FUHUA SECONDARY SCHOOL Sec 4E Chemistry 6092 Preliminary Examinations 2024 – Mark Scheme

PAPER 2 Section A [70 marks]

	Section A [70	a							
Q						Ма	Remarks		
1a	Q and R							1	
b	ZT ₂							1	
ci	shared electro	ns						1	
	non-bonded e	lectrons						1	
cii	Charge of Mg ²							2	3; [2]
	Three Mg ²⁺ an								
	Outer electron	s for Mg ²⁺ and	M ³⁻ [;]						
d					true	false		2	4√ [2]
	Molecule 3 ha	as lower boiling	point then mo	lecule 2.		✓			
	Molecule 3 is	a saturated org	ganic compour	nd.	✓				
	Element Z re	acts with oxyge	n to form acidi	c oxide		√			
	only.					V			
	Elements P	and T are in Gr	oup 16.		✓				
							Total	8	marks
2ai	Mass of CO ₂ =	= 100 – 97.8 = 2	2 a						
								1	
		Moles of $CO_2 = 2.2 / 44 = 0.05 \text{ mol}$							
	ii experiment particle size volume of concentration of acid /						1		
ii	experiment	particle size	volume of acid / cm ³	concentra mol/dm³	ation of aci	d /			
ii	experiment 1	particle size powder	acid / cm ³		ation of aci	d /		1	
ii		•	acid / cm³ 50 e.c.f from	mol/dm ³	ation of aci	d /		1	
ii	1	powder	50 e.c.f from (a)(i) mole	mol/dm³ 2.0	ation of aci	d /			
ii		•	50 e.c.f from (a)(i) mole 200 [1]	mol/dm ³	ation of aci	d /		1	
ii	1	powder	50 e.c.f from (a)(i) mole 200 [1] (must be 4x	mol/dm³ 2.0	ation of aci	d /			
ii	1	powder	acid / cm ³ 50 e.c.f from (a)(i) mole 200 [1] (must be 4x of expt 1/ 2x of expt 3)	mol/dm ³ 2.0	ation of aci	d /		1	
ii	1	powder lump Powder [;]	acid / cm ³ 50 e.c.f from (a)(i) mole 200 [1] (must be 4x of expt 1/ 2x of expt 3) 100 [;]	mol/dm ³ 2.0 1.0 2.0 [;]		d /			3; [1]
ii	2	powder lump Powder [;] Same as	acid / cm ³ 50 e.c.f from (a)(i) mole 200 [1] (must be 4x of expt 1/ 2x of expt 3)	mol/dm ³ 2.0		d /		1	3; [1]
ii	2	powder lump Powder [;]	acid / cm ³ 50 e.c.f from (a)(i) mole 200 [1] (must be 4x of expt 1/ 2x of expt 3) 100 [;]	mol/dm ³ 2.0 1.0 2.0 [;]		d /		1	3; [1]
ii	2	powder lump Powder [;] Same as expt 1	acid / cm ³ 50 e.c.f from (a)(i) mole 200 [1] (must be 4x of expt 1/ 2x of expt 3) 100 [;] 2x of expt 1	mol/dm ³ 2.0 1.0 2.0 [;]		d /		1	3; [1]
ii	1 2 3 Expt 1: mole o	powder lump Powder [;] Same as	acid / cm ³ 50 e.c.f from (a)(i) mole 200 [1] (must be 4x of expt 1/ 2x of expt 3) 100 [;] 2x of expt 1	mol/dm ³ 2.0 1.0 2.0 [;] Same as 6		d /		1	3; [1]
	1 2 3 Expt 1: mole of Volume of acid	powder	acid / cm ³ 50 e.c.f from (a)(i) mole 200 [1] (must be 4x of expt 1/ 2x of expt 3) 100 [;] 2x of expt 1 = 0.10 mol 0.05dm ³ = 50 c	mol/dm ³ 2.0 1.0 2.0 [;] Same as 6	expt 1			1	
	1 2 3 Expt 1: mole of Volume of acid	powder lump Powder [;] Same as expt 1 of H+= 0.05 x 2 = 0.10 / 2.0 = 0.00 decreases[;], to the content of th	acid / cm ³ 50 e.c.f from (a)(i) mole 200 [1] (must be 4x of expt 1/ 2x of expt 3) 100 [;] 2x of expt 1 = 0.10 mol 0.05dm ³ = 50 center is a large	mol/dm³ 2.0 1.0 2.0 [;] Same as exposed ser exposed services.	expt 1	[;] of barium		1	4; [2]
	2 Expt 1: mole of volume of acid carbonate in c	powder lump Powder [;] Same as expt 1 of H+= 0.05 x 2 = 0.10 / 2.0 = 0.0000000000000000000000000000000	acid / cm ³ 50 e.c.f from (a)(i) mole 200 [1] (must be 4x of expt 1/ 2x of expt 3) 100 [;] 2x of expt 1 = 0.10 mol 0.05dm ³ = 50 content is a large acid. There are	mol/dm³ 2.0 1.0 2.0 [;] Same as exposed seemore collise	expt 1 surface areasions and in	[;] of barium crease in		1	
	2 Expt 1: mole of Volume of acid carbonate in contrequency of experience.	powder lump Powder [;] Same as expt 1 of H+= 0.05 x 2 = d = 0.10 / 2.0 = d = d = d = d = d = d = d = d = d =	acid / cm ³ 50 e.c.f from (a)(i) mole 200 [1] (must be 4x of expt 1/ 2x of expt 3) 100 [;] 2x of expt 1 = 0.10 mol 0.05dm ³ = 50 contained in the expension of the expension	mol/dm³ 2.0 1.0 2.0 [;] Same as exposed seemore collistium carbon.	expt 1 surface areasions and in	[;] of barium crease in		1	4; [2]
	2 Expt 1: mole of Volume of acid As particle size carbonate in contract of the contract of t	powder lump Powder [;] Same as expt 1 of H+= 0.05 x 2 = 0.10 / 2.0 = 0.0000000000000000000000000000000	acid / cm ³ 50 e.c.f from (a)(i) mole 200 [1] (must be 4x of expt 1/ 2x of expt 3) 100 [;] 2x of expt 1 = 0.10 mol 0.05dm ³ = 50 contained in the expension of the expension	mol/dm³ 2.0 1.0 2.0 [;] Same as exposed seemore collistium carbon.	expt 1 surface areasions and in	[;] of barium crease in		1	4; [2]
2b	2 2 3 Expt 1: mole of Volume of acide arbonate in control frequency of exparticles[:], here Add aq. silver	powder lump Powder [;] Same as expt 1 of H+= 0.05 x 2 = 0 = 0.10 / 2.0 = 0 e decreases[;], to ontact with the affective collision noce increasing seconds.	acid / cm³ 50 e.c.f from (a)(i) mole 200 [1] (must be 4x of expt 1/ 2x of expt 3) 100 [;] 2x of expt 1 = 0.10 mol 0.05dm³ = 50 contained in the expension of the expt speed of reaction of the expt speed of the expt speed of reaction of the expt speed of the expt s	mol/dm³ 2.0 1.0 2.0 [;] Same as exposed ser exposed ser exposed serion configuration.	expt 1 surface area sions and in- ate and H+ i	[:] of barium crease in ons the acid	<u>!</u> R	1	4; [2]
2b	2 Expt 1: mole of Volume of acid carbonate in control frequency of exparticles[:], here add aq. silver Add aq. NaOH	powder lump Powder [;] Same as expt 1 If H+= 0.05 x 2 = d = 0.10 / 2.0 = e decreases[;], to ontact with the a ffective collision nce increasing s nitrate solution I, aluminium foil	acid / cm³ 50 e.c.f from (a)(i) mole 200 [1] (must be 4x of expt 1/ 2x of expt 3) 100 [;] 2x of expt 1 = 0.10 mol 0.05dm³ = 50 contained in the expension of the expt speed of reaction to each acid, if to each acid are	mol/dm³ 2.0 1.0 2.0 [;] Same as exposed serior exposed serior collistium carbonion[;]. white ppt found heat the	expt 1 Surface areasions and incate and H+ incommunity in a community in a commu	[:] of barium crease in ons the acid	<u>!</u> R	1 2	4; [2]
2b	2 Expt 1: mole of Volume of acid carbonate in control frequency of exparticles[:], here add aq. silver Add aq. NaOH	powder lump Powder [;] Same as expt 1 of H+= 0.05 x 2 = 0 = 0.10 / 2.0 = 0 e decreases[;], to ontact with the affective collision noce increasing seconds.	acid / cm³ 50 e.c.f from (a)(i) mole 200 [1] (must be 4x of expt 1/ 2x of expt 3) 100 [;] 2x of expt 1 = 0.10 mol 0.05dm³ = 50 contained in the expension of the expt speed of reaction to each acid, if to each acid are	mol/dm³ 2.0 1.0 2.0 [;] Same as exposed serior exposed serior collistium carbonion[;]. white ppt found heat the	expt 1 Surface areasions and incate and H+ incommunity in a community in a commu	[:] of barium crease in ons the acid	<u>!</u> R	1 2	4; [2]

d	Rate will be slower [;] and change in mass will be the same [;] as experiment 1. Ethanoic acid is a <u>weak acid which dissociates partially in aqueous solution to give a lower concentration of H⁺ ions [;] compared to the strong acid, hence rate is slower. The <u>acid / H⁺ ions remains as the limiting reagent / same number of moles of H⁺ ions used [;] hence mass of gas produced is the same and same change in mass of the reaction.</u></u>	3	4[;] – [3], 2-3[;] – [2], 1[;] – [1]
	Total	10) marks
3ai	Concentration of CuSO ₄ decreases [;] from 1.10 mol/dm ³ until all Cu ²⁺ ions in solution reduced to form Cu at the cathode. [;] $Cu^{2+}(aq) + 2e \rightarrow Cu(s)$ [;]	2	3; [2]
ii	Amount of Cu deposited = 200/1000 X (1.10 – 0.22) = 0.176 mol Mass of Cu = 0.176 X 64	1	
	=11.3 g	1	
bi	straight horizontal line at 1.10 g	1	
ii	Colourless gas given off at the graphite electrode. Grey / silvery solid deposited on the iron object.	1	
С	Once tin is scratched, <u>iron will lose electrons / oxidise more readily</u> to form iron(II) ions as <u>tin is less reactive than iron</u>	1	
	Total	9	marks
4a			3;[2],1;[1]
	batyr proparioato[,], batariol[,], proparioto acia[,]	_	o , [=], · , [·]
	Accept catalytic hydrogenation.	1	
	Reject 'addition polymerisation'	1	
	$ \underbrace{ \begin{pmatrix} H & H & O & O \\ I & I & I & I \\ N-(CH_2)_6-N-C-(CH_2)_4-C \end{pmatrix}_n }_{\text{N-C}(CH_2)_6-N-C-(CH_2)_4} \text{, condensation polymerisation} $	1	
bi	 Any two of the following: Members have the same general formula C_nH_{2n+1}X There is gradual increase in boiling point as the number of carbon atoms increases. Successive members differ from the next by a -CH₂ group. 	2	
ii	As the halogen atom changes from C/ to I, the boiling point of the alkyl halide increases.	1	
	The size of halogen atom increases from C/ to I, molecular mass / molecular size of alky halide increases [1] and hence boiling point increases.	1	
	Intermoleular forces of attraction between molecules increases and amount of energy taken in to overcome these forces increases	1	
iii			

Sa When chromium is heated with manganese oxide, there is no visible change. [;] as chromium is less reactive than manganese. [;] When chromium is heated with copper (II) oxide, black CuO turned to reddish-brown Cu / grey Cu turned to green Cr₂O₃./ black CuO and grey Cr turned to green Cr₂O₃.and reddish-brown Cu. Chromium is more reactive than copper and displaces copper from CuO. b 3Mn (s) + 2Cr³+ (aq) → 3Mn²+ (aq) + 2Cr (s) c Blue solution turned green and grey metal coated with a reddish-brown solid. 1 Total 5 marks 6a	1	H H H—C—C—O—H + H H displayed formulae of balanced equation an
as chromium is less reactive than manganese. [;] When chromium is heated with copper (II) oxide, black CuO turned to reddish-brown Cu. / grey Cu turned to green Cr₂O₃./ black CuO and grey Cr turned to green Cr₂O₃ and reddish-brown Cu. / Chromium is more reactive than copper and displaces copper from CuO. b 3Mn (s) + 2Cr³+ (aq) → 3Mn²+ (aq) + 2Cr (s)	Total 12 marks	
When chromium is heated with copper (II) oxide, black CuO turned to reddish-brown Cu / grey Cu turned to green Cr₂O₃./ black CuO and grey Cr turned to green Cr₂O₃.and reddish-brown Cu. Chromium is more reactive than copper and displaces copper from CuO. b 3Mn (s) + 2Cr³+ (aq) → 3Mn²+ (aq) + 2Cr (s) c Blue solution turned green and grey metal coated with a reddish-brown solid. 1 Total 5 marks 6a	de, there is no visible change. [;] 1 2; [1]	a When chromium is heate
Cu / grey Cu turned to green Cr₂Q₃./ black CuO and grey Cr turned to green Cr₂Q₃.and reddish-brown Cu. Chromium is more reactive than copper and displaces copper from CuO. b 3Mn (s) + 2Cr³+ (aq) → 3Mn²+ (aq) + 2Cr (s) 1 C Blue solution turned green and grey metal coated with a reddish-brown solid. 1 Total 5 marks 6a Colour and state at room temperature and pressure 2 2; [1] 3; [2] bromine Reddish-brown liquid [;] bromine Reddish-brown liquid [;] iodine Purplish-black solid [;] b In the first experiment, bromine is more reactive than iodine [;] and displaces iodine from aqueous iodide[;], forming aqueous iodine which is brown. [;] 2 4; [2] 2; [1] In the second experiment, iodine is less reactive than chlorine [;] and unable to		
Chromium is more reactive than copper and displaces copper from CuO. b 3Mn (s) + 2Cr³+ (aq) → 3Mn²+ (aq) + 2Cr (s) 1 c Blue solution turned green and grey metal coated with a reddish-brown solid. 1 Total 5 marks 6a	, black Guo turried to reddish-brown	
b 3Mn (s) + 2Cr³+ (aq) → 3Mn²+ (aq) + 2Cr (s) 1 c Blue solution turned green and grey metal coated with a reddish-brown solid. 1 Total 5 marks 6a		,
C Blue solution turned green and grey metal coated with a reddish-brown solid. Total 5 marks Colour and state at room temperature and pressure Chlorine Greenish-yellow gas [;] bromine Reddish-brown liquid [;] iodine Purplish-black solid [;] D In the first experiment, bromine is more reactive than iodine [;] and displaces iodine from aqueous iodide[;], forming aqueous iodine which is brown. [;] In the second experiment, iodine is less reactive than chlorine [;] and unable to	splaces copper from CuO.	Chromium is more reacti
Total 5 marks 6a colour and state at room temperature and pressure 2 2; [1] 3; [2] chlorine Greenish-yellow gas [;] iodine Purplish-black solid [;] b In the first experiment, bromine is more reactive than iodine [;] and displaces iodine from aqueous iodide[;], forming aqueous iodine which is brown. [;] In the second experiment, iodine is less reactive than chlorine [;] and unable to	1	b 3Mn (s) + 2Cr ³⁺ (aq) \rightarrow 3
colour and state at room temperature and pressure chlorine Greenish-yellow gas [;] bromine Reddish-brown liquid [;] iodine Purplish-black solid [;] b In the first experiment, bromine is more reactive than iodine [;] and displaces iodine from aqueous iodide[;], forming aqueous iodine which is brown. [;] In the second experiment, iodine is less reactive than chlorine [;] and unable to	ed with a reddish-brown solid.	c Blue solution turned gree
colour and state at room temperature and pressure chlorine Greenish-yellow gas [;] bromine Reddish-brown liquid [;] iodine Purplish-black solid [;] b In the first experiment, bromine is more reactive than iodine [;] and displaces iodine from aqueous iodide[;], forming aqueous iodine which is brown. [;] In the second experiment, iodine is less reactive than chlorine [;] and unable to	Total 5 marks	
colour and state at room temperature and pressure chlorine Greenish-yellow gas [;] bromine Reddish-brown liquid [;] iodine Purplish-black solid [;] b In the first experiment, bromine is more reactive than iodine [;] and displaces iodine from aqueous iodide[;], forming aqueous iodine which is brown. [;] In the second experiment, iodine is less reactive than chlorine [;] and unable to	0 0 141	
bromine Reddish-brown liquid [;] iodine Purplish-black solid [;] b In the first experiment, bromine is more reactive than iodine [;] and displaces iodine from aqueous iodide[;], forming aqueous iodine which is brown. [;] In the second experiment, iodine is less reactive than chlorine [;] and unable to	om temperature and proceure	
iodine Purplish-black solid [;] b In the first experiment, bromine is more reactive than iodine [;] and displaces iodine from aqueous iodide[;], forming aqueous iodine which is brown. [;] In the second experiment, iodine is less reactive than chlorine [;] and unable to		chlorine G
b In the first experiment, bromine is more reactive than iodine [;] and displaces iodine from aqueous iodide[;], forming aqueous iodine which is brown. [;] In the second experiment, iodine is less reactive than chlorine [;] and unable to		bromine R
iodine from aqueous iodide[;], forming aqueous iodine which is brown. [;] In the second experiment, iodine is less reactive than chlorine [;] and unable to		iodine
iodine from aqueous iodide[;], forming aqueous iodine which is brown. [;] In the second experiment, iodine is less reactive than chlorine [;] and unable to		
displace chlorine from aqueous chloride ions. Hence aqueous iodine remains and is brown solution. [;]	s iodine which is brown. [;] te than chlorine [;] and unable to	iodine from aqueous iodi In the second experimen displace chlorine from ac
C The oxidation state of chlorine increases from 0 in Cl₂ to +1 in OCl⁻ and decreases to -1 in Cl⁻. Therefore, chlorine is oxidised and reduced simultaneously.	1	decreases to -1 in Cl ⁻ .
Total 6 marks	Total 6 marks	1

7a	Measure each sample of acid with a pH meter AND If the pH reading ranges from 3 to 6, then it is a weak acid OR Add a few drops of Universal indicator to each sample AND If the indicator changes to a yellow or orange colour, it is a weak acid [1]	1	
b	volume ratio 3: 2	1	
С	 Add aqueous sodium tartarate to a fixed volume of aqueous copper(II) nitrate in a beaker till no more precipitate is formed. [1] Filter the mixture to obtain copper(II) tartarate as a residue Wash the residue with a little distilled water and pat dry between pieces of filter paper. 	1	2; [1]
di	6.0°C [;] Since the magnesium ribbon is the limiting reactant [;], amount of heat energy given out is the same for same no. of moles of Mg [;]	2	3; [2] 1-2; [1]
ii	energy $H_3 PO_4 (aq) + Mg (s)$ $Arrow and label activation energy [;]$ $Arrow and label \Delta H [;] Correct formulae of products [;] ignore state symbols progress of reaction$	2	3; [2] 1-2;[1]
	Total	8 1	marks

8ai	HCFC-123				2	
ii	CFC-114: C ₂ C _{l₂F₄}				1	
	HFC-125: C ₂ HF ₅				1	
b	Comparing CFC-11	and HCFC-22 and H	FC-23 with one carb	on atom in each		9; [4]
	molecule, [;]					7-8; [3]
						4-6; [2]
		HCFC	HFC	CFC		1-3; [1]
	ODP	HCFC-22 has	HFC-23 has the	CFC-11 has the		
		ODP of 0.04 less	lowest ODP at	highest ODP of		
		than CFC-11 but	less than 4 × 10 ⁻⁴ .	1.00. [;]		
		more than CFC-	[;]			
		11. [;]				

	by 2500X but it increby 3X. [;]	HCFC-22 has the least GWP of 1700 [;] C reduces the ozone eases global warming es ODP by 25X reduces	to the greatest exte	ent, increases GWP		
Ci	Chlorine atom consu	•	n one O_3 molecule [;] ne second step. [;]	is regenerated when	2	4; [2] 1-3; [1]
ii	C-F and C-H have h (328 kJ/mol) , less (light) energy is react with ozone.	igher bond energy va	C-C <i>l</i> bonds to release	,	1	
d	Ammonia and carbo	n dioxide do not read	ct with ozone.		1	
				Total	12	marks

Section B [10 marks]

Q	Answer	М	Remarks
9ai	$C_5H_{12} \rightarrow C_2H_6 + C_3H_6$	1	
III	Add aqueous bromine to A and B separately. [;]	2	3; [2]
	For A , aqueous bromine remained reddish-brown. [;]		
	For B , reddish-brown aqueous bromine turned colourless.[;]		•
iii	Displayed formula for propyl propanoate	1	
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
	Mr of repeat unit = 114	1	2; [1]
	When $M_r = 16000$, number of repeating units		
	= 16 000/114		
	= 140.35 [;] = 141 [round up]		
	When Mr = 50 000, number of repeating units = 50 000/114 = 438.596 = 438 [round down] [;]		
	= 430.330 = 430 [round down] [,]		
	Therefore, the range of the average number of repeating units is between 141 and 438 [1] inclusive.	1	
ii	displayed formula HOOCCH ₂ CH ₂ COOH	1	
	HOCH(CH ₃)CH ₂ OH	1	

iii	M_r of dicarboxylic acid $(C_4H_6O_4)=118$ M_r of diol $(C_3H_8O_2)=76$ No of moles of dicarboxlic acid = $1000/118=8.47458$ Dicarboxyic acid is limiting. No of moles of polymer = 8.47458	1	
	Mass of polymer produced = $8.47458 \times (118+76-2\times18)$ = $1338 \text{ g} = 1.34 \text{ kg}$	1	
	OR consider terminating monomer for each molecule Mass of polymer produced = $8.47458 \times (118+76)$ - $(8.47458-1)(18)$ = $1509.5 \text{ g} = 1.51 \text{ kg}$		
	Total	10	marks
10ai	As the air/fuel ratio changes from rich to lean, the conversion efficiency of CO and HC increases but that of NOx decreases.	1	mano
	As the air/fuel ratio changes from rich to lean, the amount of oxygen available to oxidise CO to CO_2 increases,	1	
	amount of oxygen available to oxidise HC to CO ₂ increases.	1	
	lesser CO amount available to reduce NO and hence conversion of $\ensuremath{NO_x}$ decreases.	1	
ii	Nitrogen oxide causes respiratory problems.	1	
	Inhalation of carbon monoxide prevents haemoglobin from absorbing oxygen and may lead to suffocation / organ failure / headaches. [NB: discuss effect of each gas separately]	1	
bi	Step 1: Aqueous barium chloride removes the sulfate ions by precipitation due to formation of BaSO ₄ which is insoluble.	1	
	Step 2: Aqueous sodium carbonate removes the calcium, magnesium and iron(III) ions and the excess barium ions by precipitation due to the formation of $CaCO_3$, $MgCO_3$ & $Fe_2(CO_3)_3$ which are insoluble.	1	
ii	Substance Z is hydrochloric acid. Hydrochloric acid reacts with carbonate ions to form water and carbon dioxide gas.	1	
,	Total	10	marks