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1 Adam bought a total of 50 fruits consisting of apples, oranges and pineapples. The
apples, oranges and pineapples cost $0.80, $0.60 and $1.20 each respectively. The
total cost of all the fruits he bought is $40. If the cost of apples is doubled and that of
oranges is halved, then the total cost of all the fruits that he bought would be $53.
Find the number of each type of fruit bought by Adam. [3]

2 It is given that x, y, z are the first three terms of a geometric progression. When the
three terms are arranged in the order of z, x, y, they form three consecutive terms of an
arithmetic progression.

2
(i)  Show that (ij 4 (i] ~2-0. [4]
y y
(i) Hence determine if the sum to infinity of the geometric progression exists. [2]

3 (i)

(ii)

4 (1)
(i)

5 (1)
(ii)

(iii)
1JC/2014/)C2

(x*—2x+4)(x-3)

Without the use of a calculator, solve the inequality >0.
(x+2)
[5]
o (-2 +4)(X-3)
Hence solve the inequality [2]

2

Solve the equation z* =3-1, giving the roots in the form re'’ where r >0
and -7 <0<r. [4]

Show the roots on an Argand diagram and state the cartesian equation of a

geometrical shape that the roots lie on. [3]
2
Express 5+—X2 in the form of A + B = » where A and B are
(2+x)(1-x) (2+x) (1-x)
constants to be found. [3]
2
Hence, expand S+ X > as a series of ascending powers of x up to and
(2+x)(1-x)
including the x> term. [4]
State the range of values of x for which the expansion is valid. [1]
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6 (@  The diagram shows the graph of y =f(x) with asymptotes y =k, x=0 and
the graph cuts the x-axis at (a,0).

On separate diagrams, sketch the graphs of

(i) y= 1 and

f(x)
(i) y=+f(-x),

giving the equations of any asymptotes and the coordinates of any points where
the curves cross the x- and y-axes. [4]

(b)  Thecurve y=g(x) undergoes the transformations A, B and C in succession:

A. A stretch parallel to the x-axis with scale factor 2,
B. A reflection in the y-axis, and
C. Atranslation of 1 unit in the direction of the y-axis.

Find an expression for g(x) if the equation of the resulting curve is y :1—1.
X

[3]

2n
7 A sequence u,, U,, Uy, ... issuch that u, =% and u_, =u, +%Gj forall n>1.
(i)  Write down the values of u,, u, and u,. [1]

(i) By considering 1—u, or otherwise, write down a conjecture for u,. Use the

method of mathematical induction to prove the conjecture. [5]
N 2r
. 3(1) .
i Hence find —| = intermsof N. 2
(iii) Z 4[2] [2]
“ 301 3
(iv)  Find the smallest value of N such thatz —[—j exceeds —. [2]
=i 4\ 2 50
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10

11

@ Find the exact value of the constant p such that

p+9

1
1 2 1
—dx:j — dx. 4
5 VJ9-X 0 \1-4x* “l

1
(b)  Use the substitution x =cos® @ to find the exact value of jz /% dx. [5]
o V1-x

Relative to the origin O, the position vectors of points A and B are a and b
respectively, where a and b are non-zero and non-parallel vectors. The point P on OA
is such that OP : PA =2 : 3. The point Q is such that OPQB is a parallelogram.

(i)  Find OQin terms of a and b. [3]

(i) Show that the area of the triangle OAQ can be written as k|a>< b|, where k is a
constant to be found. [2]

(iii)  State the ratio of the area of triangle OPB to area of triangle OAB. [1]

(iv)  Given axbis a unit vector, |a| =2 and the angle between a and b is 60°, find

the exact value of |b|. [3]

(1) On a single Argand diagram, sketch the locus of points representing the
complex number z such that

z-4-2i|<2  and  |z-3<|z-5. [3]

(i) Find the greatest and least possible values of
@ |z, [4]
(b) arg(z). [3]

The curve C has equation y =Xxcos2x, where 0<x< 7.

(i)  Find the exact x-coordinates of the points where C crosses the x-axis. [3]

(i)  Sketch C, stating the coordinates of any points where the curve crosses the
x- and y-axes. [2]

(iii)  Find the exact value of J' " |xcos2x| dx. [4]
4

(iv)  Find the volume of revolution when the region bounded by the curve C, the
x-axis and the line x = 7 is rotated completely about the x-axis. [2]
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12 [It is given that a cone with radius r, height h and slant height I has curved surface area
zrl ]

(@ A drinking cup is manufactured in the shape of a cone. It has a volume of
507 cm®. Show that
2
_ 225007 2

T,
r2

AZ

where A is the curved surface area of the cone.

Use differentiation to find the height h cm and radius r cm of the cup that
will require the least amount of material. [8]

(b)  Another drinking cup of the same shape is manufactured. At the instant

when the depth of water in the drinking cup is h cm, the volume V cm® of the
3

water is given by Vz%. The cup is filled and it is discovered

that there is a leak at the vertex of the cup and the volume of water in the cone
is decreasing at the constant rate of 3cm’s™. Calculate,

(i) the rate at which the depth is decreasing at the instant when the depth
is 2 cm, [3]

(i) the time taken in seconds for the depth to decrease from 6 cm to 3 cm.

[2]
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