

West Spring Secondary School PRELIMINARY EXAMINATION 2022

Additional Mathematics		1.		4049 / 01
Paper 1				10 10 / 0 1
Secondary 4 Express / 5 Normal (Acade	mic)		
Name	(<i>(</i>)	Date	12 SEP 2022
Class			Duration	2 h 15 min
Candidates answer on the Question Paper	er.			
No Additional Materials are required.				
READ THESE INSTRUCTIONS FIRST				
Write your name, index number and class in the Write in dark blue or black pen. You may use a pencil for any diagrams or graph: Do not use staples, paper clips, glue or correction	s.	at the to	op of this page	3. \
Answer all the questions. Give non-exact numerical answers correct to angles in degrees, unless a different level of according to the use of an approved scientific calculator is exactly are reminded of the need for clear presentation.	uracy is pected,	specific where	ed in the ques appropriate.	ecimal place in the case of tion.
At the end of the examination, fasten all your wor The number of marks is given in brackets [] at the				art question.
The total number of marks for this paper is 90.			FOR	- EVAMINEDIA HOE
			FOR	EXAMINER'S USE
				/ 90
This document consists of	23 printe	ed page	es and 1 blank	
Setter(s) Mr Soh Hong Wei				Turn ove

Turn over

ALGEBRA

Quadratic Equation

For the equation
$$ax^2 + bx + c = 0$$
,
$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Binomial Expansion

$$(a+b)^{n} = a^{n} + \binom{n}{1}a^{n-1}b + \binom{n}{2}a^{n-2}b^{2} + \dots + \binom{n}{r}a^{n-r}b^{r} + \dots + b^{n},$$

where *n* is a positive integer and $\binom{n}{r} = \frac{n!}{(n-r)!r!} = \frac{n(n-1)\cdots(n-r+1)}{r!}$

2. TRIGONOMETRY

Identities

$$\sin^2 A + \cos^2 A = 1$$

$$\sec^2 A = 1 + \tan^2 A$$

$$\csc^2 A = 1 + \cot^2 A$$

$$\sin(A \pm B) = \sin A \cos B \pm \cos A \sin B$$

$$\cos(A \pm B) = \cos A \cos B \mp \sin A \sin B$$

$$\tan(A \pm B) = \frac{\tan A \pm \tan B}{1 \mp \tan A \tan B}$$

$$\sin 2A = 2\sin A \cos A$$

$$\cos 2A = \cos^2 A - \sin^2 A = 2\cos^2 A - 1 = 1 - 2\sin^2 A$$

$$\tan 2A = \frac{2\tan A}{1 - \tan^2 A}$$

Formulae for $\triangle ABC$

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

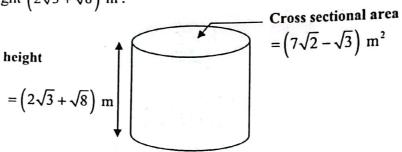
$$a^2 = b^2 + c^2 - 2bc \cos A$$
Area of $\Delta = \frac{1}{2}bc \sin A$

The line y-2x=3 intersects the curve $\frac{y}{x}+y=10$ at points A and B.

Find the coordinates of A and of B.

2	It is known that $\sin \theta = k$, where k is a positive constant, and $\cos \theta$ is negative.							
	(a)	State the quadrant in which θ lies.	[1]					
	(b)	Express, in terms of k ,						
		(i) $\csc\theta$,	[1]					

[3]


an heta .

(ii)

The equation of a curve is given by $y = e^x + e^{-x}$. Show that y is a decreasing function for x < 0.

4 (a) Find the value of integers a and b such that $a - 3\sqrt{5} = \frac{b + \sqrt{5}}{2 + \sqrt{5}}$. [4]

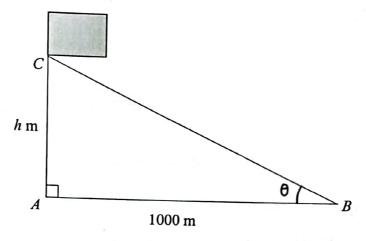
(b) The diagram shows a cylinder with cross-sectional area of $(7\sqrt{2} - \sqrt{3})$ m² and height $(2\sqrt{3} + \sqrt{8})$ m.

Find the volume of the cylinder in the form $(p+q\sqrt{6})$ m³, where p and q are integers. [3]

5 (a) (i) Write down the general term in the binomial expansion of

$$\left(x^2 + \frac{1}{x}\right)^{10}$$
 and state the power of x in this general term. [2]

(ii) Explain why there is no term that is independent of x in the expansion


of
$$\left(x^2 + \frac{1}{x}\right)^{10}$$
. [2]

(b) Given that the coefficient of x^2 in the expansion of $\left(x^2 + \frac{1}{x}\right)^{10} + \left(a + x\right)^5$ is -60, find the value of a. [3]

6 (a) Solve the equation $\log_3(x+2) + \log_3(x-2) = \log_3(2x-1)$. [3]

(b) Solve the equation $\log_x 2^2 = (\log_2 x)^2$, giving your answer correct to 3 significant figures. [4]

A box is raised vertically from a point A on level ground to a point C. The angle of elevation θ , from an observer at point B, 1000 m horizontally away from A, is increasing at a rate of 0.003 radians per second.

[5]

Find the rate of change of the height, h, of the box when θ is $\frac{\pi}{6}$ radians.

8 (a) Express
$$\frac{4x^2+5}{2x^2-x-1}$$
 in partial fractions.

(b) Hence, find
$$\int \frac{4x^2+5}{2x^2-x-1} dx$$
, for $x > 1$. [3]

The value, V, of one cryptocurrency, is related to t, the number of years since it was mined in 2012. Investors estimate that the variables V and t are related by the formula

 $V = ae^{kt}$, where a and k are constants.

The table below gives the value of one cryptocurrency in 2014, 2016, 2018 and 2020.

Year	2014	2016	2018	2020
t (years)	2	4	6	8
V (\$)	5000	6800	9200	12600

(a) Plot $\ln V$ against t and draw a suitable straight line graph.

(b) Use your graph to estimate the values of a and k.

[3]

(c) Assuming that the model is valid until 2022, estimate the value of one cryptocurrency in 2022, correct to the nearest dollar. [2]

- The coordinates of three points are A(1, 9), B(7, -3) and C(4, -6). The perpendicular bisector of AB cuts the x-axis at D.
 - (a) Find the equation of the perpendicular bisector of AB.

(b) Find the length of CD.

[2]

(c) Find the area of the quadrilateral ABCD.

[2]

11 (a) Show that $\frac{d}{dx} \left(\frac{x}{(3x+1)^{\frac{1}{2}}} \right) = \frac{3x+2}{2(3x+1)^{\frac{3}{2}}}$. [4]

(b) Hence, evaluate the integral $\int_0^5 \frac{x}{(3x+1)^{\frac{3}{2}}} dx$.

12 (a) Using $a^3 - b^3 = (a - b)(a^2 + ab + b^2)$, prove the identity

$$\frac{\sin^3 x - \cos^3 x}{\sin x - \cos x} = 1 + \frac{\sin 2x}{2}.$$
 [4]

(b) Solve the equation $\frac{\sin^3 x - \cos^3 x}{\sin x - \cos x} = \frac{2}{3}, \text{ for } 0^\circ \le x \le 180^\circ.$

- 13 The equation of a curve is $y = x(x-3)^3$.
 - (a) Find an expression for $\frac{dy}{dx}$ and obtain the coordinates of the stationary points of the curve. [5]

(b) By considering the sign of $\frac{dy}{dx}$, determine the nature of each stationary point.

[3]

(c) Ashley says that "If the stationary point on the curve has $\frac{d^2y}{dx^2} = 0$, the stationary point is a point of inflexion." Do you agree with this statement? Provide an example to justify your answer. [2]