

Instructions: Write your name and CT group on all the work you hand in. Answer **all** questions.

- 1 A clothes shop sells a particular make of T-shirt in four different colours. The shopkeeper has a large number of T-shirts of each colour.
 - (a) A customer wishes to buy eight T-shirts.
 - (i) In how many ways can he do this? [2]
 - (ii) In how many ways can he do this if he buys at least one of each colour? [2]
 - (b) The shopkeeper places eight T-shirts in a line.
 - (i) In how many ways can she do this? [1]
 - (ii) In how many ways can she do this if no two T-shirts of the same colour are to be next to each other? [2]
 - (iii) Use the principle of inclusion and exclusion to find the number of ways in which she can do this if she has to use at least one T-shirt of each colour but with no other restriction. [4]
 - (c) The shopkeeper is left with r T-shirts of one colour, where r > 4 and another 2 T-shirts of another colour. She wishes to store them in 2 identical boxes so that no box is empty. In how many ways can she do this? [4]

1 (a)	Let x_1, x_2, x_3, x_4 be the respective number of T-shirts the customer buys in the 4
(i)	different colours. Then the problem is equivalent to the number of integer solutions to
[2]	$x_1 + x_2 + x_3 + x_4 = 8$, with $x_1, x_2, x_3, x_4 \ge 0$. (Identical objects into distinct boxes)
	The number of ways is thus $\binom{11}{3} = 165$.

(a)(ii)	Let x_1, x_2, x_3, x_4 be the respective number of T-shirts the customer buys in the 4
[2]	different colours. Then the problem is equivalent to
	$x_1 + x_2 + x_3 + x_4 = 8$, with $x_1, x_2, x_3, x_4 \ge 1$.
	Let $y_i = x_i - 1$ (i.e. ensure he has one of each different colour). Then we need to find
	the number of integer solutions to
	$y_1 + y_2 + y_3 + y_4 = 4$ with $y_1, y_2, y_3, y_4 \ge 0$.
	The number of ways is thus $\binom{7}{3} = 35$.
(b)(i)	The number of ways is $4^8 = 65536$.
[1]	
(b)(ii)	There are 4 ways to choose the first shirt, and subsequently, 3 ways for the next shirt
[2]	so that no two shirts are of the same colour. The number of ways is thus $4(3)^7 = 8748$.
(b)(iii)	Let A_i denote the event in each colour <i>i</i> is not used.
[4]	Then required answer = $ \overline{A_1} \cap \overline{A_2} \cap \overline{A_3} \cap \overline{A_4} = 4^8 - A_1 \cup A_2 \cup A_3 \cup A_4 $
	We have
	$ A_1 \cup A_2 \cup A_3 \cup A_4 = A_1 + A_2 + A_3 + A_4 $
	$- A_1 \cap A_2 - A_1 \cap A_3 - \ldots - A_3 \cap A_4 $
	$+ A_1 \cap A_2 \cap A_3 + A_1 \cap A_2 \cap A_4 \ldots+ A_2 \cap A_3 \cap A_4 $
	$- A_1 \cap A_2 \cap A_3 \cap A_4 $
	$=4^8 - 4(3)^8 + 6(2)^8 - 4 = 40824.$

Consider the 2 T-shirts of one colour first. They can be split into the 2 boxes in the **(c)** following manner: (0, 2) or (1, 1). Let the number of T-shirts contained in each of [4] the two boxes be *a* and *b* respectively, where a + b = r. Case 1: 1 and 1. Here the 2 boxes are essentially still identical. If r is even, since $a \le \frac{1}{2}(a+b) = \frac{r}{2}$, a can only take a value from 0, 1, 2, ..., $\frac{r}{2}$ when *r* is even. There are $\frac{r}{2} + 1$ ways. $\frac{r}{2}$ is not an integer when r is odd. So $a \le \frac{r}{2} \Rightarrow a \le \frac{r-1}{2}$. Similarly, there are $\frac{r-1}{2} + 1 = \frac{r+1}{2}$ ways if r is odd. Case 2: 0 and 2. Here the 2 boxes are now distinct. Let Box A be the one with 0 of the other, and Box B be the one with 2. Box B can contain 0, 1, 2, ..., r - 1 (cannot contain all r or else Box A is empty) of the shirts. So there are *r* ways. Hence in total, if r is even, there are $\frac{r}{2} + 1 + r = \frac{3r+2}{2}$ ways. If *r* is odd, there are $\frac{r+1}{2} + r = \frac{3r+1}{2}$ ways.

2 Let
$$I_n = \int_{-\pi}^{\pi} \frac{\sin nx}{(1+2^x)\sin x} dx.$$

(a) Show that
$$I_n = \int_0^\pi \frac{\sin nx}{\sin x} dx.$$
 [4]

(**b**) Hence show that for
$$n \ge 2$$
, $I_n = I_{n-2}$. [2]

(c) Hence evaluate
$$I_n$$
 for all nonnegative integers *n*. [3]

2
(a)
$$I_n = \int_{-\pi}^{\pi} \frac{\sin nx}{(1+2^x)\sin x} \, dx = \int_{-\pi}^{0} \frac{\sin nx}{(1+2^x)\sin x} \, dx + \int_{0}^{\pi} \frac{\sin nx}{(1+2^x)\sin x} \, dx$$

[4] Using the substitution
$$t = -x$$
 in the first integral, we get

$$I_{n} = \int_{\pi}^{0} \frac{\sin(-nt)}{(1+2^{-t})\sin(-t)} (-dt) + \int_{0}^{\pi} \frac{\sin nx}{(1+2^{x})\sin x} dx$$

$$= \int_{0}^{\pi} \frac{\sin(nt)}{(1+2^{-t})\sin(t)} dt + \int_{0}^{\pi} \frac{\sin nx}{(1+2^{x})\sin x} dx \quad (\text{since sin is an odd function})$$

$$= \int_{0}^{\pi} \frac{2^{t}\sin(nt)}{(1+2^{t})\sin(t)} dt + \int_{0}^{\pi} \frac{\sin nx}{(1+2^{x})\sin x} dx$$

$$= \int_{0}^{\pi} \frac{(1+2^{x})\sin nx}{(1+2^{x})\sin x} dx$$

$$= \int_{0}^{\pi} \frac{\sin nx}{\sin x} dx$$

$$= \int_{0}^{\pi} \frac{\sin nx}{\sin x} dx$$

$$= \int_{0}^{\pi} \frac{2\cos(n-1)x\sin x}{\sin x} dx$$

$$= \int_{0}^{\pi} 2\cos(n-1)x dx$$

$$= \int_{0}^{\pi} 2\cos(n-1)x dx$$

$$= \frac{2}{n-1} [\sin(n-1)x]_{0}^{\pi} = 0 \Rightarrow I_{n} = I_{n-2}$$
(c) Thus we split into the odd and even *n*.
$$[3] \quad \text{We have } I_{1} = \int_{0}^{\pi} \frac{\sin n}{\sin x} dx = \pi \text{ and } I_{0} = 0.$$

$$\text{Hence } I_{n} = \begin{cases} \pi & \text{if } n \text{ is odd} \\ 0 & \text{if } n \text{ is even} \end{cases}$$

Let $b_0, b_1, b_2, ...$ be a sequence of positive real numbers such that $b_0 = 1$, $b_n = 2 + \sqrt{b_{n-1}} - 2\sqrt{1 + \sqrt{b_{n-1}}}$.

Let $a_n = 1 + \sqrt{b_n}$ for $n \ge 0$.

_

3

-

Т

(a) Show that
$$a_n = \sqrt{a_{n-1}}$$
 for $n \ge 1$. [2]

(b) Hence express
$$a_n$$
 in terms of n . [2]

(c) Show that
$$\sum_{n=1}^{N} b_n 2^n = (a_0 - 1) 2^1 - (a_N - 1) 2^{N+1}$$
. [3]

(d) Use a sketch to explain why
$$\lim_{x \to 0} \frac{2^x - 1}{x} = \ln 2$$
. [2]

(e) Hence calculate
$$\sum_{n=1}^{\infty} b_n 2^n$$
. [2]

3 Note that
$$a_n = 1 + \sqrt{b_n} > 1$$
.
(a) We also have
[2] $a_n = 1 + \sqrt{1 + (1 + \sqrt{b_{n-1}}) - 2\sqrt{1 + \sqrt{b_{n-1}}}}$
 $= 1 + \sqrt{1 + (1 - \sqrt{a_{n-1}})^2}$
 $= 1 + \sqrt{(1 - \sqrt{a_{n-1}})^2}$
 $= 1 + \sqrt{a_{n-1}} = 1 + \sqrt{a_{n-1}} + \sqrt{a_{n-1}} = 1 + \sqrt{a_{n$

(b)	Hence
[2]	$a_n = (a_{n-1})^{\frac{1}{2}}$
	$=\left(\left(a_{n-2}\right)^{\frac{1}{2}}\right)^{\frac{1}{2}}$
	$=(a_{n-2})^{\frac{1}{2^2}}$
	$= \dots \\ = (a_0)^{\frac{1}{2^n}} = 2^{2^{-n}}$
(c)	$\sum_{n=1}^{N} b_n 2^n = \sum_{n=1}^{N} (a_n - 1)^2 2^n$
[3]	$=\sum_{n=1}^{N} \left(a_n^2 2^n - a_n 2^{n+1} + 2^n \right)$
	$=\sum_{n=1}^{N} \left(\left(a_{n-1}-1\right) 2^{n}-\left(a_{n}-1\right) 2^{n+1} \right)$
	$=\sum_{n=1}^{N} (a_{n-1}-1)2^{n} - \sum_{n=2}^{N+1} (a_{n-1}-1)2^{n}$
	$= (a_0 - 1)2^1 - (a_N - 1)2^{N+1}.$
(d)	Consider the function $f(x) = 2^x$ and the gradient of the function at $x = 0$. We see that
[2]	$\lim \frac{2^{x} - 1}{2^{x} - 1} = \lim \frac{f(x) - f(0)}{2^{x} - 1} = \frac{f'(0)}{2^{x} - 1} = \frac{1}{2} \int_{-\infty}^{\infty} \frac{f(x) - f(0)}{2^{x} - 1} = \frac{1}{2} \int_{-\infty}^{\infty} \frac{f(x) - f(0)}{2^{$
	$x \to 0$ x $x \to 0$ $x \uparrow y$
	$(\mathbf{r} \ 2^{\mathbf{x}})$
	(0,1)
	O
(e)	Hence
[2]	$\sum_{n=1}^{\infty} b_n 2^n = \lim_{n \to \infty} \sum_{n=1}^{N} b_n 2^n$
	$= \lim_{n \to \infty} (a_0 - 1) 2^1 - (a_N - 1) 2^{N+1}$
	$=2-2\lim_{n\to\infty}\left(\frac{2^{2^{-N}}-1}{2^{-N}}\right)$
	$= 2 - 2 \lim_{x \to 0} \left(\frac{2^x - 1}{x} \right) = 2 - 2 \ln 2.$

Let $S_n = \{1, 2, ..., n\}$. For any subset X of S_n , define the capacity of X, c(X) to be the sum of all the elements of X. If the capacity of X is odd, we say that X is an odd subset of S_n and similarly, if X is even, we say that X is an even subset of S_n .

For example, if n = 3, then $c(S_3) = 1 + 2 + 3 = 6$, $c(\{1,2\}) = 1 + 2 = 3$, $c(\{\}) = 0$ and thus S_3 is an even subset of S_3 , and $\{1,2\}$ is an odd subset of S_3 and the empty set is an even subset of S_3 .

Let A be the set of all subsets of S_n that do not contain 1, and B be the set of all subsets of S_n that contains 1.

For example, if n = 3, $A = \{\{\}, \{2\}, \{3\}, \{2,3\}\}$ and $B = \{\{1\}, \{1,2\}, \{1,3\}, \{1,2,3\}\}$.

- (a) Show using a bijection between A and B that the number of odd subsets and even subsets of S_n are the same. [3]
- (b) If $n \ge 3$, show that the number of odd subsets and even subsets in A are also the same. [2]
- (c) Hence show that if $n \ge 3$, the sum of all capacities of odd subsets of S_n is equal to the sum of all capacities of even subsets of S_n . [2]
- (d) Determine the sum of all capacities of odd subsets. [3]

(a) [3]	Consider the map $f: A \to B$, defined by $f(X) = X \cup \{1\}$.
	If $f(X) = f(Y) \Rightarrow X \cup \{1\} = Y \cup \{1\} \Rightarrow X = Y$ thus f is injective.
	For any set $Y \in B$, removing 1 from it clearly gives an element of <i>A</i> . Hence f is bijective.
	Hence if the subset X is odd (resp. even), then $X \cup \{1\}$ is even (resp. odd).
	Hence the number of odd subsets and even subsets of S_n are the same.
(b)	We note that $ A = B = 2^{n-1}$. Consider the subsets of A that do not contain 3 and those
[2]	that contain 3. Similar to the bijection in (a), we can establish a bijection between these 2 sets. Note that $n \ge 3$ and thus the image $X \cup \{3\} \in S_n$.
	This means that the number of odd and even subsets of <i>A</i> are also the same, and there are 2^{n-2} of them.

4

(c) [2]	For any odd subset <i>C</i> of <i>A</i> , its capacity is 1 less than the corresponding even subset $C \cup \{1\}$ of <i>B</i> . Hence the sum of all the capacities of the odd subsets of <i>A</i> is 2^{n-2} less than
	the sum of all the capacities of the even subsets of <i>B</i> . But similarly, all the even subsets of <i>A</i> have a total capacity of 2^{n-2} lesser than the sum of all the capacities of the odd subsets of <i>B</i> .
	Therefore the sum of all capacities of odd subsets of S_n is equal to the sum of all
	capacities of even subsets of S_n .
(d) [3]	We note that each element 1, 2,, <i>n</i> appears in all the subsets of S_n a total of 2^{n-1} times.
	Hence the total capacity of all the subsets of S_n is given by
	$2^{n-1}(1+2+\ldots+n) = 2^{n-2}n(n+1).$
	E_{1} () 1 () (1) (1) (1) (1) (1) (1) (1) (1) (1)

- 5 Let $\{x_1, x_2, ..., x_n\}$ and $\{y_1, y_2, ..., y_n\}$ be two sequences of real numbers. We say that the sequence $\{x_1, x_2, ..., x_n\}$ majorizes the sequence $\{y_1, y_2, ..., y_n\}$, if the following conditions are fulfilled:
 - $x_1 \ge x_2 \ge \ldots \ge x_n;$
 - $y_1 \ge y_2 \ge \ldots \ge y_n;$
 - $x_1 + x_2 + \dots + x_n = y_1 + y_2 + \dots + y_n;$
 - $x_1 + x_2 + \dots + x_k \ge y_1 + y_2 + \dots + y_k$ for all $1 \le k \le n-1$.

For example, {3, 0, 0} majorizes {2, 1, 0}, and {2, 1, 0} majorizes {1, 1, 1}.

Let f be a convex function defined over the real numbers.

(a) Use a sketch to explain why if x < y < z then $\frac{f(z) - f(x)}{z - x} \le \frac{f(z) - f(y)}{z - y}.$

Let $\{a_1, a_2, ..., a_n\}$ and $\{b_1, b_2, ..., b_n\}$ be two sequences of real numbers such that $\{a_1, a_2, ..., a_n\}$ majorizes the sequence $\{b_1, b_2, ..., b_n\}$, and let $c_i = \frac{f(b_i) - f(a_i)}{b_i - a_i}$.

[2]

Let
$$A_k = \sum_{i=1}^k a_i$$
 and $B_k = \sum_{i=1}^k b_i$

(b) (i) Explain why $c_{i+1} \le c_i$. [2]

(ii) Show that $\sum_{i=1}^{n} (f(a_i) - f(b_i)) = \sum_{i=1}^{n-1} (c_i - c_{i+1}) (A_i - B_i)$ and hence deduce that $f(a_1) + f(a_2) + \dots + f(a_n) \ge f(b_1) + f(b_2) + \dots + f(b_n).$ [4]

(c) Let a, b, c be positive real numbers. Show that

$$\frac{1}{a+b} + \frac{1}{b+c} + \frac{1}{c+a} \le \frac{1}{2a} + \frac{1}{2b} + \frac{1}{2c}.$$
[3]

(d) Let
$$x_1, x_2, ..., x_n \in \left[-\frac{n}{6}, \frac{n}{6}\right]$$
. Show that
 $\cos(2x_1 - x_2) + \cos(2x_2 - x_3) + ... + \cos(2x_n - x_1) \le \cos x_1 + \cos x_2 + ... + \cos x_n.$
[4]

(b)	$\sum_{i=1}^{n} \left(\mathbf{f}(a_i) - \mathbf{f}(b_i) \right)$
(ii)	$=\sum_{n=1}^{n} c_{n} (a_{n} - b_{n})$
[4]	$\sum_{i=1}^{n} c_i \left(c_i + c_i \right)$
	$=\sum_{i=1}^{n} c_i \left(A_i - A_{i-1} - B_i + B_{i-1} \right)$
	$=\sum_{i=1}^{n} c_{i} \left(A_{i}-B_{i}\right)-\sum_{i=1}^{n} c_{i} \left(A_{i-1}-B_{i-1}\right)$
	$= c_n \left(A_n - B_n \right) + \sum_{i=1}^{n-1} c_i \left(A_i - B_i \right) - \sum_{i=0}^{n-1} c_{i+1} \left(A_i - B_i \right)$
	$= \sum_{i=1}^{n-1} (c_i - c_{i+1}) (A_i - B_i) \text{ since } A_n = B_n \text{ and } A_0 = B_0 = 0.$
	From (b)(i), we know that $c_{i+1} \leq c_i$ and the condition of majorization that $A_i \geq B_i$.
	Therefore, $\sum_{i=1}^{n} (f(a_i) - f(b_i)) \ge 0$ as desired.
(c)	The function $f(x) = \frac{1}{x}$ is convex over the positive reals. By symmetry, we may assume
[3]	WLOG that $a \ge b \ge c$. Then $\{2a, 2b, 2c\}$ majorizes $\{a+b, a+c, b+c\}$. Hence from
	(b)(ii), $\frac{1}{a+b} + \frac{1}{b+c} + \frac{1}{c+a} \le \frac{1}{2a} + \frac{1}{2b} + \frac{1}{2c}$.
(d) [4]	We note that $x_1, x_2,, x_n \in \left[-\frac{\pi}{6}, \frac{\pi}{6}\right]$ implies that $2x_i - x_{i+1} \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$. The function
["]	cosine is concave on this interval, and hence the inequality in (b)(ii) has its sign reversed. However, the inequality is no longer symmetric (it is cyclic). If
	$y_1 \ge y_2 \ge \ge y_n$ are $x_1, x_2,, x_n \in \left[-\frac{\pi}{6}, \frac{\pi}{6}\right]$ rearranged in order, and $z_1, z_2,, z_n$ are
	$x_1, x_2,, x_n \in \left[-\frac{\pi}{6}, \frac{\pi}{6}\right]$ rearranged such that $2z_1 - z_2 \ge 2z_2 - z_3 \ge \ge 2z_n - z_1$ then the
	sequence $\{y_1, y_2,, y_n\}$ is majorized by $\{2z_1 - z_2, 2z_2 - z_3,, 2z_n - z_1\}$. We can see this
	is true since
	$2z_1 - z_2 + 2z_2 - z_3 + \dots + 2z_k - z_{k+1} \ge y_1 + y_2 + \dots + y_k$ $\Leftrightarrow 2y_1 - y_2 + 2y_2 - y_2 + \dots + 2y_k - y_{k+1} \ge y_1 + y_2 + \dots + y_k$
	$\Leftrightarrow (y_1 + y_2 + + y_k) - (y_2 + y_3 + + y_{k+1}) \ge 0 \Leftrightarrow y_1 \ge y_{k+1}$
	The inequality sign is reversed due to cosine being concave (or –cosine is convex), and we have
	$\cos(2x_1 - x_2) + \cos(2x_2 - x_3) + \dots + \cos(2x_n - x_1) \le \cos x_1 + \cos x_2 + \dots + \cos x_n.$

[END OF PAPER]