

1 2010Promo/RVHS/6

The position vectors of vertices A, B and C, relative to the origin O, are $-3\mathbf{i}+4\mathbf{k}$, $-2\mathbf{i}+4\mathbf{j}-3\mathbf{k}$ and $11\mathbf{i}-4\mathbf{j}-9\mathbf{k}$ respectively.

- (i) Find a unit vector parallel to \overrightarrow{OA} . [1]
- (ii) A point *P* divides AC in the ratio 1 : 3. Find the position vector of *P*. [2]
- (iii) Show that the points *O*, *B* and *P* are collinear. [2]
- (iv) OBDC forms a parallelogram. Find the position vector of D. [2]

2 2015Promo/DHS/I/2

The position vectors of the points *A* and *B* relative to the origin *O* are $\begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix}$ and $\begin{pmatrix} -2 \\ 5 \\ 1 \end{pmatrix}$ respectively. The point *P* lies between *A* and *B* such that $\overrightarrow{AP} = \lambda \overrightarrow{AB}$ where $0 < \lambda < 1$.

- (i) Find the position vector of P in terms of λ . [1]
- (ii) If \overrightarrow{OP} is perpendicular to \overrightarrow{AB} , find the value of λ . [2]

Given that $\lambda = \frac{1}{3}$,

- (iii) Find the area of triangle *OPA*. [2]
- (iv) Write down the ratio of the area of triangle *OPB* to the area of triangle *OPA*. [1]

3 2013Promo/MJC/I/4

Referred to the origin *O*, the points *A* and *B* are such that $\overrightarrow{OA} = \mathbf{a}$ and $\overrightarrow{OB} = \mathbf{b}$, where \mathbf{a} and \mathbf{b} are non-zero and non-parallel vectors. The point *C* lies on *OB* such that $\overrightarrow{OC} = k\overrightarrow{OB}$, where *k* is a constant. *P* is on *AC* such that AP : PC = 3 : 1, and *Q* is on *AB* such that AQ : AB = 2 : 3.

- (i) Find \overrightarrow{OP} and \overrightarrow{OQ} in terms of **a**, **b** and k. [2]
- (ii) Given that O, P and Q are collinear, find the value of k. [3]

4 2015Promo/NYJC/1/4

Relative to the origin O, the position vectors of two points A and B are \mathbf{a} and \mathbf{b} respectively, where \mathbf{a} and \mathbf{b} are non-zero and non-parallel vectors. The vector \mathbf{a} is a

unit vector which is perpendicular to $2\mathbf{a} + 5\mathbf{b}$. The angle between **a** and **b** is $\frac{2\pi}{3}$.

(i) Show that
$$|\mathbf{b}| = \frac{4}{5}$$
. [3]

(ii) The point *M* divides *AB* in the ratio $\lambda: 1-\lambda$. The point *N* is such that *OMBN* is a parallelogram. By considering \overrightarrow{ON} in terms of **a** and **b**, find the area of triangle *OAN* in terms of λ . [4]

5 RI Promo 9758/2017/2

Referred to the origin *O*, points *A* and *B* have position vectors **a** and **b** respectively, such that **a** and **b** are non-parallel vectors. Point *C* lies on line *AB*, such that the length of projection of \overrightarrow{OC} onto \overrightarrow{OB} is 5 units. Given that $|\mathbf{b}| = 2$ and $\mathbf{a} \cdot \mathbf{b} = 1$, find the possible position vectors of *C* in terms of **a** and **b**. [6]

6 2014 Promo/SAJC/5

- (a) Relative to an origin *O*, the position vectors of *A* and *B* are **a** and **b** respectively, and **c** is the position vector of the point *C* on *AB* which divides *AB* in the ratio 3:1. Given that angle *AOB* is acute, show that the length *d* of the projection of \overrightarrow{OC} on \overrightarrow{OB} is given by $d = \frac{3}{4} |\mathbf{b}| + \frac{\mathbf{a} \cdot \mathbf{b}}{4|\mathbf{b}|}$. [4]
- (b) Three vectors \mathbf{p} , \mathbf{q} and \mathbf{r} are such that $\mathbf{p} \times \mathbf{q} = \mathbf{p} \times \mathbf{r}$, $\mathbf{p} \neq \mathbf{0}$. Show that $\mathbf{q} \mathbf{r} = k\mathbf{p}$, where $k \in \mathbb{R}$. [2]

7 2012/YJC/II/1

Two planes π_1 and π_2 have equations x+2y+z=2 and 2x+y-z=3 respectively. The point *A* has coordinates (4, -1, 2).

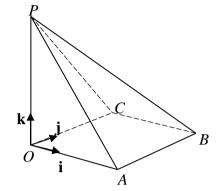
- (i) Find the acute angle between the planes π_1 and π_2 . [2]
- (ii) Let B be the foot of the perpendicular from A to π_1 . Find the coordinates of B. [3]
- (iii) If π_3 contains the line *AB* and is perpendicular to π_1 and π_2 , find the Cartesian equation of π_3 . [3]

[4]

8 2011/TPJC/I/11

The diagram shows a pyramid *POABC*. Taking unit vectors **i**, **j**, **k** as shown, the position vectors of *A*, *B*, *C* and *P* are given by $\overrightarrow{OA} = 3\mathbf{i}$, $\overrightarrow{OB} = 3\mathbf{i} + 4\mathbf{j}$, $\overrightarrow{OC} = 4\mathbf{j}$ and $\overrightarrow{OP} = 4\mathbf{k}$.

Given that point *E* lies on *PC* such that $PE : EC = \lambda : 1 - \lambda$.



(i) Write down the position vector of E in terms of λ . [1]

(ii) It is given that *PA* is parallel to plane *OEB*.Show that *E* is the midpoint of *PC*.

(iii) The point *D* lies on *AP* and has position vector $\frac{3}{2}\mathbf{i} + 2\mathbf{k}$. Find the coordinates of the foot of the perpendicular from *D* to plane *OEB*. [4]

(iv) Hence deduce the distance between *PA* and the plane *OEB*. [4]

9 2010/SRJC/I/9

The position vectors of the points A, B, C and D are given as $\mathbf{i} + 3\mathbf{j}$, $2\mathbf{j} + 4\mathbf{k}$, $\mathbf{i} + \mathbf{j} + \mathbf{k}$ and $4\mathbf{i} + 5\mathbf{k}$ respectively.

- (i) Find the vector equation of plane π in the form $\mathbf{r} \cdot \mathbf{n} = p$, that contains the points *A*, *B* and *C*. [3]
- (ii) Find the foot of the perpendicular of the point D to the plane π . Hence find the shortest distance from the point D to the plane π . [4]

A line *l* parallel to the vector $\mathbf{j} + \mathbf{k}$ passes through point *D* and it meets the plane π at the point *N*.

(iii) Find the position vector of the point N and hence find the vector equation of the reflection of line l about the plane π . [5]

10 2010/SAJC/I/7

The equations of two planes π_1 , π_2 are given by

$$\pi_1: 2x + 4y - z = 8$$

 $\pi_2: x + 2z = 6$

(i) Find the vector equation of the line of intersection *l* between the planes π_1 and π_2 .

[2]

(ii) Find the foot of perpendicular, F_1 from the point (6, 9, -2) to the plane π_1 . [3]

Another plane π_3 contains the points F_1 and F_2 and is parallel to *l*.

(iii) Given that
$$\overrightarrow{OF_2} = \begin{pmatrix} 26\\ 5\\ 9\\ \frac{2}{5} \end{pmatrix}$$
, show that the Cartesian equation of the plane π_3 is given
by $15x - 8y + 40z = 22$. [3]

11 2009/AJC/I/13

The points *P* and *Q* have position vectors $\mathbf{i} - \mathbf{j}$ and $3\mathbf{i} + 13\mathbf{j} + 6\mathbf{k}$ respectively. The plane π_1 contains the point *P* and the line $\frac{x}{2} = -1 - z$, y = 0.

- (i) Find a vector equation of the plane π_1 in scalar product form. [3]
- (ii) Find the position vector of the foot of the perpendicular from Q to π_1 . [2]

The line l_1 passes through the points *P* and *Q*.

(iii) The line l_2 is the reflection of the line l_1 about the plane π_1 . Find a vector equation of l_2 . [3]

The plane π_2 has the equation $\mathbf{r} \cdot \begin{pmatrix} a \\ 6 \\ 4 \end{pmatrix} = b$.

Find the values of *a* and *b* such that

(iv)	π_1 and π_2 are parallel and at a distance of $\sqrt{224}$ apart.	[3]
------	---	-----

(v) π_1 and π_2 are intersecting. [1]

12 2009/RI/II/4

In this question, give each of your answers in exact form.

The plane Π have equation $\mathbf{r} = (2 + \lambda - 3\mu)\mathbf{i} + (3 - 2\lambda)\mathbf{j} + (\mu - 2)\mathbf{k}$ where $\lambda, \mu \in \mathbb{R}$ and the point *A* has position vector 2**j**.

- (i) Express the equation of Π in the form $\mathbf{r} \cdot \mathbf{n} = p$ where \mathbf{n} is a vector perpendicular to Π . [3]
- (ii) Find the position vector of the foot of perpendicular, *B*, from *A* to Π.Deduce the perpendicular distance from *A* to Π.[5]
- (iii) By using a vector product, find the length of projection of OA on Π . [2]
- (iv) By using (ii) and (iii), find the area of triangle $OAB_{.}$

[2]

Answer Key

AIIS	wer Key		
No	Year	JC/CI	Answers
1	2010 Promo	RVHS	(i) $-\frac{3}{5}i + \frac{4}{5}k$ (ii) $\frac{1}{2}i - j + \frac{3}{4}k$ (iv) $9i - 12k$
2	2015 Promo		(i) $\overrightarrow{OP} = \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix} + \lambda \begin{pmatrix} -4 \\ 6 \\ 0 \end{pmatrix};$ (ii) $\lambda = \frac{7}{26};$
			(iii) $\frac{\sqrt{29}}{3}$ units ² or 1.80 units ² ; (iv) 2:1
3	2013 Promo	MJC	(ii) $\frac{1}{3}$ units ² or 1.80 units ² ; (iv) 2:1 (i) $\overrightarrow{OP} = \frac{\mathbf{a} + 3k\mathbf{b}}{4}, \ \overrightarrow{OQ} = \frac{\mathbf{a} + 2\mathbf{b}}{3}$ (ii) $\therefore k = \frac{2}{3}$ $\frac{(1-\lambda)\sqrt{3}}{5}$
4	2015 Promo	NYJC	$\frac{(1-\lambda)\sqrt{3}}{5}$
5	2017 Promo	RI	$-2\mathbf{a}+3\mathbf{b} \text{ or } \frac{14}{3}\mathbf{a}-\frac{11}{3}\mathbf{b}$
7	2012	YJC	(i) $\theta = \frac{\pi}{3}$
			(ii) $\left(\frac{11}{3}, -\frac{5}{3}, \frac{5}{3}\right)$ (iii) $x - y + z = 7$
8	2011		$(i) \begin{pmatrix} 0\\ 4\lambda\\ 4-4\lambda \end{pmatrix}$ (iii) $\begin{pmatrix} \frac{3}{34}, \frac{18}{17}, \frac{16}{17} \end{pmatrix}$ (iv) $\frac{6\sqrt{34}}{17}$
9	2010		(i) $\mathbf{r} \cdot \begin{pmatrix} 7\\1\\2 \end{pmatrix} = 10$ (ii) $\frac{14\sqrt{6}}{9}$
			(iii) $\overrightarrow{ON} = \begin{pmatrix} 4 \\ -\frac{28}{3} \\ -\frac{13}{3} \end{pmatrix}$; $l': \mathbf{r} = \begin{pmatrix} 4 \\ -\frac{28}{3} \\ -\frac{13}{3} \end{pmatrix} + \beta \begin{pmatrix} -7 \\ 8 \\ 7 \end{pmatrix}$
10	2010	SAJC	(i) $\mathbf{r} = \begin{pmatrix} 6 \\ -1 \\ 0 \end{pmatrix} + \lambda \begin{pmatrix} -2 \\ 1.25 \\ 1 \end{pmatrix}$, $\lambda \in \mathbb{R}$ (ii) $(2, 1, 0)$

11	2009	AJC	(1) (-1)
			(i) $r \bullet \begin{pmatrix} 1 \\ 3 \\ 2 \end{pmatrix} = -2$ (ii) $\overrightarrow{ON} = \begin{pmatrix} -1 \\ 1 \\ -2 \end{pmatrix}$ (iii)
			$ \underbrace{r}_{\mathcal{I}} = \begin{pmatrix} -5\\ -11\\ -10 \end{pmatrix} + \lambda \begin{pmatrix} 3\\ 5\\ 5 \end{pmatrix}, \lambda \in \mathbb{R} $
			(iv) $a = 2, b = 108$ or -116
			(v) $a \neq 2, b \in \mathbb{R}$
12	2009	RI	(i) $\mathbf{r} \cdot \begin{pmatrix} 2 \\ 1 \\ 6 \end{pmatrix} = -5$
			(ii) $\overrightarrow{OB} = \frac{1}{41} \begin{pmatrix} -14\\75\\-42 \end{pmatrix}, \frac{7\sqrt{41}}{41}$ units
			(iii) $4\sqrt{\frac{10}{41}}$ units (iv) $\frac{14\sqrt{10}}{41}$ units ²