The Periodic Table

6092 CHEMISTRY GCE ORDINARY LEVEL SYLLABUS (2020)

The Periodic Table of Elements

		1						Gr	oup				IV	V	VI		lople
li Met	tals	1		Kev			1 H hydrogen						10	Ha	aloge	ns	2 He helium
3 Li lithium 7	4 Be beryllium 9		proton ato	(atomic) r omic sym name ve atomic	number bol mass			1				5 B boron 11	6 C carbon 12	7 N nitrogen 14	8 O oxygen 16	9 F fluorine 19	10 Ne neon 20
11 Na sodium 23	12 Mg magnesium 24		10140		Trar	sitio	n Eler	nent	5			13 Al aluminium 27	14 Si silicon 28	15 P phosphorus 31	16 S sulfur 32	17 C1 chlorine 35.5	18 Ar argon 40
19 K potassium 39	20 Ca calcium 40	21 Sc scandium 45	22 Ti titanium 48	23 V vanadium 51	24 Cr chromium 52	25 Mn manganese 55	26 Fe iron 56	27 Co cobalt 59	28 Ni ^{nickel} 59	29 Cu copper 64	30 Zn _{zinc} 65	31 Ga _{gallium} 70	32 Ge germanium 73	33 As arsenic 75	34 Se selenium 79	35 Br bromine 80	36 Kr krypton 84
37 Rb rubidium 85	38 Sr strontium 88	39 Y yttrium 89	40 Zr zirconium 91	41 Nb niobium 93	42 Mo molybdenum 96	43 TC technetium	44 Ru ruthenium 101	45 Rh rhodium 103	46 Pd palladium 106	47 Ag silver 108	48 Cd cadmium 112	49 In indium 115	50 Sn tin 119	51 Sb antimony 122	52 Te tellurium 128	53 I iodine 127	54 Xe xenon 131
55 Cs caesium 133	56 Ba barium 137	57 – 71 Ianthanoids	72 Hf hafnium 178	73 Ta tantalum 181	74 W tungsten 184	75 Re rhenium 186	76 Os osmium 190	77 Ir iridium 192	78 Pt platinum 195	79 Au gold 197	80 Hg mercury 201	81 T <i>l</i> thallium 204	82 Pb lead 207	83 Bi bismuth 209	84 Po polonium	85 At astatine	86 Rn radon
87 Fr francium	88 Ra radium	actinoids	104 Rf rutherfordium -	105 Db dubnium -	106 Sg seaborgium -	107 Bh bohrium	108 Hs hassium	109 Mt meitnerium	110 Ds darmstadtium -	111 Rg roentgenium -	112 Cn copernicium -	h	114 F/ flerovium		116 Lv livermorium		
I	lanthanoid	Is	57 La Ianthanum	58 Ce cerium	59 Pr praseodymium	60 Nd	61 Pm promethium	62 Sm samarium	63 Eu europium	64 Gd gadolinium	65 Tb terbium	66 Dy dysprosium	67 Ho holmium	68 Er erbium	69 Tm thulium	70 Yb	71 Lu lutetium
	actinoids		139 89 Ac actinium	140 90 Th thorium 232	141 91 Pa protactinium 231	144 92 U uranium 238	93 Np neptunium	150 94 Pu plutonium	152 95 Am americium	157 96 Cm curium	159 97 Bk berkelium	163 98 Cf californium	165 99 Es einsteinium	167 100 Fm fermium	169 101 Md mendelevium	173 102 No nobelium	175 103 Lr Iawrenciun
F	Prope	rties	of ele	emer	nts in	a pe	riod		$\left(\right)$	-	Tr	end a	cros	sap	eriod	~	
Same number of electron shells							Number of protons increases										
Gradual change in properties								Atomic radius decreases									
		rtion	ofol	emei	nts in	a dr	auo				Т	rend	dowi	n a gr	oup		
I	Prope	erues		cinci										-	-		
ا • s	Prope Same r	numb	er of v	valen	ce ele	ectror	าร		•	Num	nber o	of ele	ctron	shell	s incr	ease	S

1 Which statement about the elements in the Periodic Table is correct?

v standard qn

- A Elements are arranged in order of their nucleon number.
- B Elements are arranged in order of their proton number.
- C The period number is related to the number of electrons in the outer shell.
- D The reactivity of Group 1 elements decreases down the group.

Special Groups

Physical Properties Alkali Metals Be

berylliu 9 · Soft and easily cut Low melting and boiling point Mg agnes 24 Low density 20 Ca Good conductors of electricity and heat calciur 40 38 Sr · Shiny and silvery in color strontiu 88 56

Li

11 11

Na

23

19 K

39 37

Rb rubidiur 85 55

Cs

133

87

Fr

ranciu

Halogens

0

xyge 16

16 s

ulu 32

34

Se feniu 79

Те

fluriur 128

Po

b 2

19

э F

fluorine 19

17 CI

35.5

35 Br

bromii 80 53

I iodine 127

85 At

Ba

137

88 Ra

Trends Down the Group

- Melting and boiling points decrease
- Reactivity of Alkali Metal increase

Group I elements are called alkali metals as they react with water to give alkaline solutions.

Physical Properties

- **Colored non-metals**
- Exists as diatomic molecules
- Low melting and boiling points

Trends Down the Group

Reactivity decreases

Displacement Reactions:

A more reactive halogen is able to displace a less reactive halogen from an aqueous solution of its ions.

 $Cl_2(aq) + 2KBr(aq) \rightarrow 2KCl(aq) + Br_2(aq)$

The solution will turn reddish brown due to the aqueous bromine produced.

Special Groups

Noble Gases

Physical Properties

- Do not conduct electricity (lack of charge carriers)
- Very low melting and boiling points
- · Increasing melting and boiling points going down the group
- Increasing densities of noble gases going down the group

All noble gases have a fully filled valence shell.

Noble gases are unreactive and inert since they have a stable electronic configuration. They exist as mono-atomic particles (single atoms).

m				Tran	sitior	n Elen	nents	5			4
	21	22	23	24	25	26	27	28	29	30	Γ.
	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	
	scandium 45	titanium 48	vanadium 51	chromium 52	manganese 55	iron 56	cobalt 59	nickel 59	copper 64	zinc 65	
	39	40	41	42	43	44	45	46	47	48	
	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	
1.	yttrium	zirconium	niobium	molybdenum	technetium	ruthenium	rhodium	palladium	silver	cadmium	
	89	91	93	96	-	101	103	106	108	112	L
	57 - 71	72	73	74	75	76	77	78	79	80	
	lanthanoids	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	
		hafnium	tantalum	tungsten	rhenium	osmium	iridium	platinum	gold	mercury	
		178	181	184	186	190	192	195	197	201	L
	89 - 103	104	105	106	107	108	109	110	111	112	Γ
	actinoids	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	
		rutherfordium	dubnium	seaborgium	bohrium	hassium	meitnerium	darmstadtium	roentgenium	copernicium	
		-	-	-	-	-	-	-	-	-	

Physical Properties

- High MP
- High density
- Good electrical and thermal conductors
- Form coloured compounds

Key Property:

Transition metals can exhibit multiple oxidation states. Hence, they are frequently used as catalysts.

For example, Iron is used in the Haber process to produce ammonia.

අබ්ං

Reactivity Series

Please Stop Calling Me A Cute Zebra, I Like Hot Cute Sexy Girls/Guys

Potassium Sodium **Cold Water** Calcium Magnesium Aluminium Carbon Steam Zinc Iron Lead Hydrogen Copper Silver Step 1: Draw a line under Calcium Step 2: Draw a line under Lead Gold This shows the metals that can react with Cold Water and Steam.

dojo#

Reactions

Metal Displacement

A more reactive metal can displace a less reactive metal from its compound. This is because the more reactive metal can lose its electrons more easily to form cations.

CuO + Mg -> MgO + Cu

From this, we can deduce that Mg is more handsome than Cu, because it can steal Cu's girlfriend and form MgO.

Cu + MgO -> no reaction

The other way round, since Cu is less handsome than Mg, it can't steal his girlfriend and hence there is no reaction.

Represented in an Ionic Equation, $Cu^{2+} + Mg -> Cu + Mg^{2+}$

Thermal Decomposition

The more reactive the metal, the more thermally stable its Carbonate is.

Extraction

Extraction Methods:

Potassium Sodium Calcium Electrolysis Magnesium Aluminium Carbon Zinc Iron Heating w/ Lead Carbon Hydrogen Copper Silver All you need to understand is that metals below Carbon can be extracted by metal Gold displacement with Carbon.

Rusting

Rusting is a process that occurs when Iron is exposed to BOTH:

- Water
- Oxygen

Rusting can be prevented using these methods:

Barrier

Applying a layer of paint or oil, providing a physical barrier that prevent moisture and oxygen from coming into direct contact with iron

Sacrificial Protection

When Iron is connected (physically) to a more reactive metal, the more reactive metal corrodes in place of Iron, protecting it from rust.

Alloying

Alloying iron with other metals enhances its resistance to rust.

Galvanising

Coating with Iron or Steel with a layer of Zinc, which acts as a sacrificial metal, corroding in place of Iron

Definitions

Distance	Length of path taken.
Displacement	Net change in position of an object.
Speed	Rate of change of distance with respect to time
Velocity	Rate of change of displacement with respect to time
Acceleration	Rate of change of velocity over time
Freefall	An object is in freefall when the only force acting on it is due to gravity.
Uniform Acceleration	Constant rate of change of velocity
Terminal Velocity	A constant speed (with zero acceleration) at when the drag force of an object due to air resistance equals to the weight of the object such that it experiences zero net force.

Deceleration always refers to acceleration in the direction opposite to the direction of the velocity. Deceleration always reduces speed.

Negative acceleration, however, is acceleration in the negative direction.