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                    RAFFLES INSTITUTION  

                        2022 Year 6  

                        H3 9820 Lecture Test 3 

Time allocated: 2 hours         Total Marks: 60 

Instructions: Write your name and CT group on all the work you hand in.  

  Answer all questions. 

 

 

1 A clothes shop sells a particular make of T-shirt in four different colours. The shopkeeper 

has a large number of T-shirts of each colour.  
  

 (a) A customer wishes to buy eight T-shirts. 

  
 

 
(i) In how many ways can he do this? [2] 

    

 
 

(ii) In how many ways can he do this if he buys at least one of each colour?

  [2] 

    

 (b) The shopkeeper places eight T-shirts in a line. 

 

  (i) In how many ways can she do this? [1] 

    

  (ii) In how many ways can she do this if no two T-shirts of the same colour are 

to be next to each other? [2] 

    

  (iii) Use the principle of inclusion and exclusion to find the number of ways in 

which she can do this if she has to use at least one T-shirt of each colour 

but with no other restriction. [4] 

    

 (c) The shopkeeper is left with r T-shirts of one colour, where 4r   and another 2        

T-shirts of another colour. She wishes to store them in 2 identical boxes so that no 

box is empty. In how many ways can she do this? [4] 

    

 

 

 

 

1 (a) 

(i) 

[2] 

 

Let 
1 2 3 4, , ,x x x x  be the respective number of T-shirts the customer buys in the 4 

different colours. Then the problem is equivalent to the number of integer solutions 

to 

1 2 3 4 8x x x x+ + + = , with 1 2 3 4, , , 0x x x x  . (Identical objects into distinct boxes) 

The number of ways is thus 
11

165.
3

 
= 

 
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(a)(ii) 

[2] 

Let 
1 2 3 4, , ,x x x x  be the respective number of T-shirts the customer buys in the 4 

different colours. Then the problem is equivalent to  

1 2 3 4 8x x x x+ + + = , with 
1 2 3 4, , , 1x x x x  . 

Let 1i iy x= −  (i.e. ensure he has one of each different colour). Then we need to find 

the number of integer solutions to 

1 2 3 4 4y y y y+ + + =  with 
1 2 3 4, , , 0y y y y  . 

The number of ways is thus 
7

35
3

 
= 

 
. 

(b)(i) 

[1] 

The number of ways is 84 65536= .
 

(b)(ii) 

[2] 

There are 4 ways to choose the first shirt, and subsequently, 3 ways for the next shirt 

so that no two shirts are of the same colour.  

The number of ways is thus 74(3) 8748= .
  

 

(b)(iii) 

[4] 

Let iA  denote the event in each colour i is not used. 

Then required answer = 
__ ____ __

8

1 2 3 4 1 2 3 44A A A A A A A A   = −     

We have  

1 2 3 4 1 2 3 4A A A A A A A A   = + + +                                              

1 2 1 3 3 4A A A A A A−  −  − −                                                                          

1 2 3 1 2 4 2 3 4A A A A A A A A A+   +   +                                                                   

1 2 3 4A A A A−                                                      

( )
88 84 4(3) 6 2 4 40824= − + − = . 
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(c) 

[4] 

Consider the 2 T-shirts of one colour first. They can be split into the 2 boxes in the 

following manner: (0, 2) or (1, 1). Let the number of T-shirts contained in each of 

the two boxes be a and b respectively, where a b r+ = . 

Case 1: 1 and 1.  

 

Here the 2 boxes are essentially still identical.  

If r is even, since ( )
1

2 2

r
a a b + = , a can only take a value from 0, 1, 2, …, 

2

r
 

when r is even. There are 1
2

r
+  ways.  

2

r
 is not an integer when r is odd. So 

1

2 2

r r
a a

−
   . 

Similarly, there are 
1 1

1
2 2

r r− +
+ =  ways if r is odd.  

 

Case 2: 0 and 2. 

 

Here the 2 boxes are now distinct. Let Box A be the one with 0 of the other, and Box 

B be the one with 2. 

 

Box B can contain 0, 1, 2, …, r – 1 (cannot contain all r or else Box A is empty) of 

the shirts. So there are r ways. 

 

Hence in total, if r is even, there are 
3 2

1
2 2

r r
r

+
+ + =  ways. 

If r is odd, there are 
1 3 1

2 2

r r
r

+ +
+ =  ways. 
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2 Let 
( )

sin
 d .

1 2 sin
n x

nx
I x

x



−

=
+  

 
  

 
 

(a) Show that 
0

sin
 d .

sin
n

nx
I x

x



=   [4] 

  

 (b) Hence show that for 2n  , 2n nI I −= . [2] 

  

 (c) Hence evaluate nI  for all nonnegative integers n. [3] 

 

2  

(a) 

[4] 

 

( ) ( ) ( )

0

0

sin sin sin
 d  d  d

1 2 sin 1 2 sin 1 2 sin
n x x x

nx nx nx
I x x x

x x x

 

 − −

= = +
+ + +    

Using the substitution t x= −  in the first integral, we get 

( ) ( )

( ) ( )

( ) ( )

( )
( )

0

0

0 0

0 0

0

sin( ) sin
 ( d )  d

1 2 sin( ) 1 2 sin

sin( ) sin
 d  d     (since sin is an odd function)

1 2 sin( ) 1 2 sin

2 sin( ) sin
 d  d

1 2 sin( ) 1 2 sin

1 2 sin
 d

1 2 sin

n t x

t x

t

t x

x

x

nt nx
I t x

t x

nt nx
t x

t x

nt nx
t x

t x

nx
x

x





 

 



−

−

−
= − +

+ − +

= +
+ +

= +
+ +

+
=

+

 

 

 

0

sin
 d

sin

nx
x

x



=





 

(b) 

[2] 

 

2
0

0

0

20

sin sin( 2)
 d

sin

2cos( 1) sin
 d

sin

2cos( 1)  d

2
sin( 1) 0

1

n n

n n

nx n x
I I x

x

n x x
x

x

n x x

n x I I
n









−

−

− −
− =

−
=

= −

= − =  =
−






 

(c) 

[3] 

Thus we split into the odd and even n. 

We have 1
0

sin
 d

sin

x
I x

x



= =  and  0 0I = . 

Hence 
if  is odd

0 if  is even
n

n
I

n


= 


. 
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3 Let 0 1 2, , ,...b b b  be a sequence of positive real numbers such that 
0 1b = , 

1 12 2 1 .n n nb b b− −= + − +  

  
 Let 1n na b= +  for 0n  . 

  

 
 

(a) Show that 1n na a −=  for 1n  . [2] 

  

 (b) Hence express na  in terms of n. [2] 

  

  

(c) Show that ( ) ( )1 1

0

1

2 1 2 1 2 .
N

n N

n N

n

b a a +

=

= − − −  [3] 

   

  

(d) Use a sketch to explain why 
0

2 1
lim ln 2

x

x x→

−
= . [2] 

   

  

(e) Hence calculate 
1

2n

n

n

b


=

 . [2] 

 

 

3 

(a) 

[2] 

 

Note that 1 1n na b= +  . 

We also have  

( )

( )

1 1

1 1

2

1

1

1

1

1 1 1 2 1

1 1 2

1 1

1 1

1 1   since 1

n n n

n n

n

n

n n

n

a b b

a a

a

a

a a

a

− −

− −

−

−

−

−

= + + + − +

= + + −

= + −

= + −

= + − 

=
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(b) 

[2] 

Hence 

( )

( )

( )

( )

2

1

2
1

1
1 2
2

2

1

2
2

1
2

2
0

 

=

...

2
n

n

n n

n

n

a a

a

a

a
−

−

−

−

=

 
 
 

=

=

= =

 

(c) 

[3] 

( )

( )

( ) ( )( )

( ) ( )

( ) ( )

2

1 1

2 1

1

1

1

1

1

1 1

1 2

1 1

0

2 1 2

2 2 2

1 2 1 2

1 2 1 2

1 2 1 2 .

N N
n n

n n

n n

N
n n n

n n

n

N
n n

n n

n

N N
n n

n n

n n

N

N

b a

a a

a a

a a

a a

= =

+

=

+

−

=

+

− −

= =

+

= −

= − +

= − − −

= − − −

= − − −

 





 

 

(d) 

[2] 

Consider the function f ( ) 2xx =  and the gradient of the function at 0x = .We see that 

0 0

2 1 f ( ) f (0)
lim lim f (0) ln 2

x

x x

x

x x→ →

− −
= = = . 

 

 

 

 

 

(e) 

[2] 

Hence  

( ) ( )
1 1

1 1

0

2

0

2 lim 2

lim 1 2 1 2

2 1
2 2 lim

2

2 1
2 2lim 2 2ln 2.

N

N
n n

n n
n

n n

N

N
n

Nn

x

x

b b

a a

x

−



→
= =

+

→

−→

→

=

= − − −

 −
= −   

 

 −
= − = − 

 

 
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4 Let 1,2,..., .nS n=  For any subset X  of nS , define the capacity of X , ( )c X  to be the 

sum of all the elements of X . If the capacity of X  is odd, we say that X  is an odd subset 

of nS  and similarly, if X  is even, we say that X  is an even subset of nS . 

 

For example, if 3n = , then 
3( ) 1 2 3 6c S = + + = , ({1,2}) 1 2 3c = + = , ({ }) 0c =  and thus 

3S  is an even subset of 3S , and  1,2  is an odd subset of 3S  and the empty set is an even 

subset of 3S  . 

 

Let A  be the set of all subsets of nS  that do not contain 1, and B  be the set of all subsets 

of nS  that contains 1. 

 

For example, if 3n = ,         , 2 , 3 , 2,3A =  and         1 , 1,2 , 1,3 , 1,2,3B = . 

  
  

 (a) Show using a bijection between A  and B  that the number of odd subsets and even 

subsets of nS  are the same. [3] 

  

 (b) If 3n  , show that the number of odd subsets and even subsets in A  are also the 

same.  [2] 

  

 (c) Hence show that if 3n  , the sum of all capacities of odd subsets of nS  is equal to 

the sum of all capacities of even subsets of nS . [2] 

   

 (d) Determine the sum of all capacities of odd subsets. [3] 

 

 

(a) 

[3] 
Consider the map f : A B→ , defined by  f ( ) 1X X=  . 

 

If    f ( ) f ( ) 1 1X Y X Y X Y=   =   =  thus f is injective. 

For any set Y B , removing 1 from it clearly gives an element of A. 

Hence f is bijective. 

 

Hence if the subset X is odd (resp. even), then  1X   is even (resp. odd).  

Hence the number of odd subsets and even subsets of nS  are the same. 

(b) 

[2] 
We note that 12nA B −= = . Consider the subsets of A that do not contain 3 and those 

that contain 3. Similar to the bijection in (a), we can establish a bijection between these 

2 sets. Note that 3n   and thus the image  3 nX S  . 

 

This means that the number of odd and even subsets of A are also the same, and there are 
22n−  of them.  
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(c) 

[2] 

For any odd subset C of A, its capacity is 1 less than the corresponding even subset 

 1C of B. Hence the sum of all the capacities of the odd subsets of A is 22n−  less than 

the sum of all the capacities of the even subsets of B. But similarly, all the even subsets 

of A have a total capacity of 22n−  lesser than the sum of all the capacities of the odd 

subsets of B. 

 

Therefore the sum of all capacities of odd subsets of nS  is equal to the sum of all 

capacities of even subsets of nS .  

(d) 

[3] 
We note that each element 1, 2, …, n appears in all the subsets of nS  a total of 12n−  times. 

Hence the total capacity of all the subsets of nS  is given by 
1 22 (1 2 ... ) 2 ( 1)n nn n n− −+ + + = + . 

 

From (c), we deduce that the sum of all capacities of odd subsets is 32 ( 1)n n n− + . 

 

 

 

5 Let  1 2, ,..., nx x x  and  1 2, ,..., ny y y  be two sequences of real numbers. We say that the 

sequence  1 2, ,..., nx x x  majorizes the sequence  1 2, ,..., ny y y , if the following 

conditions are fulfilled:  

• 
1 2 ... nx x x   ; 

• 1 2 ... ny y y   ; 

• 
1 2 1 2... ... ;n nx x x y y y+ + + = + + +  

• 
1 2 1 2... ...  for all 1 1.k kx x x y y y k n+ + +  + + +   −  

For example, {3, 0, 0} majorizes {2, 1, 0}, and {2, 1, 0} majorizes {1, 1, 1}.  

 

Let f be a convex function defined over the real numbers.  
  

 (a) Use a sketch to explain why if x y z   then  

f ( ) f ( ) f ( ) f ( )z x z y

z x z y

− −


− −
. 

  [2] 

 Let  1 2, ,..., na a a  and  1 2, ,..., nb b b  be two sequences of real numbers such that 

 1 2, ,..., na a a  majorizes the sequence  1 2, ,..., nb b b , and let  
f ( ) f ( )i i

i

i i

b a
c

b a

−
=

−
.  

Let 
1

k

k i

i

A a
=

=  and 
1

k

k i

i

B b
=

= . 

 

 (b) (i) Explain why 1i ic c+  . [2] 

  

 
 

 

(ii) Show that ( ) ( )( )
1

1

1 1

f ( ) f ( )
n n

i i i i i i

i i

a b c c A B
−

+

= =

− = − −   and hence deduce that 

1 2 1 2f ( ) f ( ) ... f ( ) f ( ) f ( ) ... f ( ).n na a a b b b+ + +  + + +   [4] 
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 (c) Let , ,a b c  be positive real numbers. Show that 

1 1 1 1 1 1
.

2 2 2a b b c c a a b c
+ +  + +

+ + +
 

  [3] 

  

(d) Let 1 2, ,...,  , .
6 6

nx x x
  

 − 
 

 Show that 

( ) ( ) ( )1 2 2 3 1 1 2cos 2 cos 2 ... cos 2 cos cos ... cos .n nx x x x x x x x x− + − + + −  + + +  

  [4] 

 

 

5 

(a) 

[2] 

 

As shown below, given a convex function f and 3 points on the curve with x y z  , 

f ( ) f ( ) f ( ) f ( )z x z y

z x z y

− −


− −
. 

 

 

 

 

 

 

(b) 

(i) 

[2] 

We first note that result in (a) still holds if x y . 

1 1
1

1 1

1
1

1

1

f ( ) f ( )

f ( ) f ( )
   since  and using (a)

f ( ) f ( )
   since  and using (a)

= 

i i
i

i i

i i
i i

i i

i i
i i

i i

i

b a
c

b a

b a
a a

b a

b a
b b

b a

c

+ +
+

+ +

+
+

+

+

−
=

−

−
 

−

−
 

−
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(b) 

(ii) 

[4] 

( )

( )

( )

( ) ( )

( ) ( ) ( )

( )( )

1

1

1 1

1

1 1

1 1

1 1

1

1 0

1

1 0 0

1

f ( ) f ( )

  since  and 0.

n

i i

i

n

i i i

i

n

i i i i i

i

n n

i i i i i i

i i

n n

n n n i i i i i i

i i

n

i i i i n n

i

a b

c a b

c A A B B

c A B c A B

c A B c A B c A B

c c A B A B A B

=

=

− −

=

− −

= =

− −

+

= =

−

+

=

−

= −

= − − +

= − − −

= − + − − −

= − − = = =







 

 



 

From (b)(i), we know that 1i ic c+   and the condition of majorization that 
i iA B . 

Therefore, ( )
1

f ( ) f ( ) 0
n

i i

i

a b
=

−   as desired. 

(c) 

[3] 

The function 
1

f ( )x
x

=  is convex over the positive reals. By symmetry, we may assume 

WLOG that a b c  . Then {2 ,2 ,2 }a b c  majorizes { , , }a b a c b c+ + + . Hence from 

(b)(ii), 
1 1 1 1 1 1

.
2 2 2a b b c c a a b c

+ +  + +
+ + +

 

(d) 

[4] 

We note that 1 2, ,...,  ,
6 6

nx x x
  

 − 
 

 implies that 12  ,
2 2

i ix x
 

+

 
−  − 

 
. The function 

cosine is concave on this interval, and hence the inequality in (b)(ii) has its sign 

reversed. However, the inequality is no longer symmetric (it is cyclic). If 

1 2 ... ny y y    are 1 2, ,...,  ,
6 6

nx x x
  

 − 
 

 rearranged in order, and 
1 2, ,..., nz z z  are 

1 2, ,...,  ,
6 6

nx x x
  

 − 
 

 rearranged such that 
1 2 2 3 12 2 ... 2 nz z z z z z−  −   −   then the 

sequence  1 2, ,..., ny y y  is majorized by  1 2 2 3 12 ,2 ,..., 2 nz z z z z z− − − . We can see this 

is true since 

( ) ( )

1 2 2 3 1 1 2

1 2 2 3 1 1 2

1 2 2 3 1 1 1

      2 2 ... 2 ...

 2 2 ... 2 ...

 ... ... 0   

k k k

k k k

k k k

z z z z z z y y y

y y y y y y y y y

y y y y y y y y

+

+

+ +

− + − + + −  + + +

 − + − + + −  + + +

 + + + − + + +   

 

The inequality sign is reversed due to cosine being concave (or –cosine is convex) , and 

we have  

( ) ( ) ( )1 2 2 3 1 1 2cos 2 cos 2 ... cos 2 cos cos ... cos .n nx x x x x x x x x− + − + + −  + + +  

[END OF PAPER] 


