Q1	Solution
V 1	V.
	Let P(N) be the statement $\sum_{n=1}^{N} \frac{n+3}{(n+1)(n+2)2^n} = \frac{1}{2} - \frac{1}{(N+2)2^N}$ for integers $N \ge 1$.
	When $N = 1$:
	LHS = $\frac{1+3}{(1+1)(1+2)(2)} = \frac{1}{3}$
	(2 · 2)(2 · 2)(2)
	RHS = $\frac{1}{2} - \frac{1}{(1+2)(2)} = 1 - \frac{1}{6} = \frac{1}{3}$
	LHS = RHS, hence $P(1)$ is true.
	Assume P(k) is true for some $k \ge 1$, i.e. $\sum_{n=1}^{k} \frac{n+3}{(n+1)(n+2)2^n} = \frac{1}{2} - \frac{1}{(k+2)2^k}$.
	Claim P(k+1) is true, i.e. $\sum_{n=1}^{k+1} \frac{n+3}{(n+1)(n+2)2^n} = \frac{1}{2} - \frac{1}{(k+3)2^{k+1}}.$
	Proof:
	LHS = $\sum_{n=1}^{k+1} \frac{n+3}{(n+1)(n+2)2^n}$
	$=\sum_{n=1}^{k}\frac{n+3}{(n+1)(n+2)2^{n}}+\frac{k+4}{(k+2)(k+3)2^{k+1}}$
	$= \frac{1}{2} - \frac{1}{(k+2)2^k} + \frac{k+4}{(k+2)(k+3)2^{k+1}}$
	$=\frac{1}{2} - \frac{(k+3)(2) - (k+4)}{(k+2)(k+3)2^{k+1}}$
	$=\frac{1}{2} - \frac{2k+6-k-4}{(k+2)(k+3)2^{k+1}}$
	(**/(**/_
	$=\frac{1}{2} - \frac{k+2}{(k+2)(k+3)2^{k+1}}$
	$=\frac{1}{2}-\frac{1}{(k+3)2^{k+1}}$
	$= RHS$ Hence $P(k)$ is true $\Rightarrow P(k+1)$ is true.
	Since P(1) is true, and if P(k) is true then P(k+1) is also true, then by mathematical induction, P(N) is
	true for all positive integers $N \ge 1$.
	$\sum_{n=1}^{\infty} \frac{n+3}{(n+1)(n+2)2^n} = \lim_{N \to \infty} \frac{1}{2} - \frac{1}{(N+2)2^N} = \frac{1}{2}$

Q2 Solution

(i) The distributive axiom
$$c(\mathbf{u} + \mathbf{v}) = c\mathbf{u} + c\mathbf{v}$$
 is violated.

$$c(\mathbf{u} + \mathbf{v}) = c \begin{pmatrix} u_1 v_1 \\ u_2 v_2 \end{pmatrix} = \begin{pmatrix} c u_1 v_1 \\ c u_2 v_2 \end{pmatrix}$$

$$c\mathbf{u} + c\mathbf{v} = \begin{pmatrix} c u_1 \\ c u_2 \end{pmatrix} + \begin{pmatrix} c v_1 \\ c v_2 \end{pmatrix} = \begin{pmatrix} c^2 u_1 v_1 \\ c^2 u_2 v_2 \end{pmatrix}$$
So $c(\mathbf{u} + \mathbf{v}) \neq c\mathbf{u} + c\mathbf{v}$ in general

Λ	ltern	ofix	
$\boldsymbol{\Lambda}$	исии	auv	

The axiom $(c+d)\mathbf{u} = c\mathbf{u} + d\mathbf{u}$ is violated.

$$(c+d)\mathbf{u} = \begin{pmatrix} (c+d)u_1 \\ (c+d)u_2 \end{pmatrix}$$

$$c\mathbf{u} + d\mathbf{u} = \begin{pmatrix} cu_1 \\ cu_2 \end{pmatrix} + \begin{pmatrix} du_1 \\ du_2 \end{pmatrix} = \begin{pmatrix} cdu_1^2 \\ cdu_2^2 \end{pmatrix}$$

So $(c+d)\mathbf{u} \neq c\mathbf{u} + d\mathbf{u}$ in general

- (ii) Let \mathbf{A}_1 and \mathbf{A}_2 be matrices such that $\mathbf{A}_1\mathbf{B} = \mathbf{B}\mathbf{A}_1$ and $\mathbf{A}_2\mathbf{B} = \mathbf{B}\mathbf{A}_2$
- (a) $\left(\mathbf{A}_1 + \mathbf{A}_2\right)\mathbf{B} = \mathbf{A}_1\mathbf{B} + \mathbf{A}_2\mathbf{B} = \mathbf{B}\mathbf{A}_1 + \mathbf{B}\mathbf{A}_2 = \mathbf{B}(\mathbf{A}_1 + \mathbf{A}_2)(k\mathbf{A}_1)\mathbf{B} = k(\mathbf{A}_1\mathbf{B}) = k(\mathbf{B}\mathbf{A}_1) = \mathbf{B}(k\mathbf{A}_1)$

The set is closed under addition and scalar multiplication. Also, the set is non-empty since $\mathbf{0B} = \mathbf{B0} = \mathbf{0}$. Hence it is a subspace.

- (ii) $\mathbf{I}^{\mathrm{T}}\mathbf{I} = \mathbf{I}$ but $(2\mathbf{I})^{\mathrm{T}}(2\mathbf{I}) = 4(\mathbf{I}^{\mathrm{T}}\mathbf{I}) = 4\mathbf{I} \neq \mathbf{I}$
- (b) The set is not closed under scalar multiplication.

Hence it is not a subspace.

Q3	Solution
Ų3	Solution

(i) $I = \int_{-2}^{2} 3^x dx \text{ Let } f(x) = 3^x \text{ and } h = \frac{2 - (-2)}{4} = 1$

n	t_n	$y_n = f(t_n)$
0	-2	$\frac{1}{9}$
1	-1	$\frac{1}{3}$
2	0	1
3	1	3
4	2	9

Let *T* denotes the approximation to $I = \int_{-2}^{2} 3^x dx$, found using trapezium rule with 5 ordinates.

$$T = \frac{h}{2} [y_0 + 2y_1 + 2y_2 + 2y_3 + y_4] --- (1)$$

$$T = 8\frac{8}{9}$$

(ii)
$$f(x) = 3^x$$

$$f'(x) = (\ln 3)(3^x)$$

$$f''(x) = (\ln 3)^2 (3^x) > 0 \text{ for } -2 \le x \le 2$$

 $f(x) = 3^x$ is concave upwards over the interval [-2, 2]

Trapezium rule produces an overestimate T to $I = \int_{-2}^{2} 3^x dx$.

(iii) Let S denotes the approximation to $I = \int_{-2}^{2} 3^x dx$, found using Simpson rule with 5 ordinates.

$$S = \frac{1}{3}h[y_0 + 4y_1 + 2y_2 + 4y_3 + y_4] --- (2)$$

	$S = 8\frac{4}{27}$
(iv)	$I = \int_{-2}^{2} 3^x \mathrm{d}x$
	$= \frac{1}{\ln 3} \left[3^x \right]_{-2}^2$ $= \frac{1}{\ln 3} \left[3^2 - 3^{-2} \right]$
	$=\frac{1}{\ln 3} \left[3^2 - 3^{-2} \right]$
	$=\frac{80}{9}\left(\frac{1}{\ln 3}\right)$
(v)	Numerical integration using the Simpson rule produces a more accurate approximation compared to the Trapezium rule, with the same number of ordinates.
	The Simpson rule makes use of a quadratic approximation as opposes to the Trapezium rule which makes use of a linear approximation. Hence Simpson rule uses a better approximation to the curve $y = 3^x$.
(vi)	Absolute percentage error $= \frac{ I - S }{I} \times 100\% \approx 0.706\%$

Q4	Solution
(a)	Differentiate (1) with respect to <i>x</i> :
	$\frac{d^2y}{dx^2} + 4\frac{dy}{dx} - 2\frac{dz}{dx} = 0$
	ar ar
	From (2), $\frac{\mathrm{d}z}{\mathrm{d}x} = y - 5z + 16x$
	$\Rightarrow \frac{\mathrm{d}^2 y}{\mathrm{d}x^2} + 4\frac{\mathrm{d}y}{\mathrm{d}x} - 2(y - 5z + 16x) = 0$
	$\Rightarrow \frac{\mathrm{d}^2 y}{\mathrm{d}x^2} + 4\frac{\mathrm{d}y}{\mathrm{d}x} - 2y + 10z - 32x = 0$
	From (1), $2z = \frac{dy}{dx} + 4y - 8$
	$\Rightarrow \frac{d^2y}{dx^2} + 4\frac{dy}{dx} - 2y + 5\left(\frac{dy}{dx} + 4y - 8\right) - 32x = 0$
	$\Rightarrow \frac{d^2 y}{dx^2} + 4\frac{dy}{dx} - 2y + 5\frac{dy}{dx} + 20y - 40 - 32x = 0$
	$\Rightarrow \frac{d^2 y}{dx^2} + 9 \frac{dy}{dx} + 18 y = 32x + 40 \text{ (shown)}$
(b)	Auxiliary equation: $m^2 + 9m + 18 = 0$
	$\Rightarrow (m+3)(m+6) = 0$
	$\Rightarrow m = -6 \text{ or } -3$
	Complementary function: $y = Ae^{-6x} + Be^{-3x}$ for arbitrary constants A, B
	For particular integral, let $y = cx + d \Rightarrow \frac{dy}{dx} = c$, $\frac{d^2y}{dx^2} = 0$
	Substitute into DE: $0+9c+18(cx+d) = 32x+40$
	Comparing coefficients:

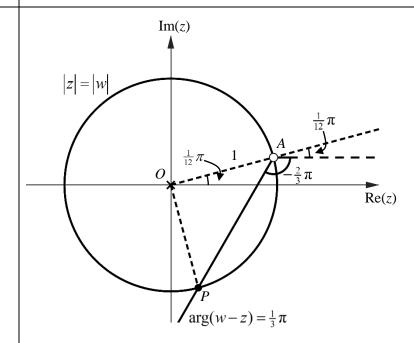
Q4	Solution
	$x: 18c = 32 \Rightarrow c = \frac{16}{9}$
	$x^{0}: 9c + 18d = 40 \Rightarrow d = \frac{40 - 16}{18} = \frac{4}{3}$
	$\therefore \text{ General solution for } y \text{ is } y = Ae^{-6x} + Be^{-3x} + \frac{16}{9}x + \frac{4}{3}$
	$\frac{dy}{dx} = -6Ae^{-6x} - 3Be^{-3x} + \frac{16}{9}$
	Substitute into (1):
	$-6Ae^{-6x} - 3Be^{-3x} + \frac{16}{9} + 4\left(Ae^{-6x} + Be^{-3x} + \frac{16}{9}x + \frac{4}{3}\right) - 2z = 8$
	$\Rightarrow -2Ae^{-6x} + Be^{-3x} + \frac{64}{9}x - \frac{8}{9} = 2z$
	$\Rightarrow z = -Ae^{-6x} + \frac{B}{2}e^{-3x} + \frac{32}{9}x - \frac{4}{9}$
	Sub. $x = 0$, $y = 0$:
	$A + B + \frac{4}{3} = 0 \implies A + B = -\frac{4}{3}$ (3)
	Sub. $x = 0$, $z = 0$:
	$-A + \frac{B}{2} - \frac{4}{9} = 0 \implies -2A + B = \frac{8}{9}$ (4)
	Using GC to solve (3) and (4), $A = -\frac{20}{27}$, $B = -\frac{16}{27}$
	\therefore Solutions for y and z are:
	$y = -\frac{20}{27}e^{-6x} - \frac{16}{27}e^{-3x} + \frac{16}{9}x + \frac{4}{3}$
	$z = \frac{20}{27}e^{-6x} - \frac{8}{27}e^{-3x} + \frac{32}{9}x - \frac{4}{9}$

Q5	Solution
(a)	$2v^4 = 1 + \sqrt{3}i$
	$2v^4 = 2e^{i\left(\frac{\pi}{3}\right)}$
	$v^4 = e^{i\left(\frac{\pi}{3} + 2k\pi\right)}$, where $k \in \mathbb{Z}$
	$v = e^{i\left[\frac{1}{4}\left(\frac{\pi}{3} + 2k\pi\right)\right]}$
	$v = e^{i\left(\frac{\pi}{12} + \frac{k\pi}{2}\right)} = e^{i(6k+1)\frac{\pi}{12}}$
	For arguments in the principal range, choose $k = 0, \pm 1, -2$
	$\therefore v = \underline{e^{-i\left(\frac{11\pi}{12}\right)}, \ e^{-i\left(\frac{5\pi}{12}\right)}, \ e^{i\left(\frac{\pi}{12}\right)}, \ e^{i\left(\frac{\pi}{12}\right)}}$
(b)	Let $w = e^{ip} = \cos p + i \sin p$ where $p = \frac{\pi}{12}$.
	By De Moivre's Theorem, for any positive integer n ,

Q5	Solution
	$w^n + \frac{1}{w^n} = w^n + w^{-n}$
	$= \cos np + i\sin np + \cos(-np) + i\sin(-np)$
	$= \cos np + i\sin np + \cos np - i\sin np$
	$= 2\cos np$ (shown)
	$2\cos p = w + \frac{1}{w}$
	$\Rightarrow \left(2\cos p\right)^4 = \left(w + \frac{1}{w}\right)^4$
	$\Rightarrow 16\cos^4 p = \left(w^4 + \frac{1}{w^4}\right) + 4\left(w^2 + \frac{1}{w^2}\right) + 6$
	$=2\cos 4p + 4(2\cos 2p) + 6$
	$=2\cos\frac{\pi}{3}+8\cos\frac{\pi}{6}+6$
	$=2\left(\frac{1}{2}\right)+8\left(\frac{\sqrt{3}}{2}\right)+6$
	$=7+4\sqrt{3}$
	$\Rightarrow \cos^4 p = \frac{7 + 4\sqrt{3}}{16} \text{(shown)}$
(c)	z = w = 1
	Locus is a circle centred at the origin O with radius 1 unit.
	$arg(w-z) = \frac{\pi}{3} \implies arg(-(z-w)) = \frac{\pi}{3}$
	$\Rightarrow \arg(-1) + \arg(z - w) = \frac{\pi}{3}$
	$\Rightarrow \arg(z - w) = \frac{\pi}{3} - \pi$
	$\Rightarrow \arg(z-w) = -\frac{2\pi}{3}$
) —) —) —) —) —) —) —) —) —) —

Locus is a half-line starting from (and excluding the point A representing w), at an argument of $-\frac{2\pi}{3}$ rad.

Q5 Solution



(d) Triangle *OAP* is isosceles triangle.

$$\angle OAP = \angle OPA$$

$$= \pi - \frac{2\pi}{3} - \frac{\pi}{12} = \frac{\pi}{4}$$

$$\angle AOP = \pi - 2\left(\frac{\pi}{4}\right) = \frac{\pi}{2}$$

The argument of the complex number represented by *P* is $\frac{\pi}{12} - \frac{\pi}{2} = -\frac{5\pi}{12}$

Since *P* lies on the circle centred at origin with radius 1, the complex number represented by *P* is $e^{-i\left(\frac{5\pi}{12}\right)}$, which is one of the roots of the equation in (a).

Q6 | Solutions

(a)
$$\hat{p} = \frac{7}{9}$$
, $z_{0.95} = 1.6449$ (or 1.645), $n = 900$

Since
$$\hat{P} \sim N\left(p, \frac{p(1-p)}{n}\right)$$
 approx. by CLT,

90% confidence interval for p

$$= \left(\frac{7}{9} - 1.645\sqrt{\frac{7}{9}\left(1 - \frac{7}{9}\right)}, \frac{7}{9} + 1.645\sqrt{\frac{7}{9}\left(1 - \frac{7}{9}\right)}\right)$$

=(0.7550, 0.8006)

Answer is 4 dp as interval width is 0.0456 to 3 sf

(b)
$$2 \times z_{0.95} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}} = 0.04$$
$$1.6449 \sqrt{\frac{\frac{7}{9}(1-\frac{7}{9})}{n}} = 0.02$$
Using GC,
$$n = 1169.06 \approx 1169 = 1170 \text{ (3sf)}$$

Solutions

Q7

						Pution with $p = 0.6$. All distribution with $p = 0.6$.		
Level of signif			d does no	n ionow a	i omomic	is distribution with $p=0.0$.		
No of heads	0	1	2	3	4			
Frequency	5	35	64	66	30			
Expected frequency	5.12	30.72	69.12	69.12	25.92			
Degree of freedom is 4. $\chi^{2} = \sum_{i=0}^{4} \frac{\left(O_{i} - E_{i}\right)^{2}}{E_{i}} \sim \chi^{2} \left(4\right)$								
By GC, the <i>p</i> -value is $0.780 > 0.05$. Hence, we do not reject H ₀ and conclude at 5% significance level that there is insufficient evidence that binomial distribution with $p = 0.6$ is not a good fit.								
		•		-		value will be $1.7614 \times \frac{1000}{200} = 8.807$		

Q8	Solutions									
(a)	The depths of tread on the front tyres and those on the rear tyres are not known to be normally distributed.									
(b)		A	В	С	D	E	F	G	Н	
		2.4	1.5	2.3	2.4	2.6	2.5	2.1	2.6	
		2.3	1.9	2.1	1.8	1.8	2.8	1.4	2.1	
	Diff	0.1	-0.4	0.2	0.6	0.8	-0.3	0.7	0.5	
	Rank	1	-4	2	6	8	-3	7	5	
(0)	H ₀ : $m_d = 0$ H ₁ : $m_d \neq 0$ where m_d mm is the population median of depth of front tyre subtracts depth of rear tyre. $P = 29$, $Q = 7$, so $T = Q = 7$, the 10% two-tail critical region for $n = 8$ is $T \leq 5$. Therefore, we do not reject H ₀ at 10% significance level and conclude there is insufficient evidence that there is a difference between the average wear for the front and rear tyres.									
(c)	After correcting the mistakes, we have only one positive difference. For the given conclusion, we need $T \le 5$.									

and so there is no change to the result of the test.

Q8	Solutions
	This means that $-0.5 < b - 1.9 < -0.3$.
	Hence $1.4 < b < 1.6$.

Q9	Solutions
Q9 (a)	$P(Y \le y)$
	$= P(1-5X^2 \le y)$
	$= P\left(\frac{1-y}{5} \le X^2\right)$
	$= P\left(X \ge \sqrt{\frac{1-y}{5}}\right) + P\left(-\sqrt{\frac{1-y}{5}} \ge X\right)$
	$= P\left(X \ge \sqrt{\frac{1-y}{5}}\right) + 0$
	$= \int_{\sqrt{\frac{1-y}{5}}}^{1} 4x^3 dx \text{if} 0 < \sqrt{\frac{1-y}{5}} < 1$
	$= \left[x^4 \right]_{\frac{1-y}{5}}^{1} \text{for} -4 < y < 1$
	$=1-\left(\frac{1-y}{5}\right)^2$
	p.d.f of Y
	$= \frac{d}{dy} \left[1 - \left(\frac{1 - y}{5} \right)^2 \right]$
	$=\frac{2}{25}(1-y)$
	$g(y) = \frac{2}{25}(1-y), -4 < y < 1.$
(b)	$E(Y) = \int_{-4}^{1} \frac{2}{25} (1 - y) y dy = -\frac{7}{3}$

Q10	Solutions				
(i)	1. The average rate of survey responses received remains constant.				
	2. The event of receiving a survey response is independent of the event of receiving another survey				
	response.				
(ii)	Let <i>S</i> be the number of surveys received in an hour, i.e. $S \sim \text{Po}\left(\frac{5}{6}\right)$.				
	$P(S_1 = 0, S_2 = 0 \text{ and } S_3 \ge 1)$				
	$= P(S_1 = 0)P(S_2 = 0)P(S_3 \ge 1)$				
	$P(S_1 = 0, S_2 = 0 \text{ and } S_3 \ge 1)$ $= P(S_1 = 0)P(S_2 = 0)P(S_3 \ge 1)$ $= P(S_1 = 0)P(S_2 = 0)[1 - P(S_3 = 0)]$				
	= 0.10679				
	$\approx 0.107(3 \text{ s.f.})$				

Q10	Solutions				
	Alternative				
	Let <i>W</i> h be the waiting time to receive the first survey.				
	$W \sim \operatorname{Exp}\left(\frac{5}{6}\right)$				
	P(2 < W < 3) = 0.107				
(iii)	Let X be the number of surveys received in a day, i.e. $X \sim Po(20)$				
	Let W be the total number of surveys received in 2 days, i.e. $W \sim Po(40)$.				
	Required probability				
	$= \frac{2 \left([P(X=16)][P(X=14)] + [P(X=17)][P(X=13)] \right)}{P(W=30)}$				
	$=\frac{2(0.0060479)}{0.010465}$				
	0.018465				
	= 0.65505 = 0.655 (3s.f.)				
	= 0.033 (38.1.)				
(iv)	$f(t) = \frac{1}{72} e^{-\frac{1}{72}t}, t > 0$				
(v)	$P(T > n) \ge 0.3$		n	P(T > n)	
	$e^{-\frac{1}{72}n} \ge 0.3$		86	0.3029	
			87	0.2987	
	$n \le \ln 0.3(-72) = 86.7$				
	∴ greatest $n = 86$				

Q11	Solutions				
(i)	(1-sample) t test				
(ii)	By GC, $\bar{x} = 2003.425$ and $s_X^2 = 4.46694^2$				
	Let μ_X g be the population mean mass of rice in a packet reported by Machine A.				
	$H_0: \mu_X = 2000$				
	$H_1: \mu_X > 2000$				
	$T = \frac{\overline{X} - 2000}{s / \sqrt{8}} \sim t(7)$				
	Test statistic $t = \frac{2003.425 - 2000}{4.46694 / \sqrt{8}} = 2.16868$				
	By GC, p -value = 0.0334.				
	Since the null hypothesis is rejected, $\frac{\alpha}{100} \ge 0.0334 \Rightarrow \alpha \ge 3.34$.				

Q11	Solutions				
	Thus the minimum value of α is 3.34.				
(iii)	Appropriate hypothesis test is the 2-sample <i>t</i> test.				
	We need to assume that the variances of the masses of packets of rice of both batches are the same.				
	We have $\overline{y} = 2004.1375$ and				
	$s_Y^2 = \frac{1}{7} \left(266.99 - \frac{33.1^2}{8} \right) = 18.57696.$				
	Let μ_Y g be the mean mass of rice in a packet reported by Machine B.				
	$H_0: \ \mu_X - \mu_Y = 0$				
	$H_1: \ \mu_X - \mu_Y \neq 0$				
	$s_p^2 = \frac{7s_X^2 + 7s_Y^2}{14}$				
	$s_p^2 = \frac{7s_x^2 + 7s_y^2}{14}$ $T = \frac{\overline{X} - \overline{Y}}{s_p \sqrt{\frac{1}{8} + \frac{1}{8}}} \sim t(14)$				
	NORMAL FLOAT AUTO REAL RADIAN MP NORMAL FLOAT AUTO REAL RADIAN MP				
	Z-SampTrest Inpt:Data Stats				
	By GC, p -value = 0.750 > 0.05.				
	Hence we do not reject H_0 and there is insufficient evidence at the 5% significance level to conclude that				
	the mean masses of packets in the two batches are different.				
(iv)	It is possible that the second batch of rice consisted of packets that are heavier.				