

## RAFFLES INSTITUTION H2 Mathematics 9758 2023 Year 6 Term 3 Revision 7a (Summary and Tutorial)

**Topic: Vectors 2 (Lines and Planes)** 

## **Summary for Lines and Planes**

**Line:**  $\mathbf{r} = \mathbf{a} + \lambda \mathbf{b}, \ \lambda \in \mathbb{R}$  where

r is the position vector of a general point on the line,
a is the position vector of a known point on the line and
b is the vector that indicate the direction parallel to the line (known as the *direction vector*)

**Note :**  $\mathbf{r} = \mathbf{a} + \lambda \mathbf{b}, \ \lambda \in \mathbb{R}$  is not **UNIQUE**.

## **Different Forms of Equations of a Line**

$$\mathbf{r} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} + \lambda \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}, \ \lambda \in \mathbb{R} \qquad - \text{Vector Form}$$

$$\Leftrightarrow \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} + \lambda \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}, \ \lambda \in \mathbb{R}$$

$$\Leftrightarrow x = a_1 + \lambda \ b_1, y = a_2 + \lambda \ b_2, z = a_3 + \lambda \ b_3 \qquad - \text{Parametric Form}$$

$$\Leftrightarrow \frac{x - a_1}{b_1} = \lambda, \ \frac{y - a_2}{b_2} = \lambda, \ \frac{z - a_3}{b_3} = \lambda$$

$$\Leftrightarrow \frac{x - a_1}{b_1} = \frac{y - a_2}{b_2} = \frac{z - a_3}{b_3} \qquad - \text{Cartesian Form}$$

**Plane:**  $\mathbf{r} \cdot \mathbf{n} = d$  where

**r** is the position vector of a general point on the plane,

 $\mathbf{n}$  is the normal vector to the plane (a vector perpendicular to the plane)

d is a scalar constant.

## Notes:

The position vector of any point A on the plane, **a** will always give the result,  $\mathbf{a} \cdot \mathbf{n} = d$ 

The vector equation of the plane can always be reduced to the form  $\mathbf{r} \cdot \hat{\mathbf{n}} = \frac{d}{|\mathbf{n}|} = D$ . In this form, the

normal vector is reduced to a unit vector and |D| is the *shortest distance of the plane from the origin*.

#### **Different Forms of Equations of a Plane**

| Scalar Product form: | $\mathbf{r} \cdot \mathbf{n} = d$                                                                                                                        |
|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| Cartesian form:      | $n_1 x + n_2 y + n_3 z = d$ where $\mathbf{r} = \begin{pmatrix} x \\ y \\ z \end{pmatrix}, \mathbf{n} = \begin{pmatrix} n_1 \\ n_2 \\ n_3 \end{pmatrix}$ |
| Vector form:         | $\mathbf{r} = \mathbf{a} + \lambda \mathbf{m}_1 + \mu \mathbf{m}_2, \qquad \lambda, \mu \in \mathbb{R}$                                                  |
|                      | <b>a</b> is the position vector of a point on the plane,                                                                                                 |
|                      | $\mathbf{m}_1$ and $\mathbf{m}_2$ are non-parallel vectors that are parallel to the plane. Thus, $\mathbf{m}_1 \times \mathbf{m}_2$                      |
|                      | will be a normal to the plane.                                                                                                                           |

## We will now summarize the various relationships involving points, lines and planes.

## Involving Points and Lines

- **\*** To check whether the point *P* with position vector **p** lies on the given line *l*:  $\mathbf{r} = \mathbf{a} + \lambda \mathbf{b}$ ,  $\lambda \in \mathbb{R}$ 
  - Let  $\mathbf{p} = \mathbf{a} + \lambda \mathbf{b}$  and find a possible value for  $\lambda$ .
  - If there is a unique value for  $\lambda$  from the three possible equations, then the point P lies on the line.
- ★ To find the position vector of the *foot of the perpendicular* from a point P with position vector **p** to a given line l:  $\mathbf{r} = \mathbf{a} + \lambda \mathbf{b}$ ,  $\lambda \in \mathbb{R}$

Let N be the foot of the perpendicular from the point P to the

- line, *l*. Make use of the fact that PN is perpendicular to *l*
- Step 1:Since N lies on l,  $\overrightarrow{ON} = \mathbf{a} + \lambda \mathbf{b}$  for a unique value of  $\lambda$ .
- Step 2:Find  $\overrightarrow{PN} = \overrightarrow{ON} \overrightarrow{OP}$  in terms of  $\lambda$ , where  $\overrightarrow{OP} = \mathbf{p}$  is given.

**Step 3:** Solve for the value of  $\lambda$  using the fact that  $\overrightarrow{PN} \cdot \mathbf{b} = 0$ 

**Step 4:** Using the value of  $\lambda$  found above, the position vector of N is given by  $\mathbf{a} + \lambda \mathbf{b}$ .

★ To find the perpendicular distance (shortest distance) from a point, *P* with position vector, **p**, to a given line l:  $\mathbf{r} = \mathbf{a} + \lambda \mathbf{b}$ ,  $\lambda \in \mathbb{R}$ 

Let N be the foot of the perpendicular from the point P to the line, l<u>Method 1</u>

Step 1: Find the position vector of the foot of the perpendicular from the point P to the given line l.

Step 2 : Perpendicular distance from the point P to the given line l is  $\overrightarrow{PN}$  |.

## Method 2 (Cross Product)

Perpendicular distance from the point P to the given line *l* is  $|\overrightarrow{PN}| = |\overrightarrow{AP} \times \hat{\mathbf{b}}|$ 

# <u>Method 3 (Dot Product)</u> Step 1 : Find $|\overrightarrow{AN}| = |\overrightarrow{AP} \cdot \hat{\mathbf{b}}|$ Step 2 : Using Pythagoras' Theorem, Perpendicular distance from the point P to the given line l is $|\overrightarrow{PN}| = \sqrt{|\overrightarrow{AP}|^2 - |\overrightarrow{AN}|^2}$



★ To find the position vector of the reflection of a point, *P*, about a line l:  $\mathbf{r} = \mathbf{a} + \lambda \mathbf{b}$ ,  $\lambda \in \mathbb{R}$ 

Let P' be the reflection of P about l and that N be foot of the perpendicular from P to l.

## <u>Method</u>



## **Involving Lines**

• To check if the lines  $l_1 : \mathbf{r} = \mathbf{a} + \lambda \mathbf{b}$ ,  $\lambda \in \mathbb{R}$  and  $l_2 : \mathbf{r} = \mathbf{c} + \mu \mathbf{d}$ ,  $\mu \in \mathbb{R}$  are parallel

If **b** // **d** (i.e. **b** = k **d** ), then  $l_1 // l_2$ 

★ To find the acute angle between 2 lines,  $l_1 : \mathbf{r} = \mathbf{a} + \lambda \mathbf{b}$ ,  $\lambda \in \mathbb{R}$  and  $l_2 : \mathbf{r} = \mathbf{c} + \mu \mathbf{d}$ ,  $\mu \in \mathbb{R}$ 

The acute angle between the lines is determined by the two direction vectors **b** and **d**.

#### <u>Method</u>

Make use of scalar product of the two direction vectors **b** and **d**.  $-|\mathbf{b} \cdot \mathbf{d}| = |\mathbf{b}| |\mathbf{d}| \cos \theta \text{ where } \theta \text{ is the acute angle between the 2}$ direction vectors, **b** and **d**. Therefore  $\cos \theta = \frac{|\mathbf{b} \cdot \mathbf{d}|}{|\mathbf{b}| |\mathbf{d}|}$   $l_{1}$  ★ To find the position vector of the point of intersection of the two lines  $l_1 : \mathbf{r} = \mathbf{a} + \lambda \mathbf{b}$ ,  $\lambda \in \mathbb{R}$ and  $l_2 : \mathbf{r} = \mathbf{c} + \mu \mathbf{d}$ ,  $\mu \in \mathbb{R}$ 

Let *P* be the point of intersection of the 2 lines  $l_1$  and  $l_2$ , and **p** be the position vector of *P*. Then *P* lies on both lines and  $\mathbf{p} = \mathbf{a} + \lambda \mathbf{b}$  and  $\mathbf{p} = \mathbf{c} + \mu \mathbf{d}$  for some values of  $\lambda$  and  $\mu$ .

## <u>Method</u>

**Step 1 :** Since the lines intersect,  $\mathbf{p} = \mathbf{a} + \lambda \mathbf{b} = \mathbf{c} + \mu \mathbf{d}$ 

- **Step 2 :** From Step 1, we will have 3 linear equations in terms of  $\lambda$  and  $\mu$ . Solve for the values of  $\lambda$  and  $\mu$
- If there exist unique values for  $\lambda$  and  $\mu$ , then the position vector of the intersection point is given by  $\mathbf{a} + \lambda \mathbf{b}$  or  $\mathbf{c} + \mu \mathbf{d}$ .
- If there are no unique values for  $\lambda$  and  $\mu$ , then the 2 lines are non-intersecting lines. (They can be either parallel or skew lines)
- ★ To check if the lines  $l_1 : \mathbf{r} = \mathbf{a} + \lambda \mathbf{b}$ ,  $\lambda \in \mathbb{R}$  and  $l_2 : \mathbf{r} = \mathbf{c} + \mu \mathbf{d}$ ,  $\mu \in \mathbb{R}$  are skew lines (Skew lines are non-parallel and non-intersecting lines.)

Assume that P, the point of intersection of the 2 lines  $l_1$  and  $l_2$ , and **p** be the position vector of P exists show that it does not exist.

Then *P* lies on both lines and  $\mathbf{p} = \mathbf{a} + \lambda \mathbf{b}$  and  $\mathbf{p} = \mathbf{c} + \mu \mathbf{d}$  for some values of  $\lambda$  and  $\mu$ .

## <u>Method</u>

**Step 1 :** Show that  $l_1$  and  $l_2$  are not parallel ( $\mathbf{b} \neq k \mathbf{d}$ )

- Step 2: Then assume  $\mathbf{a} + \lambda \mathbf{b} = \mathbf{c} + \mu \mathbf{d}$  and show that there is **NO** unique values for  $\lambda$  and  $\mu$  that satisfy the equations formed.
- ★ To find the shortest distance between two parallel lines  $l_1 : \mathbf{r} = \mathbf{a} + \lambda \mathbf{b}$ ,  $\lambda \in \mathbb{R}$  and  $l_2 : \mathbf{r} = \mathbf{c} + \mu \mathbf{b}$ ,  $\mu \in \mathbb{R}$ .

The shortest distance between two parallel lines can be found by taking any point, says *A* on  $l_1 : \mathbf{r} = \mathbf{a} + \lambda \mathbf{b}, \ \lambda \in \mathbb{R}$  and find the shortest distance between point *A* and  $l_2 : \mathbf{r} = \mathbf{c} + \mu \mathbf{b}, \ \mu \in \mathbb{R}$ .

## OR

The shortest distance between two parallel lines can be found by taking any point, says *C* on  $l_2 : \mathbf{r} = \mathbf{c} + \mu \mathbf{b}, \ \mu \in \mathbb{R}$  and find the shortest distance between point *C* and  $l_1 : \mathbf{r} = \mathbf{a} + \lambda \mathbf{b}, \ \lambda \in \mathbb{R}$ .

(Refer above for the shortest distance between a point and a line)

• To check whether the point P with position vector **p** lies on the given plane  $\pi$  : **r**.**n** = d

### <u>Method</u>

- If  $\mathbf{p} \cdot \mathbf{n} = d$ , then the point P lies on the plane.

If **p**. **n**  $\neq$  *d*, then the point P does not lie on the plane.

**\*** To check if the line  $l: \mathbf{r} = \mathbf{a} + \lambda \mathbf{b}$ ,  $\lambda \in \mathbb{R}$  is parallel to a given plane  $\pi : \mathbf{r} \cdot \mathbf{n} = d$ 

## <u>Method</u>

- If  $\mathbf{b} \cdot \mathbf{n} = 0$ , then the line is parallel to the plane. (perpendicular to the normal)



**\*** To check if the line  $l: \mathbf{r} = \mathbf{a} + \lambda \mathbf{b}$ ,  $\lambda \in \mathbb{R}$  lies in a given plane  $\pi: \mathbf{r} \cdot \mathbf{n} = d$ 

### <u>Method 1</u>

- Show that  $(\mathbf{a} + \lambda \mathbf{b})$ .  $\mathbf{n} = d$  for all values of  $\lambda$ , then the line lies in the plane.

#### <u>Method 2</u>

Step 1 : Show that  $\mathbf{b} \cdot \mathbf{n} = 0$ , then the line is parallel to the plane.

- Step 2: Show that  $\mathbf{a} \cdot \mathbf{n} = d$ , then the point with position vector,  $\mathbf{a}$  lies on the plane. Then conclude the line lies in the plane.
- ★ To find the position vector of point of intersection between the line  $l: \mathbf{r} = \mathbf{a} + \lambda \mathbf{b}$ ,  $\lambda \in \mathbb{R}$  and the plane  $\pi : \mathbf{r} \cdot \mathbf{n} = d$

Let *P* with position vector **p** be the point of intersection between the line *l* and the plane  $\pi$ Then  $\mathbf{p} = \mathbf{a} + \lambda \mathbf{b}$ , for some  $\lambda \in \mathbb{R}$  and  $\mathbf{p} \cdot \mathbf{n} = d$ 

#### <u>Method</u>

- -Since  $\mathbf{p} = \mathbf{a} + \lambda \mathbf{b}$ , for some  $\lambda \in \mathbb{R}$  and  $\mathbf{p} \cdot \mathbf{n} = d$ , then  $(\mathbf{a} + \lambda \mathbf{b}) \cdot \mathbf{n} = d$ .
- Solve for  $\lambda$  and use this value to find the position vector of the point of intersection is given by  $\mathbf{p} = \mathbf{a} + \lambda \mathbf{b}$



• To find the position vector of the foot of the perpendicular from the point P to the plane  $\pi$ :  $\mathbf{r} \cdot \mathbf{n} = d$ 

Let F be the foot of the perpendicular from the point P to the plane  $\pi$  :  $\mathbf{r} \cdot \mathbf{n} = d$ .

#### <u>Method</u>

Step 1: Find vector equation of the line that is perpendicular to the plane (hence direction vector of this line is n) and passing through  $P \Rightarrow \mathbf{r} = \mathbf{p} + \lambda \mathbf{n}, \ \lambda \in \mathbb{R}$ 

Step 2: The point of intersection between line,  $\mathbf{r} = \mathbf{p} + \lambda \mathbf{n}$ ,  $\lambda \in \mathbb{R}$ and the plane  $\pi$ :  $\mathbf{r} \cdot \mathbf{n} = d$  is the foot the perpendicular from the point *P* to the plane. Consider  $(\mathbf{p} + \lambda \mathbf{n}) \cdot \mathbf{n} = d$  and solve for  $\lambda$  to use this value to find the position vector of the point given by  $\mathbf{p} + \lambda \mathbf{n}$ .



(Same as above for the point of intersection between a line and a plane)

• To find the distance between point P with position vector **p** and the plane  $\pi$  : **r**.**n** = d

Let F be the foot of the perpendicular from the point P to the plane  $\pi$  :  $\mathbf{r} \cdot \mathbf{n} = d$ .

#### <u>Method 1</u>

- Step 1: Find the position vector of the foot of the perpendicular from the point *P* to the plane  $\pi$  :  $\mathbf{r} \cdot \mathbf{n} = d$ .
- Step 2: The distance between the point and the plane is given by |PF|. (Refer to diagram above)

#### Method 2

Step 1: Find any point, says A on the plane with position vector **a**.

**Step 2**: Find  $\overrightarrow{AP} = \mathbf{p} - \mathbf{a}$ 

The shortest distance between the point P and the plane is given by  $\frac{|(\mathbf{p}-\mathbf{a}).\mathbf{n}|}{|\mathbf{n}|}$ , that is length of



projection of AP on the normal vector of the plane.

#### <u>Method 3</u>

The distance between the point and the plane is given by  $\frac{|\mathbf{p}.\mathbf{n}-d|}{|\mathbf{n}|}$ . Note from method 2:  $\frac{|(\mathbf{p}-\mathbf{a}).\mathbf{n}|}{|\mathbf{n}|} = \frac{|\mathbf{p}.\mathbf{n}-\mathbf{a}.\mathbf{n}|}{|\mathbf{n}|} = \frac{|\mathbf{p}.\mathbf{n}-d|}{|\mathbf{n}|}$ . • To find the acute angle between the line  $l: \mathbf{r} = \mathbf{a} + \lambda \mathbf{b}$ ,  $\lambda \in \mathbb{R}$  and the plane  $\pi : \mathbf{r} \cdot \mathbf{n} = d$ 

Let the acute angle between **n** and **b** be  $\phi$ .

## <u>Method 1</u>

Step 1: Find the acute angle between **n** and **b** using  $\cos \phi = \frac{|\mathbf{n}.\mathbf{b}|}{|\mathbf{n}||\mathbf{b}|}$ 

**Step 2:** The acute angle between the line and the plane is  $90^{\circ} - \phi$ .

b π φ n n π

Let the acute angle between the line and the plane be  $\theta$ . Then  $\phi = 90^\circ - \theta$ .

#### Method 2

 $-\sin\theta = \frac{|\mathbf{n}.\mathbf{b}|}{|\mathbf{n}||\mathbf{b}|}$ (since  $\cos\phi = \cos(90^\circ - \theta) = \sin\theta$ )

#### • Involving Planes

• To check if the two planes  $\pi_1$ :  $\mathbf{r} \cdot \mathbf{n}_1 = d_1$  and  $\pi_2$ :  $\mathbf{r} \cdot \mathbf{n}_2 = d_2$  are parallel

#### <u>Method</u>

 $\overline{-\text{If } \mathbf{n}_1} // \mathbf{n}_2 \text{ (i.e. } \mathbf{n}_1 = k \mathbf{n}_2 \text{), then } \pi_1 // \pi_2$ 

• To find the distance between two parallel planes  $\pi_1$ :  $\mathbf{r} \cdot \mathbf{n}_1 = d_1$  and  $\pi_2$ :  $\mathbf{r} \cdot \mathbf{n}_2 = d_2$ 

#### <u>Method</u>

**Step 1**: Find any point, says A with position vector, **a** on the plane  $\pi_1$ .

- Step 2 : Find the shortest distance between A and  $\pi_2$  which is  $\frac{|\mathbf{a}.\mathbf{n}-d|}{|\mathbf{n}|}$ (Refer to Distance between point and the plane  $\pi$  :  $\mathbf{r}.\mathbf{n} = d$ )
- To find the acute angle between two planes  $\pi_1$ :  $\mathbf{r} \cdot \mathbf{n}_1 = d_1$  and  $\pi_2$ :  $\mathbf{r} \cdot \mathbf{n}_2 = d_2$

Let the acute angle between the two planes be  $\theta$ .

#### <u>Method</u>

- To find the acute angle between the two planes, we make use of  $\cos\theta = \frac{|\mathbf{n}_1 \cdot \mathbf{n}_2|}{|\mathbf{n}_1||\mathbf{n}_2|}$ 

★ To find vector equation of the line of intersection between two planes  $\pi_1$ :  $\mathbf{r} \cdot \mathbf{n}_1 = d_1$ and  $\pi_2$ :  $\mathbf{r} \cdot \mathbf{n}_2 = d_2$ 

#### Method 1 (using GC)

Step 1: Find the cartesian equations for the planes

Step 2: Using GC to find the line of intersection

#### Method 2 (if GC is not allowed)

Step 1: Find the cartesian equations for the planes

- Step 2: Let one of the variables says x = 0. Then solve for y and z using the cartesian equations from Step 1 to get a common point, A with position vector, **a**.
- Step 3: Compute  $\mathbf{b} = \mathbf{n}_1 \times \mathbf{n}_2$  which is the direction vector of the line of intersection. Then the equation of the line of intersection is  $\mathbf{r} = \mathbf{a} + \lambda \mathbf{b}$ ,  $\lambda \in \mathbb{R}$

#### Method 3 (if GC is not allowed)

Step 1: Find the cartesian equations for the planes

- Step 2: Find two common points using the cartesian equations from Step 1 by first letting x = 0 and solve for y and z and then letting y = 0 and solve for x and z to get another common point
- Step 3: Use the two points to find the equation of the line of intersection .

Example to illustrate Method 2 and 3:

Find the equation of the line of intersection of the two planes whose equations are

$$\mathbf{r} \cdot \begin{pmatrix} 1 \\ 1 \\ -3 \end{pmatrix} = 6 \text{ and } \mathbf{r} \cdot \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix} = 1 \text{ respectively}$$

Method 2

$$\mathbf{r} \cdot \begin{pmatrix} 1\\1\\-3 \end{pmatrix} = 6 \Rightarrow x + y - 3z = 6 \quad \dots \quad (1)$$
  
and 
$$\mathbf{r} \cdot \begin{pmatrix} 1\\0\\2 \end{pmatrix} = 1 \Rightarrow x + 2z = 1 \quad \dots \quad (2)$$

Let z = 0 and solve, we have x = 1, y = 5 and z = 0 $\begin{pmatrix} 1\\1\\-3 \end{pmatrix} \times \begin{pmatrix} 1\\0\\2 \end{pmatrix} = \begin{pmatrix} 2\\-5\\-1 \end{pmatrix}$   $\Rightarrow \text{ the required vector equation is } \mathbf{r} = \begin{pmatrix} 1 \\ 5 \\ 0 \end{pmatrix} + \lambda \begin{pmatrix} 2 \\ -5 \\ -1 \end{pmatrix}, \ \lambda \in \mathbb{R}$ 

Method 3  

$$\mathbf{r} \cdot \begin{pmatrix} 1 \\ 1 \\ -3 \end{pmatrix} = 6 \Rightarrow x + y - 3z = 6 \quad \dots \quad (1) \text{ and } \quad \mathbf{r} \cdot \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix} = 1 \Rightarrow x + 2z = 1 \quad \dots \quad (2)$$

Let z = 0 and solve, we have x = 1, y = 5 and z = 0Let x = 0 and solve, we have x = 0,  $y = \frac{15}{2}$  and  $z = \frac{1}{2}$ 

$$\begin{pmatrix} 1\\5\\0 \end{pmatrix} - \begin{pmatrix} 0\\\frac{15}{2}\\\frac{1}{2}\\\frac{1}{2} \end{pmatrix} = \begin{pmatrix} 1\\-\frac{5}{2}\\-\frac{1}{2}\\-\frac{1}{2} \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 2\\-5\\-1 \end{pmatrix}$$

 $\Rightarrow \text{ the required vector equation is } \mathbf{r} = \begin{pmatrix} 1 \\ 5 \\ 0 \end{pmatrix} + \lambda \begin{pmatrix} 2 \\ -5 \\ -1 \end{pmatrix}, \ \lambda \in \mathbb{R}$ 

## **Revision Tutorial Questions**

## 1 Source of Question: HCI 2016 JC2 CTP1Q10(a)

Three distinct points O, A and B are such that  $\overrightarrow{OA} = \mathbf{a}$  and  $\overrightarrow{OB} = \mathbf{b}$ .

(i) Let  $\overrightarrow{OP} = \mathbf{r}$  and  $\mathbf{r} \times \mathbf{b} = \mathbf{a} \times \mathbf{b}$ . By expressing  $\mathbf{r}$  in terms of  $\mathbf{a}$  and  $\mathbf{b}$ , show that the locus of *P* is a line parallel to  $\mathbf{b}$ . [2]

- (ii) In terms of a and b, write down the distance from O to this line.
  Hence write down the distance from B to this line.
- (iii) Given that the line passes through O, what can you say about the relationship between a and b?

| 1(a)(i)  | $\mathbf{r} \times \mathbf{b} = \mathbf{a} \times \mathbf{b} \Rightarrow (\mathbf{r} - \mathbf{a}) \times \mathbf{b} = 0 \Rightarrow \mathbf{r} - \mathbf{a} = \lambda \mathbf{b} \Rightarrow \mathbf{r} = \mathbf{a} + \lambda \mathbf{b}$ |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|          | The locus of $P$ is a line passing through the point $A$ and parallel to <b>b</b> .                                                                                                                                                         |
| (a)(ii)  | Distance of <i>O</i> from line = $\frac{ \mathbf{a} \times \mathbf{b} }{ \mathbf{b} }$<br>•                                                                                                                                                 |
|          | <b>b</b> A<br>Distance of B from line = $\frac{ \mathbf{a} \times \mathbf{b} }{ \mathbf{b} }$ since <b>b</b> is parallel to the line                                                                                                        |
| (a)(iii) | Since the line passes through <i>O</i> and <i>A</i> ,                                                                                                                                                                                       |
|          | $\Rightarrow \overline{OA} //line$                                                                                                                                                                                                          |
|          | $\Rightarrow \mathbf{a}//\mathbf{b}, \text{ or } \mathbf{a} = k\mathbf{b}$                                                                                                                                                                  |

## 2 Source of Question: CJC 2016 JC2 CTQ2

In the rhombus OABC where O is the origin, the position vectors of the points A, B and C are **a**, **b** and **c** respectively.

(i) Show that  $(\mathbf{a} - \mathbf{c}) \cdot (\mathbf{a} + \mathbf{c}) = 0$ . [2]

Another point D on AB produced is such that AB:AD = 1:4 and the lines OD and BC intersect at the point E.

(ii) (a) Find  $\overrightarrow{OD}$  in terms of a and c, [1]

(b) By considering the lines of OD and BC, find  $\overrightarrow{OE}$  in terms of **a** and **c**. [4]

Hence, find the value of 
$$\frac{BE}{EC}$$
. [1]

2(i) 
$$(\mathbf{a} - \mathbf{c}) \cdot (\mathbf{a} + \mathbf{c}) = \mathbf{a} \cdot \mathbf{a} - \mathbf{c} \cdot \mathbf{a} + \mathbf{a} \cdot \mathbf{c} - \mathbf{c} \cdot \mathbf{c} = |\mathbf{a}|^2 - |\mathbf{c}|^2 = 0$$
  $(\because |\mathbf{a}| = |\mathbf{c}|)$   
Alternative solution:  
The diagonals of a rhombus is perpendicular.  
 $\therefore \overrightarrow{AC} \perp \overrightarrow{OB} \Leftrightarrow (\mathbf{c} - \mathbf{a}) \cdot (\mathbf{b}) = 0 \Leftrightarrow (\mathbf{c} - \mathbf{a}) \cdot (\mathbf{c} + \mathbf{a}) = 0 \Leftrightarrow (\mathbf{a} - \mathbf{c}) \cdot (\mathbf{a} + \mathbf{c}) = 0$   
(ii) (a)  $\overrightarrow{OD} = \overrightarrow{OA} + 4\overrightarrow{AB} = \mathbf{a} + 4\mathbf{c}$   
(b)  $\overrightarrow{OE} = \mu\overrightarrow{OD} = \mu\mathbf{a} + 4\mu\mathbf{c}$   
 $\overrightarrow{OE} = \overrightarrow{OB} + \overrightarrow{ABC} = \overrightarrow{AOC} + (1 - \overrightarrow{A})\overrightarrow{OB}$   
 $= \cancel{A}\mathbf{c} + (1 - \cancel{A})\mathbf{b} = \cancel{A}\mathbf{c} + (1 - \cancel{A})(\mathbf{a} + \mathbf{c}) = (1 - \cancel{A})\mathbf{a} + \mathbf{c}$   
Comparing the coefficients of vectors  $\mathbf{a}$  and  $\mathbf{c}$ ,  
 $4\mu = 1 \Leftrightarrow \mu = \frac{1}{4}$   $\mu = 1 - \cancel{A} \Leftrightarrow \cancel{A} = \frac{3}{4}$   
Therefore,  $\overrightarrow{OE} = \frac{1}{4}\mathbf{a} + \mathbf{c}$   
(iii)  $\frac{BE}{EC} = \frac{3}{4} = \frac{3}{1}$ 

## 3 Source of Question: MI 2015 Prelim P1Q7

A line *l* passes through the points *A* and *B* with coordinates (0, -2, 2) and (1, 0, 1) respectively.

- (i) Find the acute angle between  $\overrightarrow{OA}$  and the line *l*, where *O* is the origin. [2]
- (ii) Hence, find the shortest distance from *O* to the line *l*, leaving your answer in exact form. [1]

(i)(ii)  

$$\overline{AB} = \begin{pmatrix} 1\\0\\1 \end{pmatrix} - \begin{pmatrix} 0\\-2\\2 \end{pmatrix} = \begin{pmatrix} 1\\2\\-1 \end{pmatrix}$$

$$= \begin{pmatrix} 1\\2\\-1 \end{pmatrix} \cdot \begin{pmatrix} 0\\-2\\2 \end{pmatrix}$$

$$\cos \theta = \frac{\begin{pmatrix} 1\\2\\-1 \end{pmatrix} \cdot \begin{pmatrix} 0\\-2\\2 \end{pmatrix}}{(\sqrt{6})(\sqrt{8})} \implies \theta = 30^{\circ}$$
Thus, acute angle between  $\overline{OA}$  and the line  $l = 30^{\circ}$   
Shortest distance  $= \sqrt{8} \sin 30^{\circ} = \sqrt{2}$  units

## 4 Source of Question: NJC 2016 JC2 CTQ9

A line *l* and a plane *p* have equations 
$$\mathbf{r} = \begin{pmatrix} 3 \\ 1 \\ 2 \end{pmatrix} + \lambda \begin{pmatrix} 2 \\ 3 \\ 6 \end{pmatrix}$$
 and  $\mathbf{r} \cdot \begin{pmatrix} 3 \\ 2 \\ -2 \end{pmatrix} = 7$  respectively, where  $\lambda$ 

is a real parameter.

(i) Show, with working, that l lies completely on p. [2]

The point A has coordinates (0, 3, 8). Find, in exact form, the shortest distance between

(ii) A and p, [2]

[3]

(iii) A and l.

Using the results obtained in parts (ii) and (iii), find the shortest distance between l and the foot of perpendicular of A onto p. [2]

| (i) | Method 1                                                                                                                                                                                                                               |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     | Since $\begin{pmatrix} 3\\1\\2 \end{pmatrix} \cdot \begin{pmatrix} 3\\2\\-2 \end{pmatrix} = 9 + 2 - 4 = 7$ , one point on <i>l</i> lies on <i>p</i> .                                                                                  |
|     | Since $\begin{pmatrix} 2\\3\\6 \end{pmatrix} \cdot \begin{pmatrix} 3\\2\\-2 \end{pmatrix} = 6 + 6 - 12 = 0$ , the direction vector of <i>l</i> is perpendicular to the normal vector of <i>p</i> , and hence is parallel to <i>p</i> . |
|     | Therefore $l$ lies on $p$ .                                                                                                                                                                                                            |

| Method 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\left(3+2\lambda\right)\left(3\right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| $\begin{vmatrix} 1+3\lambda \\ \cdot \end{vmatrix} = 3(3+2\lambda)+2(1+3\lambda)-2(2+6\lambda)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| $\left(2+6\lambda\right)\left(-2\right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| $=9+6\lambda+2+6\lambda-4-12\lambda$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| = 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| $(1+2\lambda)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Since $1+3\lambda$ satisfies the equation of p regardless of the value of $\lambda$ , l lies on p.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| $\begin{pmatrix} -1+6\lambda \end{pmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| (ii) Let B denote the point $(3, 1, 2)$ (0, 2, 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| and N denote the foot of $A(0, 3, 8)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| perpendicular of A onto p. $\left  \begin{array}{c} \bullet \\ \bullet \\ \end{array} \right $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Then                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Shortest distance from $B(3, 1, 2)$ Side view of p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| A to p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| =AN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| $\begin{bmatrix} & 3 \\ & \overline{BA} \cdot \begin{bmatrix} 3 \\ 2 \end{bmatrix} = \begin{bmatrix} \begin{pmatrix} 0 \\ 3 \\ - \begin{bmatrix} 3 \\ 1 \end{bmatrix} \cdot \begin{bmatrix} 3 \\ 2 \end{bmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| $ \begin{vmatrix} -2 \end{vmatrix}  \begin{vmatrix} 0 \\ 8 \\ 2 \end{vmatrix} \begin{vmatrix} -2 \\ -2 \end{vmatrix} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| $=\left \frac{\sqrt{2}}{\sqrt{2^2+2^2+(-2)^2}}\right =\left \frac{\sqrt{2}\sqrt{2}+\sqrt{2}}{\sqrt{2}+4+4}\right $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| $\left[ \begin{array}{c} \left[ \sqrt{3} + 2 + (2) \right] + \sqrt{3} + 1 + 1 \right] \\ \left[ \left[ \sqrt{3} + 2 + (2) \right] + \sqrt{3} + 1 + 1 \right] \\ \left[ \left[ \sqrt{3} + 2 + (2) \right] + \sqrt{3} + 1 + 1 \right] \\ \left[ \left[ \sqrt{3} + 2 + (2) \right] + \sqrt{3} + 1 + 1 \right] \\ \left[ \left[ \sqrt{3} + 2 + (2) \right] + \sqrt{3} + 1 + 1 \right] \\ \left[ \left[ \sqrt{3} + 2 + (2) \right] + \sqrt{3} + 1 + 1 \right] \\ \left[ \left[ \sqrt{3} + 2 + (2) \right] + \sqrt{3} + 1 + 1 \right] \\ \left[ \left[ \sqrt{3} + 2 + (2) \right] + \sqrt{3} + 1 + 1 \right] \\ \left[ \sqrt{3} + 2 + (2) \right] \\ \left[ \sqrt{3} $ |
| $\left( \begin{pmatrix} -3 \\ -3 \end{pmatrix} \begin{pmatrix} 3 \\ -3 \end{pmatrix} \right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| $\left  - \frac{\left( 6 \right) \left( -2 \right)}{\left  -9 + 4 - 12 \right } - \sqrt{17}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| $\begin{vmatrix} - \\ \sqrt{17} \end{vmatrix}$ $\begin{vmatrix} - \\ \sqrt{17} \end{vmatrix}$ $\begin{vmatrix} - \sqrt{17} \\ \sqrt{17} \end{vmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| (iii) Let $F$ denote the foot of $A(0, 3, 8)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| perpendicular of A onto l. (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Then 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Shortest distance from A to l $E = \frac{6}{6}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| $B(3, 1, 2) \xrightarrow{I}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

$$= AF$$

$$= \frac{AF}{\left| \frac{BA \times \binom{2}{3}}{\sqrt{2^{2} + 3^{2} + 6^{2}}} \right|}{\sqrt{2^{2} + 3^{2} + 6^{2}}} = \left| \frac{\binom{-3}{2}}{\binom{6}{3}} \times \binom{2}{3}}{\sqrt{4 + 9 + 36}} \right|$$

$$= \left| \frac{\binom{(2)(6) - (6)(3)}{(6)(2) - (-3)(6)}}{\sqrt{49}} \right| = \frac{1}{7} \left| \frac{-6}{30} \right|$$

$$= \frac{1}{7} \sqrt{(-6)^{2} + 30^{2} + (-13)^{2}} = \frac{1}{7} \sqrt{36 + 900 + 169} = \frac{\sqrt{1105}}{7}$$
Alternatively,  $BF$ 

$$= \left| \frac{\overline{BA} \cdot \binom{2}{3}}{\sqrt{2^{2} + 3^{2} + 6^{2}}} \right| = \left| \frac{\binom{-3}{2}}{\binom{2}{6}} \cdot \binom{2}{3}}{\sqrt{4 + 9 + 36}} \right|$$

$$= \frac{\binom{-6}{439}}{\sqrt{49}} = \frac{36}{7}$$
By Pythagoras' Theorem,  
 $AF = \sqrt{BA^{2} - BF^{2}}$ 

$$= \sqrt{(-3)^{2} + 2^{2} + 6^{2}} - \left(\frac{36}{7}\right)^{2}$$

$$= \sqrt{49 - \frac{1296}{49}} = \frac{\sqrt{1105}}{7}$$
(last Shortest distance between *l* and the foot of perpendicular of *A* on *p*

$$= \frac{\sqrt{1105}}{\sqrt{149}} - 17 = \frac{\sqrt{272}}{7} \text{ or } \frac{4}{7} \sqrt{17} \text{ or } 2.36 \text{ (to 3 s.f.)}$$

### 5 Source of Question: MI 2015 Prelim P2 Q3

Relative to a fixed origin *O*, the points *A*, *B* and *C* have position vectors  $\alpha \mathbf{i} - \mathbf{j} + 2\mathbf{k}$ , 4**i**  $-2\mathbf{j}$  and  $-\mathbf{i} - 7\mathbf{j} + \beta \mathbf{k}$  respectively where  $\alpha$  and  $\beta$  are constants.

Given that A, B and C are collinear, show that  $\alpha = 5$  and  $\beta = -10$ . [2]

Hence state the ratio of the area of  $\triangle OBA$  to the area of  $\triangle OBC$ . [1]

Find the vector equation of the line *l* which passes through points *A* and *B*. [1]

The point *P* lies on *OB* such that  $\overrightarrow{OP} = \frac{1}{3}\overrightarrow{PB} \cdot Q$  is a point on the line *l* such that the length of projection of  $\overrightarrow{PQ}$  on the line *OB* is  $\sqrt{5}$  units. Find the possible coordinates of *Q*. [7]

| i   | $\overrightarrow{AB} = k\overrightarrow{BC}$                                                                                                                          |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     | $\begin{pmatrix} 4-\alpha\\-1\\-2 \end{pmatrix} = k \begin{pmatrix} -5\\-5\\\beta \end{pmatrix}$ $k = \frac{1}{5}$ $\therefore \ \alpha = 5 \text{ and } \beta = -10$ |
| ii  | Since both triangles share same base with points <i>A</i> , <i>B</i> , <i>C</i> , so ratio is 1 : 5.                                                                  |
| iii | $\boldsymbol{r} = \begin{pmatrix} 4 \\ -2 \\ 0 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}, \ \lambda \in \mathbb{R}$                           |

$$\begin{array}{|c|c|c|c|c|} \hline 3 \text{iv} & \text{Since } \overline{OP} = \frac{1}{3} \overline{PB}, \\ \hline \overline{OP} = \frac{1}{4} \overline{OB} = \frac{1}{4} \begin{pmatrix} 4 \\ -2 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ -0.5 \\ 0 \end{pmatrix} \\ \hline \overline{OQ} = \begin{pmatrix} 4+\lambda \\ -2+\lambda \\ 2\lambda \end{pmatrix} \\ \hline \overline{PQ} = \begin{pmatrix} 4+\lambda-1 \\ -2+\lambda+0.5 \\ 2\lambda \end{pmatrix} = \begin{pmatrix} 3+\lambda \\ -1.5+\lambda \\ 2\lambda \end{pmatrix} \\ \therefore & \frac{|\overline{PQ} \cdot \overline{OB}|}{|\overline{OB}|} = \sqrt{5} \\ |15+2\lambda| = 10 \\ \text{So } \lambda = -\frac{5}{2} \text{ or } \lambda = -\frac{25}{2} \\ \hline \text{For } \lambda = -\frac{5}{2}, & \overline{OQ} = \begin{pmatrix} 1.5 \\ -4.5 \\ -5 \end{pmatrix} \text{ and for } \lambda = -\frac{25}{2}, & \overline{OQ} = \begin{pmatrix} -8.5 \\ -14.5 \\ -25 \end{pmatrix} \\ \text{Coordinates of } Q \text{ are } (1.5, -4.5, -5) \text{ and } (-8.5, -14.5, -25). \end{array}$$

## 6 Source of Question: RI 2015 Prelim P1Q6

The line  $l_1$  has equation

$$\mathbf{r} = (3\mathbf{i}+2\mathbf{j}+\mathbf{k}) + \lambda(\mathbf{i}+\mathbf{j}+\mathbf{k}), \ \lambda \in \mathbb{R},$$

and the line  $l_2$  passes through the origin *O* and point *A*, whose position vector is given by  $\mathbf{a} = 2\mathbf{i} + \mathbf{j}$ . Find the acute angle between

- (i)  $l_1 \text{ and } l_2$ , [2]
- (ii)  $l_1$  and the xy-plane. [2]

A point *B* on  $l_1$  is such that  $OB = \sqrt{5}$ .

(iii) Find the possible position vectors of *B*. [4]

$$\begin{aligned} \mathbf{\hat{6}(i)} \\ \mathbf{\hat{2m}} & \text{Let } \theta \text{ be the acute angle between } \begin{pmatrix} 1\\1\\1 \end{pmatrix} \text{ and } \begin{pmatrix} 2\\1\\0 \end{pmatrix} \\ \mathbf{\hat{1}} \\ \mathbf{\hat{0}} \\ \mathbf{\hat{$$

#### 7 Source of Question: YJC 2015 PrelimP1Q12

Relative to the origin *O*, two points *A* and *B* have position vectors  $\mathbf{a} = 2\mathbf{i} + \mathbf{k}$  and  $\mathbf{b} = \mathbf{i} + \mathbf{j} - 2\mathbf{k}$  respectively.

- (i) Find a×b and give the geometrical meaning of |a×b|. [2]
  Hence write down the area of triangle OAB. [1]
  (ii) Find a×b and give the geometrical meaning of |a×b|. [2]
- (ii) Find a vector equation of the line l passing through A and B. [2]
- (iii) The perpendicular to l from the point C with position vector  $-13\mathbf{i}+2\mathbf{j}+3\mathbf{k}$ meets the line at the point M. Show that the position vector of M is  $\mathbf{i}+\mathbf{j}-2\mathbf{k}$ . [3]
- (iv) Find a cartesian equation of the plane containing O, A and B and the exact length of projection of  $\overrightarrow{CM}$  onto this plane. [4]
- (v) Find the acute angle between the line OC and the triangle OAB. [2]



$$\mathbf{r} = \begin{pmatrix} 2\\0\\1 \end{pmatrix} + \lambda \begin{pmatrix} 1\\-1\\3 \end{pmatrix} \text{ where } \lambda \in \mathbb{R}$$
  
Or  

$$\mathbf{r} = \begin{pmatrix} 1\\1\\-2 \end{pmatrix} + \lambda \begin{pmatrix} 1\\-1\\3 \end{pmatrix} \text{ where } \lambda \in \mathbb{R}$$
  

$$\mathbf{iii}$$

$$\overline{OC} = \begin{pmatrix} -13\\2\\3 \end{pmatrix}$$

$$\overline{OM} = \begin{pmatrix} 2\\0\\1 \end{pmatrix} + \lambda \begin{pmatrix} 1\\-1\\3 \end{pmatrix} = \begin{pmatrix} 2+\lambda\\-\lambda\\1+32 \end{pmatrix} \text{ for some } \lambda \in \mathbb{R}$$
  

$$\overline{CM} = \overline{OM} - \overline{OC} = \begin{pmatrix} 15+\lambda\\-\lambda-2\\3\lambda-2 \end{pmatrix}$$

$$\overline{CM} \cdot \begin{pmatrix} 1\\-1\\3 \end{pmatrix} = 0 \Rightarrow 15 + \lambda + \lambda + 2 + 9\lambda - 6 = 0$$
  

$$11\lambda = -11 \Rightarrow \lambda = -1$$
  

$$\therefore \overline{OM} = \begin{pmatrix} 1\\1\\-2 \end{pmatrix} = \mathbf{i} + \mathbf{j} - 2\mathbf{k} \text{ (Shown)}$$
  

$$\mathbf{iv}$$

$$\mathbf{a} \times \mathbf{b} = \begin{pmatrix} -1\\5\\2 \end{pmatrix} \text{ from (i)}$$
  
Plane  $OAB: \mathbf{r} \cdot \begin{pmatrix} -1\\5\\2 \end{pmatrix} = 0 \text{ (as origin is on the plane)}$ 

Required equation is 
$$x - 5y - 2z = 0$$
  

$$\overline{CM} = \begin{pmatrix} 14\\ -1\\ -5 \end{pmatrix} \text{ from (iii)}$$
Length of the projection of vector  $\overline{CM}$  onto this plane  $= \frac{1}{\sqrt{30}} \left| \overline{CM} \times \begin{pmatrix} -1\\ 5\\ 2 \end{pmatrix} \right|$ 

$$= \frac{1}{\sqrt{30}} \left| \begin{pmatrix} 14\\ -1\\ -5 \end{pmatrix} \times \begin{pmatrix} -1\\ 5\\ 2 \end{pmatrix} \right| = \frac{23}{\sqrt{30}} \left| \begin{pmatrix} 1\\ -1\\ 3 \end{pmatrix} \right|$$

$$= 23\sqrt{\frac{11}{30}}$$
v Let  $\theta$  be the angle between line *OC* and the normal of triangle *OAB*.  

$$\cos \theta = \frac{\begin{pmatrix} -13\\ 2\\ 3 \end{pmatrix} \cdot \begin{pmatrix} -1\\ 5\\ 2 \end{pmatrix}}{\begin{pmatrix} -1\\ 5\\ 2 \end{pmatrix}} = \frac{13 + 10 + 6}{\sqrt{5460}} \implies \theta = 66.892^{\circ}$$
Therefore acute angle between line *OC* and triangle *OAB*. = 23.1°

## 8 Source of Question: CJC 2015 Promo Q6 (a)

The equation of a line *l* is given by  $\frac{x-5}{2} = \frac{y+1}{-2} = z+1$ . A point *P*, not lying on *l*, has position vector  $9\mathbf{i} + 7\mathbf{j} - 2\mathbf{k}$ .

- (i) Given that Q is a point on l such that  $PQ = 6\sqrt{3}$ , find the possible coordinates of Q. [4]
- (ii) Hence, or otherwise, find the position vector of the foot of perpendicular from P to l. [2]

(i)  
Equation of *l*: 
$$\mathbf{r} = \begin{pmatrix} 5 \\ -1 \\ -1 \end{pmatrix} + \lambda \begin{pmatrix} 2 \\ -2 \\ 1 \end{pmatrix}, \lambda \in \mathbb{R}$$
  
Since *Q* lies on *l*,  $\overrightarrow{OQ} = \begin{pmatrix} 5 \\ -1 \\ -1 \end{pmatrix} + \lambda \begin{pmatrix} 2 \\ -2 \\ 1 \end{pmatrix} + \lambda \begin{pmatrix} 2 \\ -2 \\ -1 \end{pmatrix}$ , for some  $\lambda \in \mathbb{R}$ .  
 $\overrightarrow{PQ} = \begin{pmatrix} 5 \\ -1 \\ -1 \end{pmatrix} + \lambda \begin{pmatrix} 2 \\ -2 \\ -2 \end{pmatrix} = \begin{pmatrix} -4 + 2\lambda \\ -8 - 2\lambda \\ 1 + \lambda \end{pmatrix}$   
So  $PQ = \begin{vmatrix} -4 + 2\lambda \\ -8 - 2\lambda \\ 1 + \lambda \end{vmatrix} = 6\sqrt{3}$   
 $(-4 + 2\lambda)^2 + (-8 - 2\lambda)^2 + (1 + \lambda)^2 = 108$   
 $9\lambda^2 + 18\lambda - 27 = 0$   
 $(\lambda + 3)(\lambda - 1) = 0$   
 $\therefore \lambda = -3 \text{ or } \lambda = 1$   
So  $\overrightarrow{OQ} = \begin{pmatrix} 5 \\ -1 \\ -1 \end{pmatrix} - 3\begin{pmatrix} 2 \\ -2 \\ 1 \end{pmatrix} = \begin{pmatrix} -1 \\ 5 \\ -4 \end{pmatrix} \text{ or } \overrightarrow{OQ} = \begin{pmatrix} 5 \\ -1 \\ -1 \end{pmatrix} + \begin{pmatrix} 2 \\ -2 \\ 1 \end{pmatrix} = \begin{pmatrix} 7 \\ -3 \\ 0 \end{pmatrix}$   
Possible coordinates of *Q* are  $(-1, 5, -4)$  and  $(7, -3, 0)$ .  
(ii)  
Method 1:  
Let  $Q_1(-1, 5, -4)$  and  $Q_2(7, -3, 0)$  and let *F* be the foot of perpendicular from *P* to *l*.  
Since  ${}_{\Delta}PQ_1Q_2$  is isosceles, *F* is the midpoint of  $Q_1$  and  $Q_2$ .  
So  $\overrightarrow{OF} = \frac{\overrightarrow{OQ}_1 + \overrightarrow{OQ}_2}{2} = \frac{1}{2} \begin{bmatrix} -1 \\ 5 \\ -4 \end{bmatrix} + \begin{pmatrix} 7 \\ -3 \\ 0 \\ 0 \end{bmatrix} = \begin{pmatrix} 3 \\ 1 \\ -2 \end{pmatrix}$ 

Method 2:  
Let *F* be the foot of perpendicular from *A* to *l*.  
Then 
$$\overrightarrow{OF} = \begin{pmatrix} 5 \\ -1 \\ -1 \end{pmatrix} + \alpha \begin{pmatrix} 2 \\ -2 \\ 1 \end{pmatrix}$$
 for some  $\alpha \in \mathbb{R}$ .  
 $\overrightarrow{PF} = \begin{pmatrix} 5 \\ -1 \\ -1 \end{pmatrix} + \alpha \begin{pmatrix} 2 \\ -2 \\ 1 \end{pmatrix} - \begin{pmatrix} 9 \\ 7 \\ -2 \end{pmatrix} = \begin{pmatrix} -4 \\ -8 \\ 1 \end{pmatrix} + \alpha \begin{pmatrix} 2 \\ -2 \\ 1 \end{pmatrix}$   
 $\overrightarrow{PF} \cdot \begin{pmatrix} 2 \\ -2 \\ 1 \end{pmatrix} = 0 \Rightarrow \begin{bmatrix} \begin{pmatrix} -4 \\ -8 \\ 1 \end{pmatrix} + \alpha \begin{pmatrix} 2 \\ -2 \\ 1 \end{bmatrix} \cdot \begin{pmatrix} 2 \\ -2 \\ 1 \end{pmatrix} = 0$   
 $\begin{pmatrix} -4 \\ -8 \\ 1 \end{pmatrix} \cdot \begin{pmatrix} 2 \\ -2 \\ 1 \end{pmatrix} + \alpha \begin{pmatrix} 2 \\ -2 \\ 1 \end{pmatrix} \cdot \begin{pmatrix} 2 \\ -2 \\ 1 \end{pmatrix} = 0$   
 $9 + 9\alpha = 0 \Rightarrow \alpha = -1$   
So  $\overrightarrow{OF} = \begin{pmatrix} 5 \\ -1 \\ -1 \end{pmatrix} - \begin{pmatrix} 2 \\ -2 \\ 1 \end{pmatrix} = \begin{pmatrix} 3 \\ 1 \\ -2 \end{pmatrix}$