 $\Rightarrow x \ln 0.5 < \ln 0.5$
 $\Rightarrow x > 1 \text{ (since } \ln 0.5 < 0)$

(j)
$$3 < |x| < 5 \Rightarrow -5 < x < -3 \text{ or } 3 < x < 5$$

(k)
$$9 < x^2 < 25$$
 $\Rightarrow 0 < x^2 - 9 \text{ and } x^2 - 25 < 0$
 $\Rightarrow 0 < (x - 3)(x + 3)$ and $(x - 5)(x + 5) < 0$
 $\Rightarrow x < -3 \text{ or } x > 3$ and $-5 < x < 5$

Taking intersection:

