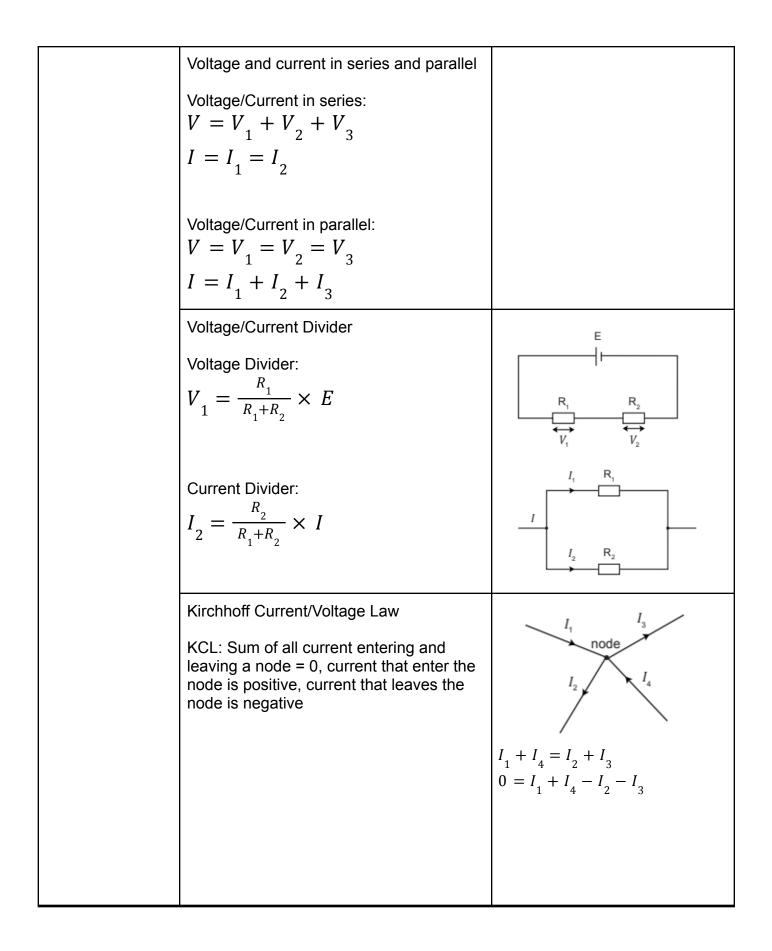
| Chapter                             | Content                                                                                                                                                                                                                                                                                                                                                                                                                 | Examples                                              |  |
|-------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|--|
| Chapter 1:<br>Electronic<br>Systems | Main parts of electronic systems:<br>Input Subsystem, Process Subsystem,<br>Output Subsystem                                                                                                                                                                                                                                                                                                                            | Calculators, Microphones, hairdryer, ect              |  |
|                                     | Block Diagram (eg thermometer) Input Subsystem Temperature sensor Processing circ                                                                                                                                                                                                                                                                                                                                       |                                                       |  |
|                                     | How electronic systems are presented:<br>Block Diagrams (see above): Provides<br>overview of system<br>Circuit Diagram: Gives information on<br>how the circuit is built, and contains<br>values, components and the way it is<br>connected                                                                                                                                                                             | Circuit Diagram:                                      |  |
|                                     | How does information flow in electronic<br>systems?<br>Electronic systems can only process info<br>in the form of electric signals<br>(voltage/currents that carry info)<br>non electrical info(input) -> Electrical info<br>(process) -> non electric info (output)                                                                                                                                                    | Analogue signals: 0 to 5V<br>Digital signals: 0 OR 5V |  |
| Chapter 2:<br>Current Electricity   | Voltage: Comes in 2 forms<br>Electromotive force (EMF): Total voltage<br>of batteries connected in series or parallel<br>Effective EMF in series =<br>$E_1 + E_2 + E_3 + + E_n$<br>Effective EMF in parallel = same with all<br>other batteries in parallel (usually of same<br>voltage)<br>Potential Difference (P.D.): Work done to<br>drive a unit charge through a component<br>or in between 2 points in a circuit |                                                       |  |

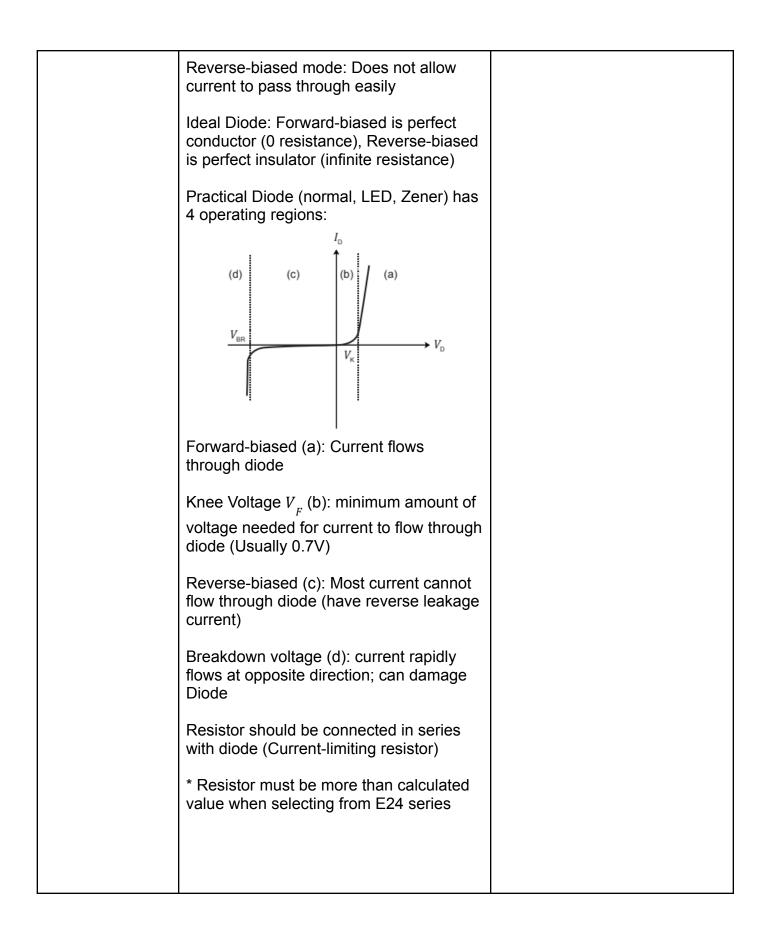

Electronics notes (Analogue) (pm something3009 on discord if there are any errors)

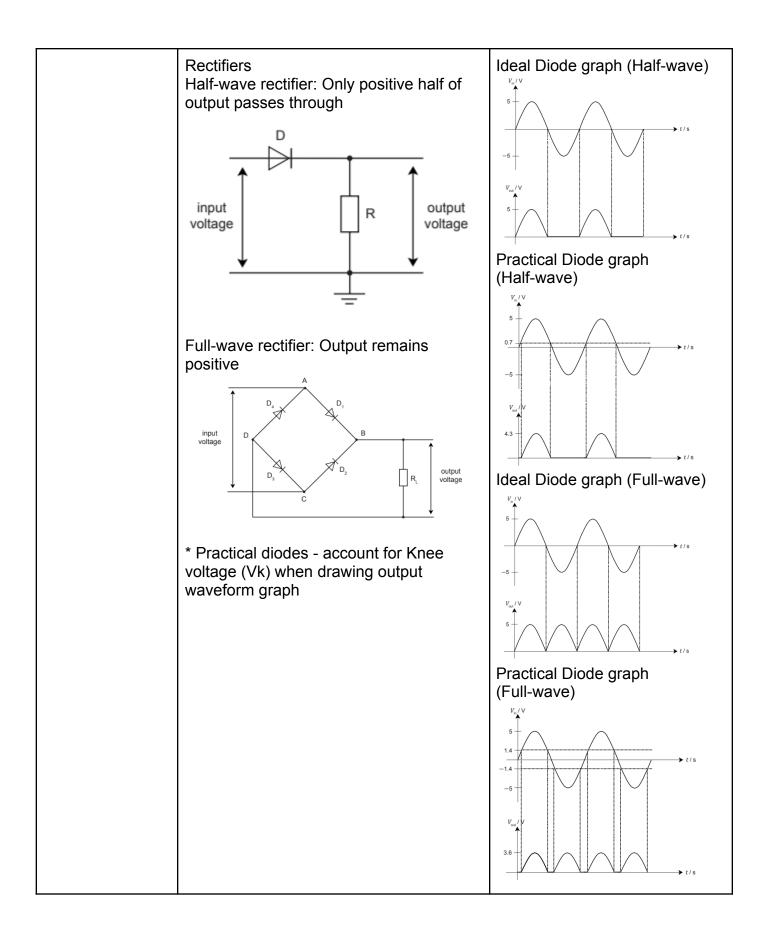
| Current<br>Rate of flow of Electric Charge<br>Conventional current flow: From positive<br>to negative terminal (mostly used)<br>Electron flow: From negative to positive<br>terminal<br>$I = \frac{Q}{t}$<br>I - Current (A)<br>Q - Charge (Columb) (C)<br>t - Time in seconds (s)<br>* Current rating: Maximum current a<br>conductor can carry without overheating<br>or being damaged |                                                                                              |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|
| Resistance<br>A measure of how difficult it is for a<br>current to flow through a component<br>$R = \frac{V}{I}$<br>R - Resistance (Ohm) ( $\Omega$ )<br>V - Voltage across component (V)<br>I - Current (A)                                                                                                                                                                             |                                                                                              |
| Ohm's law<br>Current in a metallic conductor is directly<br>proportional to P.D. across conductor<br>(Linear I-V graph, start from origin)<br>Non-ohmic conductors are not linear or<br>not starting from the origin                                                                                                                                                                     | Ohmic conductors: Resistor<br>Non-Ohmic conductors:<br>Filament Bulb, Semiconductor<br>Diode |
| Heating effect of Current<br>Heat is produced when current flows<br>through a component<br>Heat is bad as it can cause electronic<br>components to overheat and be<br>damaged, energy is also wasted<br>Power: Rate of Energy conversion<br>$P = IV$ or $P = \frac{E}{t}$                                                                                                                |                                                                                              |

|                         | Formula can be rearranged to $P = I^2 R$<br>or $P = \frac{V^2}{R}$<br>V - Voltage across component (V)<br>I - Current (A)<br>R - Resistance (Ohm) ( $\Omega$ )<br>E - Amount of energy converted (J)<br>t - Time in seconds (s)                                                                                                                                                                                                                                   |                                                                          |
|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|
|                         | Power rating: Maximum power at which a component can be used without being damaged *Pick power rating of 2x the calculated value                                                                                                                                                                                                                                                                                                                                  | If power dissipated is 0.20W,<br>pick resistor with 0.5W power<br>rating |
|                         | Energy<br>E = VIt<br>E - Amount of energy converted (J)<br>V - Voltage across component (V)<br>I - Current (A)<br>t - Time in seconds (s)                                                                                                                                                                                                                                                                                                                         |                                                                          |
|                         | Energy efficency: The percentage of input<br>energy that is converted to useful energy<br>Efficiency = useful power output/power<br>input x 100%                                                                                                                                                                                                                                                                                                                  |                                                                          |
| Chapter 3:<br>Resistors | Resistance of a conductor is affected by 4<br>factors<br>- Resistivity of material<br>- Length of conductor (Longer<br>length, higher resistance)<br>- Cross-Sectional area of conductor<br>(Larger cross-sectional area,<br>lesser resistance)<br>- Temperature<br>Formula: $R = \frac{\rho l}{A}$<br>R - Resistance (Ohm) ( $\Omega$ )<br>P - Resistivity of material ( $\Omega$ m)<br>I - Length of material (m)<br>A - Cross sectional area (m <sup>2</sup> ) |                                                                          |

| Types of resistors: F<br>Variable resistors                                                                                                                                                                                                                                                                                                                                                                                    | ixed resistors,                               |                                                                             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|-----------------------------------------------------------------------------|
| Fixed resistors: Carb<br>Differences:                                                                                                                                                                                                                                                                                                                                                                                          | oon, Wire-wound                               |                                                                             |
| Carbon                                                                                                                                                                                                                                                                                                                                                                                                                         | Wire-wound                                    |                                                                             |
| Low power<br>applications                                                                                                                                                                                                                                                                                                                                                                                                      | High-power<br>applications                    |                                                                             |
| Low temperature stability                                                                                                                                                                                                                                                                                                                                                                                                      | High temperature stability                    |                                                                             |
| Typical power<br>rating range of<br>0.1W - 2W                                                                                                                                                                                                                                                                                                                                                                                  | Typical power<br>rating range of 2W<br>- 500W |                                                                             |
| Low cost                                                                                                                                                                                                                                                                                                                                                                                                                       | High cost                                     |                                                                             |
| Variable resistors: Tr<br>ect                                                                                                                                                                                                                                                                                                                                                                                                  | impot, Potentiometer.                         |                                                                             |
| How to determine value of resistor:<br>Resistor Colour Code: Series of 4<br>coloured bands on Carbon resistor<br>From left to right:<br>1st and 2nd band: Number<br>3rd band: Multiplier (no. of 0)<br>4th band: Percentage tolerance (eg ±5%)                                                                                                                                                                                 |                                               | Resistor with band colours<br>yellow purple orange gold: 47kΩ<br>±5%        |
| E24 series: Calculate value needed, then<br>choose a value closest to the calculated<br>value from the E24 series<br>*Selection of Resistors:<br>- For non-BJTs, pick value more than<br>calculated one (reduce current to prevent<br>overloading/damage)<br>- For BJTs, pick value less than<br>calculated one (increase current flowing<br>through transistor before BJT, make IB<br>large enough to push BJT to saturation) |                                               | If a 124Ω resistor value is calculated, use a 130Ω resistor from E24 series |

|                                | Resistors in series/parallel                                                                                                                                                    |                                                                                                                                                       |
|--------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                | In series:                                                                                                                                                                      |                                                                                                                                                       |
|                                | $R_{eff} = R_1 + R_2 + \dots + R_n$                                                                                                                                             |                                                                                                                                                       |
|                                | In parallel:<br>$\frac{1}{R_{eff}} = \frac{1}{R_1} + \frac{1}{R_2} + \dots + \frac{1}{R_n}$                                                                                     |                                                                                                                                                       |
|                                | Power rating (Resistors)<br>If temperature is high enough, can cause<br>resistor to overheat (damage resistor)                                                                  | Resistor with power rating of<br>0,25W can only withstand<br>0.25W<br>It is good practice to pick power<br>rating 2x of calculated value (eg<br>0.5W) |
| Chapter 4: Circuit<br>Theories | Common terms used to describe a circuit:<br>Circuits - Consists of electrical<br>components connected together with<br>wires, provides one or more paths for<br>current to flow |                                                                                                                                                       |
|                                | Source - It provides the e.m.f. needed to move electric charges around the circuit.                                                                                             |                                                                                                                                                       |
|                                | Load - A component which converts<br>electrical energy supplied by a source<br>into other forms                                                                                 |                                                                                                                                                       |
|                                | Open/Closed circuit - A circuit<br>without/with a continuous path linking the<br>positive terminal to the negative terminal<br>of a source.                                     |                                                                                                                                                       |
|                                | Short CircuitA low-resistance path that is usually undesirable and harmful.                                                                                                     |                                                                                                                                                       |
|                                | Overloading - occurs when current exceeds current rating                                                                                                                        |                                                                                                                                                       |
|                                |                                                                                                                                                                                 |                                                                                                                                                       |
|                                |                                                                                                                                                                                 |                                                                                                                                                       |



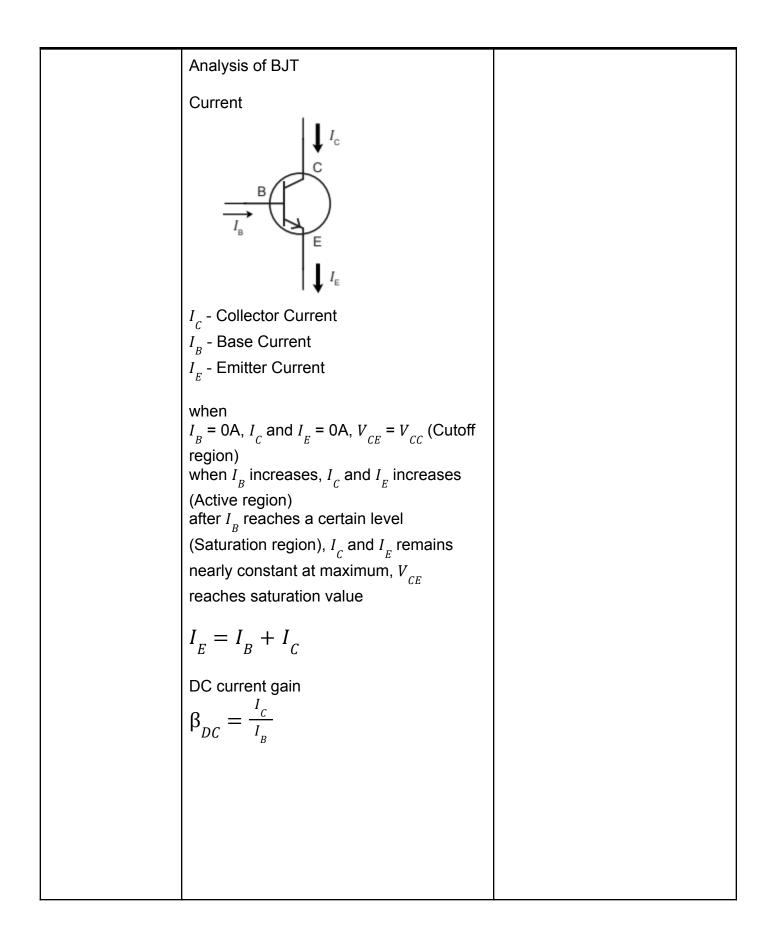


|                                       | KVL: Sum of all voltages in closed loop =<br>0, voltage increase in loop direction is<br>positive, voltage decrease in loop<br>direction is negative<br>* When no V, use IR as substitute     | $E = V_{1} + V_{2} + V_{3}$ $B = E - V_{1} - V_{2} + V_{3}$ $C = V_{1} + V_{2} + V_{3}$ $C = V_{1} - V_{2} + V_{3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|---------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Chapter 5:<br>Alternating<br>Currents | Direct Current (DC): Current flows in 1<br>direction, terminals do not change polarity<br>Alternating Current (AC): Current<br>changes directions periodically (Terminals<br>change polarity) | DC: Batteries<br>AC: AC Generators                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                       | Types of AC Waveforms                                                                                                                                                                         | Periodic waveforms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                       | Periodic: Sinusoidal, Rectangular,<br>Square, Triangular                                                                                                                                      | one cycle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                       | Non-Periodic: Waveforms that do not repeat themselves (eg microphone signals)                                                                                                                 | sinusoidal waveform rectangular waveform                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                       | Waveforms are generated by Function<br>Generator, waveforms can be observed<br>via <b>Oscilloscope</b>                                                                                        | square waveform                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                       | Describing AC waveforms                                                                                                                                                                       | v<br>↑                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                       | DC Level: Voltage level which waveform oscillates about                                                                                                                                       | period, T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                       | Peak voltage $(V_p)$ : Highest point from DC level                                                                                                                                            | $ \begin{array}{c} DC \\ level \end{array} \rightarrow \begin{array}{c} & & & \\ & & \\ \end{array} \end{array} \begin{array}{c} & & \\ & & \\ \end{array} \begin{array}{c} & & \\ & & \\ \end{array} \end{array} \begin{array}{c} & & \\ & & \\ \end{array} \begin{array}{c} & & \\ & & \\ \end{array} \begin{array}{c} & & \\ & & \\ \end{array} \end{array} \begin{array}{c} & & \\ & & \\ \end{array} \begin{array}{c} & & \\ \end{array} \begin{array}{c} & & \\ & \\ \end{array} \end{array}$ |
|                                       | Peak-to-Peak voltage $(V_{pp})$ : Lowest to highest point                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                       |                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

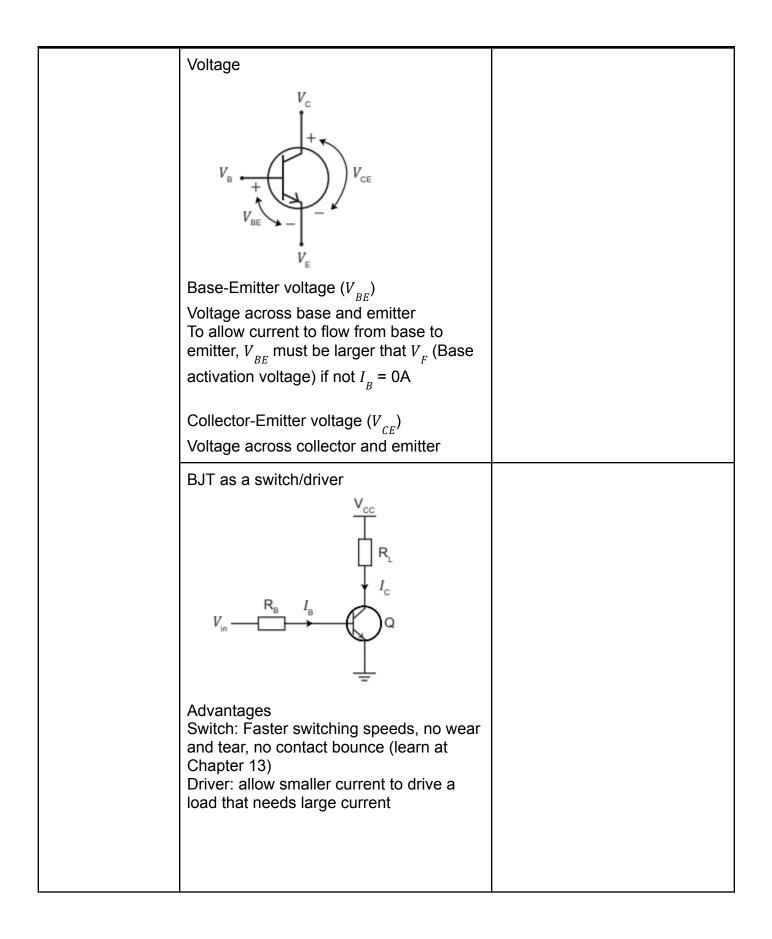
|                          | Duty cycle: Percentage of rectangular<br>waveform when waveform is at higher<br>level<br>Period: Time taken to complete 1 cycle of<br>waveform<br>Frequency: Number of complete cycles<br>created every second<br>Formula: $f = \frac{1}{T}$   |                                                                                                           |
|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|
|                          | f - Frequency (Hz)<br>T - Period (s)                                                                                                                                                                                                           |                                                                                                           |
|                          | Duty cycle is the percentage of the period<br>of a rectangular waveform when it is at<br>the higher voltage level<br>Power supplied to a device can be<br>controlled by adjusting Duty cycle<br>Duty cycle = $\frac{t_{high}}{T} \times 100\%$ | 25% duty cycle                                                                                            |
| Chapter 6:<br>Capacitors | Capacitors consists of 2 metal plates<br>separated by a Dielectric<br>Dielectric: insulating material separating<br>two metal plates                                                                                                           | Uses of Capacitors:<br>Voltage-Smoothing (Full-wave<br>rectifier), Coupling Capacitors<br>(BJT amplifier) |
|                          | Charging:<br>Safety precautions: connect a resistor<br>between the 2 metal plates to discharge.<br>It cannot be discharged directly as it will<br>cause a large current spike which will<br>damage the capacitor                               |                                                                                                           |
|                          | Determining how much charge a<br>Capacitor can store<br>$C = \frac{Q}{V}$                                                                                                                                                                      |                                                                                                           |
|                          | C - Capacitance (F)<br>Q - Charge stored (Columb) (C)<br>V - Voltage (V)                                                                                                                                                                       |                                                                                                           |

| more capacita                                                                                                                               | plates (larger =<br>nce)<br>rating plates (longer,<br>ce) |                                                                                 |
|---------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|---------------------------------------------------------------------------------|
| Types of Capacitors:<br>Non-polarised                                                                                                       | Polarised,                                                |                                                                                 |
| Electrolytic (Polarised<br>-ve sign side, values                                                                                            | , ,                                                       |                                                                                 |
| Ceramic (pF) (Non-po<br>To identify value: first<br>digit multiplier (no of a<br>digits)                                                    | 2 digits in pF, third                                     | 472 is 4700pF                                                                   |
| Difference:                                                                                                                                 |                                                           |                                                                                 |
| Polarised                                                                                                                                   | Non-polarised                                             |                                                                                 |
| Have large<br>capacitancesHave small<br>capacitances                                                                                        |                                                           |                                                                                 |
| Have fixed<br>positive and<br>negative terminalsNo fixed positive<br>or negative<br>terminals                                               |                                                           |                                                                                 |
| Typically larger in size                                                                                                                    | Typically smaller<br>in size                              |                                                                                 |
| E24 series: Calculate value needed, then<br>choose a value closest to the calculated<br>value from the E24 series (Similar to<br>resistors) |                                                           | If a 467nF capacitor value is calculated, use a 470nF capacitor from E24 series |
| Maximum working voltage: Voltage<br>applied on capacitor must not exceed or<br>capacitor may be damaged                                     |                                                           |                                                                                 |
| Capacitors in series/parallel                                                                                                               |                                                           |                                                                                 |
| In series:<br>$\frac{1}{C_{eff}} = \frac{1}{C_1} + \frac{1}{C_2}$                                                                           | + + $\frac{1}{C_n}$                                       |                                                                                 |

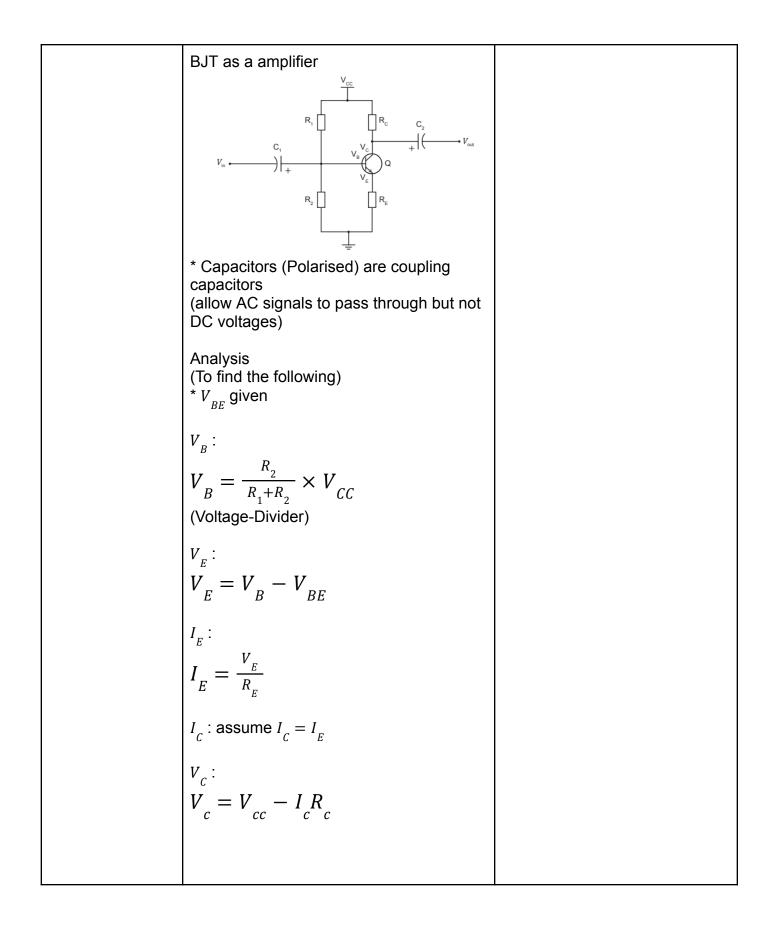
|                                       | In parallel:<br>$C_{eff} = C_1 + C_2 + \dots + C_n$                                                                                                                                                                                                                                                                           |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                    |
|---------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
|                                       | RC Circuits $\tau$ $\tau = RC$ $\tau$ - Time constant in seconds (s)R - Resistance ( $\Omega$ )C - Capacitance (F)                                                                                                                                                                                                            |                     | Charging graph:<br>$V_c$<br>voltage<br>$V_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$<br>$y_c$ |                    |
|                                       | of a capacitor<br>Determines charging/discharging time of<br>capacitor                                                                                                                                                                                                                                                        |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Discharging graph: |
|                                       | Charging/disc                                                                                                                                                                                                                                                                                                                 | Charging            | Discharging                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\tau$ $5\tau$     |
|                                       | τ                                                                                                                                                                                                                                                                                                                             | $\frac{2}{3}V_{cc}$ | $\frac{1}{3}V_{cc}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                    |
|                                       | 5τ                                                                                                                                                                                                                                                                                                                            | Fully<br>charged    | Fully<br>discharged                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                    |
| Chapter 7:<br>Semiconductor<br>Diodes | Structure of a Diode<br>Types of Semiconductors after Doping:<br>N-type, P-type<br>N-type: rely on negative charges to<br>conduct (Cathode)<br>P-type: rely on positive charges to<br>conduct (Anode)<br>They are joined together to form a PN<br>Junction Diode<br>Anode(+): side without band<br>Cathode(-): side with band |                     | anode cathode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                    |
|                                       | Behaviour of a Diode<br>Forward-biased mode: Current can pass<br>through easily                                                                                                                                                                                                                                               |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                    |







| 1                                                                                                                                                                                                                                                                |                                            |                                            | <br> |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|--------------------------------------------|------|
| LEDs<br>How to identif<br>cathode pin (-                                                                                                                                                                                                                         | y: Short lead/f<br>)                       | lat side is                                |      |
| <ul> <li>Reasons to use LEDs <ul> <li>Longer lifespan, better energy efficiency</li> </ul> </li> <li>Disadvantages: <ul> <li>More costly than incandescent light bulbs</li> </ul> </li> <li>* Connect LEDs in series with a current-limiting resistor</li> </ul> |                                            |                                            |      |
| Value of curre<br>$R = \frac{V - V_F}{I}$ R - Resistance<br>V - Voltage so<br>$V_F$ - Forward V<br>I - Current (A)                                                                                                                                               | ource (V)<br>Voltage (V)                   | sistor:                                    |      |
| 7-Segment Di<br>Consists of 7<br>point                                                                                                                                                                                                                           | isplay<br>segments with                    | n a decimal                                |      |
| It has 2 types:<br>Common-Catl                                                                                                                                                                                                                                   | : Common-And<br>hode                       | ode and                                    |      |
|                                                                                                                                                                                                                                                                  | Common-<br>Anode<br>(CA)                   | Common-<br>Cathode<br>(CC)                 |      |
| COM Pins                                                                                                                                                                                                                                                         | To V <sub>cc</sub>                         | To GND<br>(0V)                             |      |
| Segments<br>(On)                                                                                                                                                                                                                                                 | To GND<br>(0V)                             | To V <sub>cc</sub><br>through<br>resistors |      |
| Segments<br>(Off)                                                                                                                                                                                                                                                | To V <sub>cc</sub><br>through<br>resistors | To GND<br>(0V)                             |      |
|                                                                                                                                                                                                                                                                  |                                            |                                            |      |

|                                               | Zener Diode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Characteristic Graph                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|-----------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                               | Zener Diode<br>Similar to normal Diode but can operate<br>in breakdown region<br>In breakdown region, voltage across<br>Zener diode becomes $V_Z$<br>Analysis of circuit with Zener Diode<br>1. Voltage-Divider to compare voltage<br>with $V_Z$ (Measure voltage across $R_L$ )<br>When $V < V_Z$ , $V_{out} = 0V$<br>When $V > V_Z$ , $V_{out} = V_Z$ (Voltage across<br>load also same)<br>2. Power dissipated in Zener Diode<br>If not in breakdown, $P = 0W$<br>If in breakdown, $P = V \times I$<br>( $V_Z$ x Current across load)<br>Applications on Rectifier (Full-Wave):<br>- Capacitors to smoothen output<br>voltage waveform (unable to keep<br>up with fast-changing output of<br>rectifier, hence output varies over<br>a smaller range)<br>- Zener Diode to hold output voltage<br>at $V_Z$ (become steady DC voltage) | Characteristic Graph<br>$V_z$<br>$V_z$<br>$V_k$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$<br>$V_v$ |
| Chapter 8: Input<br>and Output<br>Transducers | Transducers<br>Input Transducers: Convert non-electrical<br>information/quantities into electrical<br>signals/quantities (Sensors)<br>Output Transducers: Convert electrical<br>signals/quantities into non-electrical<br>signals/quantities<br>Thermistors/LDRs<br>Thermistor: 2 Types<br>- PTC (Positive temperature<br>coefficient): When temperature<br>increase, resistance increase                                                                                                                                                                                                                                                                                                                                                                                                                                              | Input Transducers: Thermistor,<br>LDR, IR and Photodiode, ect<br>Output Transducers: Motor,<br>Buzzer, Speaker, ect<br>NTC Thermistor/LDR Graph:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |


| <ul> <li>(Resistance proportional to temperature)</li> <li>NTC (Negative temperature coefficient): When temperature increase, resistance increase (Resistance inversely proportional to temperature)</li> <li>* NTC mostly used</li> </ul>                         | resistance decreases as light intensity increases                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Light-Dependent Resistor (LDR): When<br>Light intensity increase, resistance<br>decreases (Resistance inversely<br>proportional to Light intensity)                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Both are commonly used in<br>Voltage-Dividers                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| IR Diode and Photodiode                                                                                                                                                                                                                                            | How to use:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| IR diode<br>- produces IR rays                                                                                                                                                                                                                                     | $E_{1} \qquad D_{1} \qquad D_{2} \qquad D_{2} \qquad D_{1} \qquad D_{0} \qquad D_{0} \qquad D_{0} \qquad D_{0} \qquad D_{1} \qquad D_{1$ |
| <ul> <li>Photodiode <ul> <li>recieves IR rays (allow current to flow through)</li> </ul> </li> <li>* Photodiode is to be connected in Reverse-Biased</li> </ul>                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Applications: Counter for items passing through, ect                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Microphone<br>(has positive/negative terminals)<br>Converts sound energy to electrical<br>energy<br>shorter probe is -ve terminal<br>Buzzer<br>(has positive/negative terminals)<br>Converts electrical energy to sound<br>energy<br>shorter probe is -ve terminal |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

|                                               | Loudspeaker<br>Converts electrical energy to sound<br>energy<br>* requires an amplifier to produce sound<br>DC Motors<br>Converts electrical energy to mechanical<br>energy<br>Electromechanical Relays<br>Uses electromagnets to switch on other<br>circuits<br>comes in SPST and SPDT (SPDT: has<br>NO (Normally open) and NC (Normally<br>closed))<br>Allows low-power circuits to switch on<br>high-power circuits<br>* Both DC Motor and Electromechanical<br>Relay requires a Flyback Diode to<br>prevent damage<br>Flyback Diode: Protect the transistor from<br>a large negative voltage spike when it is<br>turned off |                   |
|-----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| Chapter 9:<br>Bipolar Junction<br>Transistors | <ul> <li>BJTs</li> <li>It consists of 3 layers of Semiconductors arranged in either PNP or NPN</li> <li>Centre layer is known as the Base (B)</li> <li>while the thicker ends are known as the Collector (C) and the Emitter (E)</li> <li>*BJTs can be damaged if wrongly connected, so refer to Datasheet for pin configurations</li> <li>Structure: P-type Semiconductor sandwiched by N-type Semiconductor (NPN) or Vice Versa (PNP)</li> <li>How it works: Smaller current at Base allows a larger current to flow from Collector to Emitter</li> </ul>                                                                     | NPN BJT Structure |





Analysis (To find resistance  $R_{p}$ ) \*  $V_{CE(sat)}$  ,  $R_{c}$  ,  $\beta_{DC}$  ,  $V_{BE}$  given Step 1: Use an suitable value of V<sub>cc</sub> Step 2: Determine *I*<sub>*C*(sat)</sub>  $I_{C(sat)} = \frac{V_{CC} - V_{CE(sat)}}{R_{C}}$ (Assume  $I_{c} = I_{c(sat)}$  and  $V_{cE} = V_{cE(sat)}$ ) \* If any other components above Collector of BJT, subtract their voltages on the numerator) Step 3: Find  $I_{R}$  $I_{B} = \frac{I_{C}}{\beta_{DC}}$ Step 4: Find  $R_{R}$  $R_{B} = \frac{V_{in} - V_{BE}}{I_{B}}$  $R_{_{R}}$  value from E24 must be lower than calculated value (higher value =  $R_B$  may not be big enough) \*  $R_{_{R}}$  acts as current-limiting resistor, prevent  $I_{B}$  from being too large and damaging BJT



| $V_{CE}:$ $V_{CE} = V_{C} - V_{E}$                                                                                           |  |
|------------------------------------------------------------------------------------------------------------------------------|--|
| $ A_{V} $ (Voltage gain):<br>Either                                                                                          |  |
| $ A_{V}  = \frac{V_{PP} Output}{V_{PP} Input}$                                                                               |  |
| Or                                                                                                                           |  |
| $ A_V  \approx \frac{R_C}{R_E}$<br>*Output waveform is inverted                                                              |  |
| Capacitor in parallel to $R_E(C_3)$ : Bypassed                                                                               |  |
| capacitor to increase voltage gain of amplifier                                                                              |  |
| Darlington Pair<br>2 BJTs connected together<br>DC current gain of Darlington pair = $\beta_{DC}$<br>of both BJTs multiplied |  |
| Advantages: Creates a larger current gain than a single BJT                                                                  |  |
| Disadvantages:<br>- Slower switching speeds of BJTs<br>- Base activation voltage is doubled<br>- Bigger voltage drop         |  |