St. Joseph's Institution 2022 Year 4 OP Preliminary Exam Answer Scheme

Paper 1

1	2	3	4	5	6	7	8	9	10
В	D	В	С	С	С	С	D	В	В
11	12	13	14	15	16	17	18	19	20
С	D	С	А	А	С	С	В	А	D
21	22	23	24	25	26	27	28	29	30
D	А	С	D	А	В	В	С	В	В
31	32	33	34	35	36	37	38	39	40
А	В	А	А	D	А	А	В	В	С

Paper 2 Section A

Qn	Suggested answers	Mark
A1a	W: iron / Fe	1
	X: zinc sulfate / ZnSO ₄	1
	Y: barium sulfate / BaSO ₄	1
A1b	Lighted splint extinguishes with a pop sound.	1
	TOTAL	4
A2ai	The rate of reaction increases.	2
	When temperature increases, the reacting particles have higher kinetic energy, move	
	faster and collide more often. More particles have energy equal to or higher than	
	the activation energy. Thus, the frequency of effective collisions between reacting	
	particles increases.	
	[every 2 points – 1m]	
A2aii	No. Increasing the pressure has no effect on liquids as the particles in liquids are	1
	closely packed.	
A2bi	No. of moles of Si_2OCl_6	
	= 1 / 285	
	= 0.0035088 mol	
	No. of moles of Cl ⁻ ions	1
	$= 0.0035088 \times 6$	
	= 0.021053	
	= 0.0211 mol (to 3 s.f.)	
A2bii	No. of moles of $Si_3O_2Cl_8$	
	= 1 / 400	
	= 0.00250 mol	
	No. of moles of Cl ⁻ ions	1
	$= 0.00250 \times 8$	
A Q = :	= 0.0200 mol	4
A2ci	$Ag^{+} + Cl^{-} \rightarrow AgCl$	1
A2cii	No. of moles of AgCl	1
	= 3.03 / 143.5	
	= 0.0211 mol (to 3 s.f.)	
	Since 1 mole of AgCl forms 1 mole of Cl ions, the oxochloride is Si₂OCl ₆ since the	1
	number of moles of C <i>l</i> ions are the same at 0.0211 mol.	
	TOTAL	8

Qn	Suggested answers	Mark
A3ai	Nitrogen in the air reacts with oxygen in the air at high temperatures to form nitrogen dioxide gas.	1
A3aii	Nitrogen dioxide reacts with oxygen and moisture in the air to form nitric acid.	1
	The nitric acid dissolves in rainwater to form acid rain, which falls to the soil. The nitrate ions are formed from the dissociation of nitric acid , causing the soil to have a high nitrate content.	1
A3aiii	$CaCO_3 + 2HNO_3 \rightarrow Ca(NO_3)_2 + H_2O + CO_2$	1
A3bi	Carbon dioxide is a greenhouse gas which traps excess heat, causing global warming.	1
	Global warming causes ice bergs at the poles to melt, sea levels to rise and leading to floods in lowlands / causes droughts and crop yield to decrease (or any other possible answer).	1
A3bii	More people should take public transport instead of driving personal cars to decrease carbon dioxide emissions.	1
	This is because each car generates much more carbon dioxide than the bus, i.e. 5750 kg of carbon dioxide per year as compared to 3200 kg of carbon dioxide per year.	1
A3ci	450 °C, 250 atm and finely divided iron catalyst	1
A3cii	The reaction between nitrogen and hydrogen is reversible .	1
	TOTAL	10
A4a	The oxidation state of sulfur increases from -2 in ZnS to +4 in SO ₂ . ZnS has been oxidised / This is oxidation.	1
	The oxidation state of oxygen decreases from 0 in O_2 to -2 in ZnO. O_2 has been reduced / This is reduction.	1
	Since oxidation and reduction occurs simultaneously, this is a redox reaction.	
A4b	$ZnO(s) + CO(g) \rightarrow Zn(s) + CO_2(g)$ [1m – chemical equation, 1m – state symbols]	2
A4ci	Reddish brown solid will be formed on the copper-coated rod No visible reaction on the surface of the zinc-coated rod.	1 1
A4cii	Copper is less reactive than iron, iron will corrode faster and iron will rust. Zinc is more reactive than iron, so zinc will corrode in place of iron and iron will not rust.	1 1
	TOTAL	8
A5a	Transition metals form coloured compounds. /	1
	Transition metals and their compounds are good catalysts .	
A5bi	scandium and zinc	1
A5bii	Both scandium and zinc have only one oxidation state of +3 and +2 respectively instead of having variable oxidation states.	1
	Scandium has a much lower density of 2.99 g/dm ³ as compared to the rest of the transition metals with higher densities between 4.50 g/dm ³ to 8.92 g/dm ³ .	1
	Zinc has a much lower melting point of 420 °C as compared to the rest of the transition metals with higher melting points between 1083 °C to 1890 °C.	1
	TOTAL	5
A6a	Experiment 1: copper metal Experiment 2: hydrogen gas, zinc electrode	1 2
A6b	Effervescence / bubbling of a colourless gas at the anode.	2
	 Reddish brown / pink solid formed at the cathode. Size of cathode increases 	
	 Blue solution turns colourless. [any two of the above] 	
A6c	$4OH^{-}(aq) \rightarrow 2H_2O(l) + O_2(g) + 4e$	2
, .00	[1m – ionic equation, 1m – state symbols]	-

Qn	Suggested answers	Mark
A6d	The gases can be dried by passing through drying agents such as concentrated sulfuric acid / calcium oxide / calcium chloride.	1
	The volumes of the gases can be determined by collecting them in a calibrated gas syringe.	1
	TOTAL	9
A7ai	A unsaturated hydrocarbon contains at least one carbon-carbon (C=C) double bond .	1
A7aii	Bubble propene gas into aqueous bromine . Aqueous bromine turns from reddish brown to colourless / decolourises rapidly.	1
A7bi	Addition of steam to propene	1
	300 °C, 60 atm, phosphoric(V) acid catalyst	1
A7bii	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1
	propyl ethanoate	1
	TOTAL	6

Paper 2 Section B

Qn	Suggested answers	Mark
B8a	Butan-2-ol.	
	There are two alkyl groups attached to the carbon atom with hydroxyl group.	1
B8b		
	$H C_2 H_5$	1
	$\begin{array}{ccc} H & C_2H_5 \\ H - C - C - OH \\ H & CH_3 \end{array}$	
	H CH ₃	
B8ci	As the number of alkyl groups attached to the carbon atom with hydroxyl group	1
	increases, the boiling point decreases.	
B8cii	The intermolecular forces of attraction between the molecules become weaker, so	1
	less energy required to overcome the weaker intermolecular forces of attraction.	
B8d	Similarity: Hydrogen is produced in both reactions.	1
	Difference: An alkoxide is produced in the reaction between an alcohol and sodium	1
	but a salt is produced in the reaction between a carboxylic acid and sodium.	
B8e	As the number of alkyl groups attached to the carbon atom with hydroxyl group	1
	increases, the acidity decreases.	
B8f	Ethanoic acid.	
	It has the smallest pK _a value of 4.77,	1
	so it is the strongest acid .	1
B8g	$2C_4H_9OH + 2Na \rightarrow 2C_4H_9O^{-}Na^{+} + H_2$	1
B8hi	acidified potassium manganate(VII) /	1
D 01 11	acidified potassium dichromate(VI)	
B8hii	Acidified potassium manganate(VII) turns from purple to colourless /	1
	Acidified potassium dichromate(VI) turns from orange to green.	
	TOTAL	12
B9a	Base. Methylamine accepts a proton / gains a hydrogen ion.	1
B9bi	Any pH above 7 and lower than 13	1
B9bii	Methylamine is a weak alkali .	1
	Hence methylamine dissolves and dissociates partially in water to form a low	1
	concentration of hydroxide ions, resulting in a lower pH than sodium hydroxide.	

Qn	Suggested answers	Mark
B9ci	Titration	1
B9cii	Heat the solution to saturation.	2
	• Leave to cool and for crystals to form.	
	• Filter the mixture to obtain the crystals.	
	• Wash the crystals with a little cold distilled water and then dry between sheets of	
	filter paper.	
	[every 2 points – 1m]	
B9ciii	(CH ₃ NH ₃) ₂ SO ₄	1
200	TOTAL	8
Either	The particles are far apart and disorderly / irregularly arranged, and moving	1
B10a	randomly at high speeds.	1
B10b	Fluorine / F ₂ .	1
	F_2 gains hydrogen atoms to form HF. Since F_2 is reduced, it is the oxidising agent. /	1
	The oxidation state of fluorine decreases from 0 in F_2 to -1 in HF. Since F_2 is reduced,	
	it is the oxidising agent.	
B10ci	The energy absorbed to break bonds in Cl ₂ is more than that for F ₂ ,	1
	as the bond energy of Cl-Cl is higher than that of the F-F bond.	1
B10cii	Energy released in Reaction 1	1
	= 679 + 185	
	= 864 kJ	
	Energy released in Reaction 2	1
	= 595 + 543	
	= 1138 kJ	
B10ciii	hydrogen fluoride / HF	1
B10civ	Dotted line to be drawn below the product (HF)	1
	TOTAL	10
Or	aluminium chloride, phosphorus trichloride and phosphorus trifluoride	1
B10a	They have low melting points.	1
B10bi		I
		I
	3+	2
		2
		2
		2
		2
	[1m] - cation, [1m] - anion	
B10bii	<pre>image: image: imag</pre>	1
B10bii	Imi - cation, [1m] - anion Molten and aqueous states Aluminium fluoride contains mobile ions which can act as charge carriers.	
	Imi - cation, [1m] - anion Molten and aqueous states Aluminium fluoride contains mobile ions which can act as charge carriers. Higher melting point.	1 1
B10bii	Imilian	1
B10bii	Imi - cation, [1m] - anion Molten and aqueous states Aluminium fluoride contains mobile ions which can act as charge carriers. Higher melting point.	1 1
B10bii	Implementation of the second secon	1 1 1
B10bii	Image: All and All	1 1
B10bii	Image: Al and	1 1 1
B10bii B10biii	Implementation of the stronger electrostatic forces of attraction / ionic bonds between the ions in aluminium oxide so more energy is required to overcome the stronger ionic bonds.	1 1 1
B10bii	(1m) - cation, [1m] - anion Molten and aqueous states Aluminium fluoride contains mobile ions which can act as charge carriers. Higher melting point. Aluminium oxide contains oxide ions which have a higher charge of 2- compared to fluoride ions with a charge of 1 Hence, there are stronger electrostatic forces of attraction / ionic bonds between the ions in aluminium oxide so more energy is required to overcome the stronger ionic bonds. Phosphorus trichloride has a higher melting point than phosphorus trifluroide.	1 1 1
B10bii B10biii	(1m) - cation, [1m] - anion Molten and aqueous states Aluminium fluoride contains mobile ions which can act as charge carriers. Higher melting point. Aluminium oxide contains oxide ions which have a higher charge of 2- compared to fluoride ions with a charge of 1 Hence, there are stronger electrostatic forces of attraction / ionic bonds between the ions in aluminium oxide so more energy is required to overcome the stronger ionic bonds. Phosphorus trichloride has a higher melting point than phosphorus trifluroide. Both have simple molecular structures, however phosphorus trichloride has a	1 1 1
B10bii B10biii	[1m] - cation, [1m] - anion Molten and aqueous states Aluminium fluoride contains mobile ions which can act as charge carriers. Higher melting point. Aluminium oxide contains oxide ions which have a higher charge of 2- compared to fluoride ions with a charge of 1 Hence, there are stronger electrostatic forces of attraction / ionic bonds between the ions in aluminium oxide so more energy is required to overcome the stronger ionic bonds. Phosphorus trichloride has a higher melting point than phosphorus trifluroide. Both have simple molecular structures, however phosphorus trichloride has a higher relative molecular mass / is a larger molecule.	1 1 1 1
B10bii B10biii	Implement Implement Implement	1 1 1
B10bii B10biii	[1m] - cation, [1m] - anion Molten and aqueous states Aluminium fluoride contains mobile ions which can act as charge carriers. Higher melting point. Aluminium oxide contains oxide ions which have a higher charge of 2- compared to fluoride ions with a charge of 1 Hence, there are stronger electrostatic forces of attraction / ionic bonds between the ions in aluminium oxide so more energy is required to overcome the stronger ionic bonds. Phosphorus trichloride has a higher melting point than phosphorus trifluroide. Both have simple molecular structures, however phosphorus trichloride has a higher relative molecular mass / is a larger molecule.	1 1 1 1