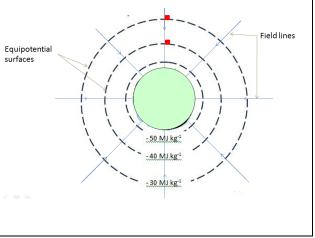

Gravitational Field

Newton's Law of Gravitation – mutual force of attraction, F_G , between two point masses is proportional to the product of their masses ($m_1 \& m_2$) and inversely proportional to the square of their separation, *r*.

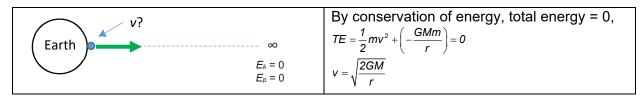
Gravitational Potential Energy – work done, U, by an external agent on a mass in moving it from infinity to that point.

Gravitational Field Strength, g – at a point in a gravitational field is defined as the gravitational force per unit mass acting on a small mass placed at that point.


Gravitational Potential, ϕ – at a point in a gravitational field is defined as the work done per unit mass by an external agent in bringing a point mass from infinity to that point.

Field Lines

- Tangent of the lines points in the direction of the force on a test mass
 Point in the direction of decreasing gravitational potentials
 Closer lines indicate larger g
 - No two lines intersect one another
- Perpendicular to Equipotential Lines


Equipotential Lines

- All points along a line has the same gravitational potential
- No work done when moving a mass along a equipotential line
 Perpendicular to Field Lines

Escape Speed: (Motion of an object that eventually escapes the gravitational pull – contrast with Orbital motion)

The minimum speed for object at the surface of a planet to reach infinity.

Equation		<u>Examples</u>		
Gravitational Force provides		Satellite / Moon orbiting Earth		Binary Stars
for centripetal force on Satellites, $F_G = F_C$		r O M		r' S m r S
		$\frac{GMm}{r^2} = \frac{mv^2}{r} \text{ or } \frac{GMm}{r^2} = mr\omega^2$		$\frac{Gmm}{r^2} = \frac{mv^2}{r'} \text{ or } \frac{Gmm}{r^2} = mr'\omega^2$
Period / Use: • Kepler's Third Law. $T^2 \propto r^3$				
Frequency GMm , $(2\pi)^2$		$(2\pi)^2$	• Ke	pler's Third Law, $T^2 \propto r^3$
		$nr(\overline{T})$		
	$T^2 = \frac{4\pi^2}{GM}r^3$			
Energies of	of Use: $\frac{GMm}{r^2} = \frac{mv^2}{r}$ $\frac{1}{2}mv^2 = E_k = \frac{GMm}{2r}$		E	
Satellite • KE • GPE • TE				
	$E_{p} = -\frac{GMm}{r}$	$\frac{GMm}{GMm} + \left(-\frac{GMm}{GMm}\right) = -\frac{GMm}{GMm}$		
	$TE = E_k + E_p = -$	$\frac{1}{2r} + \left(-\frac{1}{r}\right) = -\frac{1}{2r}$, r

Satellites & Planets in Orbit – Circular Motion (Motion of an object 'bound' by gravity)

Geostationary Satellite – in a geostationary orbit in which the orbiting object remains stationary relative to an observer on the Earth.

Conditions for Geostationary Orbit:

- Centre of the Earth coincides with the centre of orbit of the object/satellite, and, axis of rotation of the Earth coincides with the axis of orbit of the object/satellite. [OR The orbit of the object/satellite lies in the equatorial plane.]
- The object/satellite orbits from West to East.
- The period of one orbit of the object/satellite is 24 hours.