5NA AMath Prelim Paper 2 2021

1	f(x) = -2(x+1)(x-2)(x+k)	
	f(4) = 20	
	-2(5)(2)(4+k) = 20	
	k = -5	
	f(10) = -2(10+1)(10-2)(10-5)	
	= -880	
2(i)		
	$y = x^{-} + 3$	
	$\frac{dy}{dx} = 2x$	
	$x^2 + 3 - 6$	
	$\frac{1}{x-2} = 2x$	
	$x^2 - 3 = 2x^2 - 4x$	
	$x^2 - 4x + 3 = 0$	
	(x-1)(x-3) = 0	
	x = 1, 3	
	A(3, 12), B(1, 4)	
2(ii)	At A (3, 12), <i>m</i> = 6	
	Equation of normal at A is	
	$y-12 = -\frac{1}{6}(x-3) \implies y = -\frac{1}{6}x + \frac{25}{2}$	
	0 0 2	
	At $B(1, 4), m = 2$	
	Equation of normal at B is 1	
	$y-4 = -\frac{1}{2}(x-1) \implies y = -\frac{1}{2}x + \frac{y}{2}$	
	A and B meet at the point Q 1 25 1 9	
	$-\frac{1}{6}x + \frac{1}{2} = -\frac{1}{2}x + \frac{1}{2}$	
	-x+75 = -3x+27	
	$2x = -48 \implies x = -24$ $y = -2$	

	77	
	$\frac{33}{2}$	
	Coordinates of $Q(-24, -4)$	
3	$\frac{1+\tan^2 x+2\tan x}{1+\tan^2 x+2\tan x}$	
	$1 - \tan^2 x$	
	$(1+\tan x)^2$	
	$=\frac{1}{(1-\tan x)(1+\tan x)}$	
	$1 \pm \tan x$	
	$=\frac{1+\tan x}{(1-\tan x)}$ (1)	
	$\sin x$	
	$1 + \frac{1}{\cos x}$	
	$=\frac{1}{1}\frac{\sin x}{\sin x}$	
	$1 - \frac{1}{\cos x}$	
	$\cos x + \sin x$	
	$=\frac{1}{\cos x - \sin x}$	
	Proven	
	$\cos x + \sin x$	
	$\overline{\sin x - \cos x}$	
	$\cos x + \sin x$	
	$- \cos x - \sin x$	
	$1 + \tan^2 n + 2 \tan n$	
	$\frac{1+\tan x+2\tan x}{1+x^2}$	
	= 1 – tan ⁻ x	
	$=-\frac{1+\tan x}{1+\tan x}$	
	$(1 - \tan x)$	
	$1 + \tan x$	
	$\frac{1-\tan x}{1-\tan x}$ - $\tan x$	
	$tor^2 = 2torr = 1$	
	$\tan x - 2\tan x - 1 = 0$	
	$\tan x = \frac{2 \pm \sqrt{8}}{2}$	
	$\tan x = 1 \pm \sqrt{2}$	
	$\alpha = 1.1781$	
	r = 1.18 + 75 + 32 + 5.89	
	x = 1.10, 2.75, T. 52, 5.67	

4(i)	$r = 2 + \sqrt{2}$	
	$\pi r^2 h = \left(9 + 5\sqrt{2}\right)\pi$	
	$\left(2+\sqrt{2}\right)^2 h = \left(9+5\sqrt{2}\right)$	
	$\left(6+4\sqrt{2}\right)h = \left(9+5\sqrt{2}\right)$	
	$h = \frac{(9+5\sqrt{2})}{(6+4\sqrt{2})} \times \frac{(6-4\sqrt{2})}{(6-4\sqrt{2})}$	
	$(0+4\sqrt{2})$ $(0-4\sqrt{2})$	
	$=\frac{14-6\sqrt{2}}{4}=\frac{7}{2}-\frac{3}{2}\sqrt{2}$	
4(::)	24x+1 22x	
4(11)	$\frac{3^{6x}}{3^{6x}} = \frac{7^{2x}}{7^{x-1}}$	
	$3^{1-2x} = 7^{x+1}$	
	$\frac{3}{7} = 7^x \square^x = 63^x$	
	$63^{x} = \frac{3}{7}$	
5(i)	$m = -\frac{2}{2} - 2$	
	$m_{QT} - \frac{1}{1} - 2$	
	$m_{PR} = -\frac{1}{2}$	
	-	
	$y-7 = -\frac{1}{2}(x-6)$	
	$v = -\frac{1}{x} + 10$	
	2	
5(ii)	$v = -\frac{1}{(0)} + 10$	
	y = 10	
	y = 10	
	P(0,10)	
	P(0,10)	
5(iii)	$P(0,10)$ $(6,7) = \left(\frac{7+x}{2}, \frac{9+y}{2}\right)$	
5(iii)	$P(0,10)$ $(6,7) = \left(\frac{7+x}{2}, \frac{9+y}{2}\right)$ $x = 5$	
5(iii)	$P(0,10)$ $(6,7) = \left(\frac{7+x}{2}, \frac{9+y}{2}\right)$ $x = 5$ $y = 5$	

5(iv)	OU - OQ = 3(OT - OQ)	
	$\binom{x}{y} = 3\binom{6}{7} - 2\binom{7}{9}$	
	$=\begin{pmatrix}4\\4\end{pmatrix}$	
	<i>U</i> (4,3)	
5(v)	$\operatorname{area} = \frac{1}{2} \begin{vmatrix} 0 & 4 & 7 & 0 \\ 10 & 3 & 9 & 10 \end{vmatrix}$	
	$=\frac{1}{2}\left[(36+20)-(40+21)\right]$	
	$=\frac{1}{2}[106-61]$	
	$= 22.5 \text{ units}^2$	
6(i)	y = 4 - x + 1	
	Along the x-axis, $y = 0$,	
	4 - x + 1 = 0	
	x+1 = 4	
	x + 1 = 4 or $x + 1 = -4$	
	x = 3 or $x = -5$	
	For $y = x+1 $, x-intercept:	
	x+1 =0	
	x + 1 = 0	
	x = -1	
	Along the y-axis, $x = 0$,	
	y = 4 - 0 + 1	
	= 3	
	A(-5,0)	
	B(-1,4)	
	C(3,0)	
	D(0,3)	

6(iia)	$x_{1} = x_{2} = 2 + x+1 = 2x+3$	
	When $w = 2x + 3$ will interpret $v = 4 - x + 1 $ at one point	
	Graph ² at one point	
	No. of solution = 1	
6(iib)		
0(110)	When $m1$, $4 - x + 1 = -x + 3$	
	Graph $y = -x+3$ is equal to $y = 4 - (x+1)$	
	No. of solution = infinite	
6(iii)	When $m = -1$ or $m = 1$,	
	Graph $y = mx + 3$ have infinite number of solutions.	
	Bange of values of <i>m</i> for two solutions:	
	-1 < m < 1	
	-1 < m < 1	
7(i)	$(x-1)\left(-\frac{1}{2}\right) - \ln(1-x)$	
	$f'(x) = \frac{(x-y)(1-x)}{(x-1)^2}$	
	(x-1) $1-\ln(1-x)$	
	$=\frac{(x-1)^{2}}{(x-1)^{2}}$	
7(ii)	$f(-1) = -\frac{1}{-1} \ln 2$	
	$\frac{1}{1-\ln 2}$	
	$f'(-1) = \frac{1}{4}$	
	$y - \left(-\frac{1}{2}\ln 2\right) = \frac{1 - \ln 2}{4}(x + 1)$	
	x = 0	
	$y = \frac{1 - \ln 2}{4} - \frac{1}{2} \ln 2 = \frac{1 - 3 \ln 2}{4}$	
	$A\left(0\frac{1-3\ln 2}{2}\right)$	
	<i>(</i> , 4)	

7(iii)	$\frac{1-\ln\left(1-x\right)}{x^2} < 0$	-
	$(x-1)^2$	
	x < 1 given	
	$1 - \ln(1 - x) < 0$	
	$\lim_{ x \to 0} x = 1$	
	x < 1 - e	
7(iv)	$\frac{1-\ln(1-x)}{(x-x)^2} > 0$	
	$(x-1)^{-}$	
	r>1- <i>a</i>	
	1 - e < x < 1	
0(1)		
8(i)	${}^{n}C_{0}\left(1\right)^{n-0}\left(-\frac{x}{3}\right)^{0}+{}^{n}C_{1}\left(1\right)^{n-1}\left(-\frac{x}{3}\right)^{1}+{}^{n}C_{2}\left(1\right)^{n-2}\left(-\frac{x}{3}\right)^{2}+\ldots$	
	$-\frac{1-\frac{n}{3}x+\frac{n(n-1)}{18}x^2+\dots}{18}$	
8(ii)	$\begin{bmatrix} n(n-1) & np & 5 \end{bmatrix}_{n}$	
	$2 + \left\lfloor p - \frac{4\pi}{3} \right\rfloor x + \left\lfloor \frac{4\pi}{9} - \frac{4\pi}{3} + \frac{2}{2} \right\rfloor x^2 + \dots$	
	$2n - 3 \mid n$	
	$p - \frac{2\pi}{3} = \frac{31p}{3}$ (1)	
	n(n-1) np 5 25	
	$\frac{9}{3} + \frac{3}{2} = \frac{3}{3}$ (2)	
	Simplify (1) $n = -14p$	
	$p = -\frac{1}{2}$	

10(i)	$\frac{d}{dx}(x\cos 2x) = x(-2\sin 2x) + \cos 2x$	
	$= -2x\sin 2x + \cos 2x$	
	-	
10(ii)	$\int (-2x\sin 2x + \cos 2x)dx = x\cos 2x + c$	
	$\int x \sin 2x dx + \frac{-1}{2} \int \cos 2x dx = -\frac{1}{2} (x \cos 2x + c)$	
	$\int x \sin 2x dx = -\frac{1}{2} x \cos 2x - \frac{1}{2}c + \frac{1}{2} \left(\frac{\sin 2x}{2}\right) + c_2$	
	$\int x \sin 2x dx = -\frac{1}{2} x \cos 2x + \left(\frac{\sin 2x}{4}\right) + d$	
	$\int_0^{\frac{\pi}{4}} (x\sin 2x) dx = -\frac{1}{2} \left(\frac{\pi}{4}\right) \cos\left(2 \times \frac{\pi}{4}\right) + \left(\frac{\sin(2 \times \frac{\pi}{4})}{4}\right)$	
	$=\frac{1}{4}$	
11(a)		
11(<i>a</i>)	$x^2 + 2x + p = 0$	
	S.O.R: $\alpha + \beta = -2$ P.O.R: $\alpha\beta = \rho$	
	$x^2 + qx + 27 = 0$	
	S.O.R: $\alpha^3 + \beta^3 = -q$ P.O.R: $\alpha^3 \beta^3 = 27$	
	$\alpha^3\beta^3=27$	
	$(\alpha\beta)^3 = 27$	
	$p^3 = 27$	
	p = 3	
	*	

	$\alpha^{3} + \beta^{3} = -q$ $(\alpha + \beta)(\alpha^{2} - \alpha\beta + \beta^{2}) = -q$ $(-2)[(\alpha + \beta)^{2} - 3\alpha\beta] = -q$ $(-2)((-2)^{2} - 3(3)) = -q$ $q = -10$	
11(b)		
12(i)	$9 = 25 - Ae^{0}$ $A = 16$ $17 = 25 - 16e^{20k}$ $e^{20k} = \frac{1}{2}$ $20k = \ln\left(\frac{1}{2}\right)$	

shown

12(ii)	$23 = 25 - 16 \left(\frac{1}{2}\right)^{\frac{t}{20}}$	
	$\left(\frac{1}{2}\right)^{\frac{t}{20}} = \frac{1}{8}$	
	$\frac{t}{20} = \frac{\log_2 \frac{1}{8}}{\log_2 \frac{1}{2}} = \frac{-3}{-1} = 3$	
	t = 60	
	Duration = $60 - 20 = 40$ minutes	
12(iii)	$t \to \infty, \ \left(\frac{1}{2}\right)^{\frac{t}{20}} \to 0$	
	so $\theta \rightarrow 25$ for large values of <i>t</i> .	
12(1)	Approaches / tends towards	
12(IV)		-
	25	
	9	
	0 200 400 600	
	0	